b . QL
2019

Toward Speed, Scalability, and
Standardization for SQL Server Developers

Elizabeth Noble

Pro T-SQL 2019

Toward Speed, Scalability,
and Standardization for
SQL Server Developers

Elizabeth Noble

Apress’

Pro T-SQL 2019: Toward Speed, Scalability, and Standardization for
SQL Server Developers

Elizabeth Noble
Roswell, GA, USA

ISBN-13 (pbk): 978-1-4842-5589-6 ISBN-13 (electronic): 978-1-4842-5590-2
https://doi.org/10.1007/978-1-4842-5590-2

Copyright © 2020 by Elizabeth Noble

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484255896. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5590-2

This book is dedicated to #SQLFamily. You all have helped me
grow as a data professional. You have given me confidence
and encouraged me to pursue my dreams.

I hope this books helps others as much as I have been
helped by all of you.

This book is also dedicated to my family and friends for all
their love and support, especially while writing this book.
Eric and Danny, you can accomplish the challenges
that come before you.

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical ReVIEWETccussesssnssssnsssassssnsssassssassssasssansssansssnssssnsssassssanssas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
Part I: Building Understandable T-SQL.........cccccummsssnnmmnmmmsssssnsnnmmssssssssnsnsssssnnns 1
Chapter 1: Data TYPeS....cccrrusssmmmmmssssnnnmsssssnnnnssssssnnsssssssnnsessssnnsssssssnnnnsssssnnnnsssssnnnnsssss 3
NUMDEE DAl TYPES ...cecie it s r e e s n e e s r e e ne e 3
Exact Number Data TYPES....ccccvveiiririsie e sne s s sn e s s sr e s 3
Approximate Number Data TYPESccvveererernsesineserese s sr s s se s ssnses 7
Converting NUMDEr Data TYPEScoveevrvererrierinessnese s sr s s se e s sessesens 8
STrING DAL TYPES cuevereeriererr s rere st s s e se s e sa e a e e s R e e e s e e s s R e b e e e e e aesaene e e naennens 9
Character String Data TYPESccvivvrerrreriere e rere st s e s s sa s s sae e se s s snes 9
Unicode String Data TYPES.....ccecererrrerierernrerseresesessesessessesessessessessssessessessssessessessessssessessens 11
Binary String Data TYPES ...cveovrveriererirrerere st se e s e s e s s e s saesae e e s sae s e e ssesaessssessesneees 12

Date and Time Data TYPES.....ccuverirrriere e s r e s s sa e s an 13
DATE ...ttt st e s e e 13

TIME. ...ttt bR E e 14
SMALLDATETIME, DATETIME, DATETIME2, DATETIMEOFFSETcoooeivnereresrnereesnnesessasnnes 15

(0 (R TCT gD T L 18
UNIQUEIDENTIFIER.........coeitetreeassnesesasssssesssssssesssssssessssssssessssssssessssssssensssssssessasssssensssssssensans 18

XIVIL. ottt AR 18
Spatial GEOMEINY TYPES ...ccvrererertrrerre s s e s e s e s ae e e e s e eaesaesp e e s e naennen 19
Spatial GEOGrapNy TYPES ...ccvererrererrererersesesserersessssessessessesessessessesssssssessessesssssssessessssssessesaes 19
SOL_VARIANTovitreeurrnsresessssssesesssssesessssssess s st ssssssssssesssssssssssssssssessssssssesssssssssnssssnssenssssans 19

TABLE OF CONTENTS

101 TAY =T o] N 21
HIERARCHYIDoouititrireseseseseseees s sss e s sssssssssssnenenes 21
TaDI .. ————————— 22
1 £ T 22
Chapter 2: Database ODJectscuuccerrrrssnnnmmssssnnnsmsssssnssessssnssssssssnnssessssnnnsssssnnnnssss 25
VIBWS ..ot e s e R e e e e R e R e e e e e Re e R e e e e e e e Re e nrenn 25
USEr-DEfiNEU VIBWScoueeeeeerceree e 26
INAEXEU VIBW ...t 30
11T 0 L 32
STz Ll 1T T 0] LT 32
Table-Valued FUNCHONS ..o e 36
Other User-Defined ODJECLS.........ccorerererererereresesre s se e sessesensenens 46
User-Defined Table TYPESccoveeerererenereresesese s sessesenns 46
Table-Valued Parametersccoveererenernsenmresereesesessesessse s sessse s sessesesssessssessssssssssnens 47
Common Table EXPreSSiONS.......ccouuiiirierisnsisses s ses s sse et ses e s sssssssessessessssessesnens 50
TemPOrary ODJECEScoveeererer e 54
Temporary TADIEScccvvceerrrcrre s nne e 54
Table VariahIes.......c.cuoeverenerresirrsesesese s sese s se s sss e ssssnssssesessssssssssssnsssnssssssnens 59
Temporary STored ProCEAUIEScccoerreecrerereree e sessnnens 61
100 £SO SRR 61
LOGON THOUETS .eveuerrereserreerssesessessssssesss e srsse s s s e s e sse e s e s e sesse s sss e sss e ssssessssssnnsanessnsesnns 62
Data Definition Language (DDL) TrgQErS....c.cuorssererrererreserensesssssssssssessssessssssssssssssssesssssnsssanes 62
Data Manipulation Language (DML) TriggersS.......ccuurerereseressesesessrsssessssessssssssssssssssssssssnsssanes 62
LT 0] £ 66
FOrward-0nlY CUISOFScccouvinerreerrnesssesssssse s s se s ses s s sss e ssssesssss e ssssssessessssssensans 67
STALIC CUISOTSviuerrecirrce e e r s e e e b e e n s 69
KBYSET CUISOIS ...uvivieerrierrssessssee e sssse s e s se s ss s se s sae s snsse s saa e sessesnnssnensanis 70
DYNAMIC CUISOTS ...vcuvviuerrssesssesessesesessessssesssss e ses e s ss e s e ses s s e s e ssssessssssessssesessessnsenensanes 70

TABLE OF CONTENTS

Chapter 3: Standardizing T-SQL.......ccccussennrrssssnnnsesssssnnsessssnsssssssssnsssssssnssssssssnnnsssss 73
FOrmatting T-SQLcoue e e e e 73

X T 1T I] 86
ComMMENtING T-SALcoverireecrerrriree e se e nr e 91
Chapter 4: Designing T-SQLccouumeemmmmmmmmmmmmmssssssssnssessssssssssssssssssssssssssssssnssssssssssss 97
USiNG STOred PrOCEAUIEScccecerreerirerenreserrese s se s ss s snnns 97
USING PArameETerS.......civieriererrririerese e s sss e s s sas e s e sse s se s e ssesaessssessessesaesessesaesaessnssnsesnens 102
USING COMPIEX LOGIC .. vecvrerrerrererierersesssserersessssesessessessssessessessssessessesssssssessesssssssessessesssssssessens 111
Part II: Building Performant T-SQL.........c..ccciuniemmmmsssmnmmsssssnmmsssssmsssssssesssnnnas 121
Chapter 5: Set-Based DeSigncccururrssnsmsssnsmsssnsssssnsssssnsesssnsssssnsssssnsssssnnssssnnsessas 123
Introduction t0 Set-Based DESIgNccoucrrererenerensererese e 123
ThinKing in DAt SETS.......ccuerreerererirese s e nne e 128
Writing Code for Data SetsS.........ccurvirinermsesrnisessse s s ss s sessssesessessssenens 136
Chapter 6: Hardware USQQe.......ccussssssssssnsssssnsssssnsssssnsssssnnssssnsssssnsssssnnssssnnssssnnsnssns 147
Considering Memory With T-SQL DESIgN.......ccucvrrieriererreriereressessesessesessesessessssessessessesessessesses 147
Considering Storage With T-SQL DESIQNcccovvevrinninernesire s s 153
Considering CPU With T-SQL DESIGNccccovirrnreriresirs s ses e s ses e se s sessesenns 156
Chapter 7: Execution Plans..........cccucmmsemmssmmmssmssssmssssssssssssssssssssssssssssssassssnsssansssans 163
Reading EXECULION PIANS..........ccoveereecrrcrerese s 163
Index Usage in EXECULION PIANScccoveerererereeresesesese e 175
Logical Join Types in EXECUTION PIANS........cocoocoerinernsesnnessnssesssse s ssssssessssssessesenns 184
Chapter 8: Optimize T-SQAL.......ccccussemmmmmssssnnnmsssssnnsmssssssnssssssssnsssssssnnsssssssnnsessssnnnnss 195
Optimizing LOgiCal REAUS........ccveerereririeriere et ste s s e ses s e sae e s e s saesss e s e saesaesessesaennes 195
(0oL T u 04T T T DT = (0] o R 203
Automatic Database TUNING ..o s e ene s 207
(0T T (0] (R 208
Automatic Plan COMTECHION.........cceeererrrrneesise s sse e 208
Automatic Index Management..........cccceoererirrirne s e s 210

vii

TABLE OF CONTENTS

Intelligent QUErY ProCESSINGcccvieeriierinierine e 210
Memory Grant FEEADACKccvcerererrerierertrserere e sessessesaeses e ssesse s e ses e saessesessesaesasssssessesaes 211
Batch Mode 0n ROWSLOTEccvierinmrinisince e 21
AdAPTIVE JOINS ...eeuereereiirerere e ses s sae e s ss s e s s sae e s e saesa e e s e saesaese e e saesaesae e e e naesnes 212

Part lll: Building Manageable T-SQLcccusmmsemmssnmssnnssansssnsssessssnsssnsssansans 219
Chapter 9: Coding Standards..........ccccvssmrmssnmmsssnsmsssnsssssssesssssesssssssssnsssssnnssssansessas 221

Why Use Coding STaNAards..........ccocoeeeerrnermrnenereserssesesese s sesese s ses e ssssesssssessssessenens 221

What to Include in Coding STandards..........c.cuoveererernsenensesmsssesssesesese s sesssse s sessssessenens 224
T-SAL DESIGN ..vveuerreeressesesseserresesessesessesessesesessssessssessesesesssssssssssssssssssssssssssnsenssssssssnssssnsenens 224
T-SQL PIfOIMANCEcoveueereeereecrenesesseesse e sese e e s e s s e ses e s e sss e ssesesenssssnsenens 227
T-SQL USADITILY ...veeeeeerercsereseree s e e sre s e nnsnens 237

Chapter 10: Source Control.........ccuucemmmmssnnnmmmsssssnnmmssssssnmssssssnnmssssssssesssssnssessssnnnns 243

Why USE SOUICE CONTIOL.......ccoviererrenerreerrsessssesessssesrssesssse e s s ssssessssesessssessssessssssssssnssessessssenees 243

How 10 Use SOUICe CONTIOl ..o s 247

Setting Up SOUICE CONTIOL.......ccviverererierereseesessessessesessessessesssssssessessessssessessessssessessesssssssensesses 251

Chapter 11: TeStiNg...uuuiemrrmmssnnnmmssssnnnmssssssssesssssnssessssnssesssssnnsessssannssssssnnnssssssnnnnss 267

UNIETESTING ..eveeccrc e r e e b b e nne 267

INtegration TESHINGccvoereecrrerer e 280

[0 T2 Lo T 3o S 285

StatiC COAR ANAIYSIS.....cireeerrrrereresrrrnse e s e s s sr e nr e e nr e 286

Chapter 12: Deploymentccccuuissemnmmmsssssnnmsssssssnmssssssssessssssnssssssssnssssssnnnsesssnnnnnss 289

LT (0= o SRS PR 289

1 T (0]) SR 296

Automated DeployMEN..........cco i ——— 304

viii

TABLE OF CONTENTS

Part IV: Building Maintainable T-SQL..........ccccermmmmmmsnmmnmmmmsssssssnmesssssssnsssessnns 313
Chapter 13: Functional DeSignccccrusssnmmmsssssnnnssssssnsssssssssssssssssnssssssssnnssssssnnnnss 315
Inserting and Updating Data ... snens 315
Disable FUNCHONAIILY.........cccccviirirrn e s 321
SUPPOIt LEGACY COUEeceeeeeerieereeesese e ses s s s s ne e 327
Reporting on Transactional Data...........cccuevrererenmrnsesnesese s 334
DYNAMIC SQL.....cecererierieieriere e b s s s e e s e e e e R e e e e s R R e e e e e nae e 340
Chapter 14: LOGYING ..ccccceurrusssnnnmmmsssssnnmssssssssmsssssssnssssssnssssssssnnnssssssnnsssssssnnnsssssnnnnss 345
Data ModifiCation...........coverrninreer e —— 345
Error HANAING ..o se s s s s p e s s st 355
Chapter 15: Managing Data Growthcccccusmmmnmnssnnnmmsssssnmmmsssssmmsssssessssnnn 361
Partitioning.......cccviiir e 361
Partitioned TADIES........cccvvereriiirrre e 369
Partitioned VIBWSc..coviiiriririsiinse s s s st e s st st sae st s saesne st s e s snens 382
HYDBFid WOPKIOASc..evveerererie e sse s sae e e s sas e s s saesesesaesnesesesaesnens 389
INA@X..ceiiiisnnnnmsssnnnnnssssnnnssssssnnnssssssnnnsssssnnnssssssnnnsnsssnnnnsnsssnnnnsssssnnnnsssssnnnnsssssnnnnnsss 399

ix

About the Author

Elizabeth Noble is a Director of Database Development

or “E” at Pull-A-Part in the metro Atlanta area. It was love
at first sight when she was introduced to her first database
over 10 years ago. Her passion is to help others improve the
quality and speed of deploying database changes through
automation. When she is not trying to automate all things,
she can be found spending time with her dogs, playing

disc golf, or taking a walk. She is also a frequent speaker at
SQL Saturdays across the United States and was a first-time
speaker at PASS Summit in 2019.

About the Technical Reviewer

Warner Chaves is a SQL Server MCM, Data Platform

MVP, and Principal Consultant at Pythian. He started his
career with a brief stint in .NET programming that led to
working for enterprise customers in Hewlett-Packard’s ITO
organization. From there, he transitioned to his current
position at Pythian, building and managing data solutions
for some of the biggest names across many industry

verticals. Warner is a frequent speaker at SQLSaturday
events around the world and at the PASS Summit, the largest
conference dedicated to the Microsoft Data Platform.

xiii

Acknowledgments

I would like to thank my husband, Casey, for believing in me and encouraging me to
pursue my dreams. [want to thank my Mom for teaching me that growth is the key to life.
Thanks to my Dad for helping me remember to take time for myself. I also want to thank
Ed, Jeff, Mike, Phil, and Rob for mentoring me and introducing me to #SQLFamily.

I want to thank my friends Angela, Joey, Jude, Lee, LeeAnn, and Tammy for their
words of encouragement while writing this book. Thanks to Rie for teaching me both the
importance of confidence and empathy. I want to thank Kellyn for believing in me and
my ability to author a book.

Introduction

Working with T-SQL allows you to write code and see results relatively quickly. There is
also a great deal of flexibility when creating T-SQL statements. In many cases, there is
more than one way you can achieve the same outcome from your T-SQL. This book is
designed for database developers and data professionals that have a general knowledge
of T-SQL but are looking to improve their overall code quality. You should understand
T-SQL syntax and know how to write SELECT, INSERT, UPDATE, or DELETE statements
before beginning this book. Pro T-SQL 2019 will prepare you to write consistent code
with improved performance. You will also learn how to protect your T-SQL code by
using source control and improving your database deployment pipeline. Overall, the
goal of this book is to provide you with a framework to write better T-SQL code. As data
professionals, we can find ourselves in scenarios where there are high demands or short
deadlines. Pro T-SQL 2019 was written with the intent to help you write code that could
save you time and energy in the future.

There are four sections in this book. The first section covers how to improve the
readability of your T-SQL code. There is an overview of the various data types for T-SQL
along with guidance on how to best use those data types. This first section explains the
benefits and disadvantages of the various database objects in SQL Server. Additional
chapters discuss standardizing and designing T-SQL code. The second section explains
how to write T-SQL code that is efficient. This section includes using set-based design
to write T-SQL code and understanding the relationship between hardware and T-SQL
design. You will also learn how to use execution plans and new features in SQL Server
2019 to improve the performance of your T-SQL code. The third section discusses how
to manage your T-SQL code. The chapters included in this section cover developing
coding standards and using source control to store your code. To further manage your
T-SQL code, you will also learn some methods to test and deploy your database code.
The fourth section addresses how to write T-SQL code so that it is sustainable over time.
These chapters include methods to safely add new functionality, to log changes to data
within your databases, and to manage data growth over time.

xvii

PART |

Building Understandable
T-SQL

CHAPTER 1

Data Types

Data types are the building blocks that make the foundation of writing efficient and
performant T-SQL. While many data types are either a number or a string, there are also
a variety of data types that do not fit into either category. When selecting the right data
type, it is important to understand what the data type is and when to use it.

Number Data Types

While numbers may all seem to be the same, T-SQL segments numbers into different
kinds of data types. These data types can include whole numbers or numbers with
decimal places. Numbers are also categorized by either being exact or approximate.
Understanding how to work with various number data types when performing
mathematical calculations is critical to ensuring applications handle data as expected.

While it may be easiest to pick the most common seeming data types from each
category, there are specific times where it is best to analyze the data that will be stored
and select a more appropriate option. When choosing data types, there are various
factors to consider. The most important step is to figure out what kind of data will be
stored. The next logical step is to consider how the data will be used and stored. In
addition, it is important to understand how T-SQL handles calculations involving various
data types.

Exact Number Data Types

There are situations when the value of a number is definite and known. These types

of numbers can be referred to as exact numbers. Some examples include true or false,
quantity of units sold, discount percent, or dollars and cents. One of the keys to writing
good T-SQL is selecting the correct data type category to use for a given field. In some
cases, the categories have more than one data type available.

© Elizabeth Noble 2020
E. Noble, Pro T-SQL 2019, https://doi.org/10.1007/978-1-4842-5590-2_1

CHAPTER 1 DATATYPES

When considering what data type to use, you will want to consider the purpose for
this data type. This will provide better clarity when determining which data type should
be used. You will want to consider both the benefits and drawbacks associated with each
data type. You will also want to consider if SQL Server will have to perform any implicit
conversions as a result of using this data type in calculations with other data types. The
final piece will be to consider how the data type is stored in SQL Server.

BIT

The term BIT is derived from the phrase binary digit. Therefore, the BIT data type can
only store one of two values. In the case of SQL Server, there is a third option relating to
unknown values. This third option is known as NULL. As such, the only values allowed
with the BIT data type are 0, 1, and NULL. This consequently causes the BIT data type to
only allow the smallest set of available values.

The BIT data type is great for data types where “either X or Y” is applicable. The
information stored can be true or false, on or off, and yes or no. In the case of true or
false, this BIT type could be used to indicate if a data record was translated successfully.
A common use of indicating on or off with the BIT data type would involve indicating
if a certain feature is enabled. One example of a yes or no value would be to record a
customer’s decision to opt in to receive marketing information from a company.

One of the challenges with the BIT data type is making sure to use them in a way that
promotes good database design. This means there are times when you need to consider the
overall purpose when selecting the BIT data type. For instance, it may seem like indicating
whether an item has specific characteristics may be a good use of the BIT data type. An
example could be a column in a table like IsVegetarian. However, it may be better to consider
redesigning the database to record those attributes in another table. A BIT can be used to
indicate a successful status for a transaction. However, there is often more status to record
the state of the transaction in over a period of time. If recording status changes over time is
important, then using a BIT to record if a transaction is successful may not be the best option.

An advantage of the BIT data type is the overall storage space required when saving
BIT values in a database. As there are 8 bits in a byte, the same holds true for storing
records in a database. For each 8 BIT columns in a table, those values are all stored a
single byte. If there were 9 to 16 BIT columns in the table, all the BIT values would be
stored in a total of 2 bytes. This small amount of storage space required indicates that it
would take one table with up to 8 BIT columns and 1 million records to use one MB of
space in the database.

4

CHAPTER 1 DATATYPES

TINYINT, SMALLINT, INT, BIGINT

SQL Server also allows you to store whole numbers, that is, numbers that do not have
decimals or fractional values. These numbers are known as integers. One example

of data stored as integers can be quantities of a given item. There are several types of
integer values that can be stored within SQL Server. The first integer type is TINYINT.
The TINYINT value can contain any integer value between 0 and 255. Due to the limited
size of this data type, this may be useful for limited configuration types or number of
locations. This data type is like the BIT data type, but this data type has a slightly wider
range. This data type would also be useful to configure the types of statuses in a system
or categories of objects. The TINYINT is good for storing these status types as many
applications do not need more than 256 statuses.

Now that we've covered TINYINT, let’s discuss the possibilities of SMALLINT. The
range of SMALLINT covers approximately 70,000 possible values. With this range
available, you want to consider what sorts of values you would want to have between
256 and 65,435 unique values. The range for the SMALLINT starts at -32,768 and ends
at 32,767. This data type would not be useful for a table that logs every single activity
that happens. Many databases or data tables may have more than 70,000 transactions or
records over the course of several years. This may cause this data type to be unsuitable for
those tables. However, there may be other tables where the SMALLINT data type is ideal.

If you have data tables that do not experience high transactional activity but will be
growing for some time, the SMALLINT data type may be beneficial. Understanding your
business will help you determine if the SMALLINT is the correct data type for that value
being stored.

If you were to create a table to continue to add functionality to your applications,
you may want to store a record indicating each new piece of functionality was to your
application. An example of this can be feature flags. Your application will likely have
more than 256 enhancements over the life of the application. You may also want to store
configuration values for the application. Storing these configuration values in a table
may benefit from the SMALLINT data type.

Moving on to integers or INT. This is the most frequently use of the whole number
data types. Many databases use this number exclusively for any sort of whole number
that is being tracked. One of the reasons for this is the entire range covers about 5.4 billion
records. The INT data type covers the range from -2,147,483,648 to 2,147,483,647. However,
when many data tables are created, their identity column is often started, or seeded, at the
integer 1. This causes the table to be limited to approximately 2.15 billion unique identities.

5

CHAPTER 1 DATATYPES

If you believe that your table will need more than 2.15 billion unique identity records, you
may want to start the identity with the lowest number possible, -2,147,483,648.

This is often where you may need to perform some mathematical calculations.
Some businesses process a couple hundred transactions per second. Other businesses
process upward of 10,000 or 20,000 transactions per second. In both cases it’s important
to consider what kind of growth will be expected in the tables holding this transactional
information. If your application has hundreds of transactions per second over several
years, the number of records stored will be much smaller than if the application has tens
of thousands of transactions per second for the same time period.

DECIMAL/NUMERIC

Now that we have discussed various integers, we should consider what to do with
numbers that require decimals. There are various cases where you are going to want
decimal places. Some of these cases involve using dollars and cents, and other times you
are going to need decimal places for precision in measurements. There are a couple of
options available in these scenarios.

First there is the option for DECIMAL or alternatively it is called a NUMERIC
data type. This value does not save any currency information with it; however, it does
record decimal places. These decimal places can be specified by indicating both the
total number of digits that should be stored and the number of digits to the right of the
decimal point. You will find that the DECIMAL or NUMERIC data type is acceptable
for almost all data types involving numbers. This includes general-purpose numbers,
decimals, measurements, and money values.

Considering that the DECIMAL type can represent multiple different types of
numbers, we should take a closer look at this data type. There is no difference between
DECIMAL and NUMERIC. They are the same data type in SQL Server. There are some
specific terms for the DECIMAL data type. The values that make up a DECIMAL data
type are precision and scale. Precision relates to the total number of digits that are saved
in a DECIMAL data type. Scale refers to the number of digits that are stored to the right of
the decimal point.

SMALLMONEY, MONEY

The next data types to discuss are MONEY and SMALLMONEY. The MONEY and
SMALLMONEY data types are like the DECIMAL or NUMERIC data type. The
SMALLMONEY and MONEY data types can also be used to store values for currency.

6

CHAPTER 1 DATATYPES

SQL Server will save the numeric value and exclude the type of currency associated with
the value saved.

The largest difference between the MONEY and SMALLMONEY data types is size
and storage space. The SMALLMONEY data type covers a range from -214,000 to
positive 214,000 and takes up only 4 bytes of data, whereas the MONEY data type covers
arange from -922 billion to 922 billion and takes up 8 bytes of data.

The MONEY data type is accurate to store up to four decimal places. The limitation
on decimal places will limit the accuracy to ten thousandths of the monetary value
stored. The MONEY data type will save all values to four decimal places. The fixed
number of decimal places will impact how rounding affects calculations involving the
MONEY data type.

Approximate Number Data Types

Next we will move on to the differences between exact and approximate numbers.
Exact numbers exist for things that you know the exact quantity of, for instance, how
many items you bought at the store or the exact amount in dollars and cents. Whereas
approximate numbers exist for scenarios where the measurements may not be exact.
Approximate numbers can be used to store very large or very small numbers. You may
also find that your application is recording a measurement that is not exact. You may
cut a length of fabric that is close to but not exactly a specific value. For example, the
length of fabric may be around 12 inches. Storing the value 12 for inches would be an
approximate value. This measurement of 12 inches may be so close that it would be
difficult to tell that the length of fabric was not exactly 12 inches.

There are some rounding issues that come into play when dealing with approximate
numbers. This is because approximate numbers are known to not be the exact
measurement. In SQL Server, there is one option for approximate numbers. This data
type is called FLOAT. If the floating number has 24 numbers, the synonymous data type
is REAL.

When working with REAL or FLOAT numbers, there can be issues converting this
data type to other data types. Converting a FLOAT data type to an INTEGER, all the
values in the decimal places will be truncated. You will want to be aware that using
approximate numbers may cause unexpected results. One example is when using the
DECIMAL or NUMERIC data types. When converting a FLOAT or REAL number to a
DECIMAL or NUMERIC data type, you are only able to keep seven decimal places.

CHAPTER 1 DATATYPES

Converting Number Data Types

We have covered the types of numbers available, and what happens in working with
the various number data types. In addition to storing numbers, you will also want to
understand how various number data types interact with one another. First we should
consider what happens when we are doing calculations involving fields with the same
data type. In these scenarios, if all the fields for the calculation are of the same data
type, the data type will remain the same. Therefore, if you were multiplying a quantity
times the price and both values are stored as a NUMERIC data type of DECIMAL(5,2),
it will give the same data type of DECIMAL as a result. SQL Server will determine the
result precision and scale based on the starting precision and scale as well as the type
of calculation performed. You will also want to consider how the precision and scale is
stored in the application. The application may be expecting a value of DECIMAL(5,2).
Based on the calculation performed, the data values returned may be outside the range
of the data type specified. This can cause an overflow in calculation.

Things can get a little more interesting when working across various data types. To
use the example of quantity times price again, we can examine what happens if you had
an INT data type that was calculated with a DECIMAL (5,2) data type. SQL Server would
use the process of data type precedents. First we should get familiar with the data type
order of precedence related to the data types covered so far. The following list is ordered
from highest order to lowest.

1. FLOAT

2. REAL

3. DECIMAL
4. MONEY

5. SMALLMONEY

6. MONEY

7. BIGINT

8. INT

9. SMALLINT
10. TINYINT
11. BIT

CHAPTER 1 DATATYPES

In the preceding scenario, we are using both the INT and DECIMAL data types.
As you can see, the INT and DECIMAL data types are listed. In the case of the INT and
DECIMAL data types, the INT has a lower precedence. Due to the order of precedence,
SQL Server will internally convert the INT data type to the DECIMAL data type. This
conversion does not change the original data value, only how SQL Server uses this value
as part of the calculation. Once this conversion is complete, SQL Server moves forward
with the calculation. This works well unless you are performing an action like trying to
concatenate a number and string data types.

String Data Types

Now that you know how to work with number data types, we should spend some time
on the various string data types. These sorts of data types are used to store alphabetical
letters, words, or combinations or letters and numbers. In addition, string data types are
used to store character values that are either non-unicode or unicode. The last category
of string data types includes images and binary values.

Character String Data Types

There is information that will be stored in the database that is not related directly to
numbers. This data can be names, descriptions, addresses, or other character values.
Determining which data type to use will depend on what type of information is being
stored and how much information needs to be stored.

CHAR and VARCHAR

Two of the character string data types available are CHAR and VARCHAR. These data
types are similar and only vary regarding some specific considerations. The data field
can be configured to determine how data can be stored. The columns can be configured
to toggle case sensitivity, accent sensitivity, sensitivity for kana, or width sensitivity. The
sensitivity that is stored is referred to as collation. The type of data that can be stored
usually matches the database collation. The collation of a column is the same as the
database unless there is a specific override in place. Both data types are used to store
text data, and the characters that can be stored in these fields are the same characters
allowed by the collation of the column.

CHAPTER 1 DATATYPES

When determining which data type to use, keep in mind what kinds of data will be
stored. If the data will have similar lengths, like phone numbers or zip codes, then CHAR
may be the preferred data type. However, if the column widths can vary significantly as
is the case with address lines or notes columns, then VARCHAR will be a better option.
Consider limiting the use of VARCHAR(MAX) for situations where you expect to save
more than 8000 characters. If VARCHAR(MAX) is specified, then the maximum storage
size is 2 GB.

There are some additional considerations to keep in mind when using CHAR and
VARCHAR. When using CHAR and VARCHAR for data definition or variable declaration,
remember that the default value is one character. However, when using the CAST or
CONVERT functions, the default number of characters will be 30. In order to minimize
truncating data, make sure to always specify the number of characters explicitly when
using the CHAR or VARCHAR data types.

For collations using single-byte encoding characters, such as Latin, the storage size
in bytes for CHAR is equal to the number of characters. When working with VARCHAR,
the number of characters plus 2 additional bytes is equal the total number of bytes
stored. It is also possible to save multi-byte encoding characters in the CHAR and
VARCHAR data types. For both data types, the number of characters saved may be less
than the total number of bytes.

Starting with SQL Server 2019, it is now possible to save unicode values in CHAR or
VARCHAR. However, this is only possible if UTF-8 encoding is enabled.

TEXT

The TEXT data types have been previously used when needing to store very large strings
of characters. However, this data type has been deprecated. As this data type has been
deprecated, you will want to avoid using the TEXT data type for new development. If you
need to use the TEXT data you, you will want to consider the data type VARCHAR(MAX)
for new development instead. However, consider if you need this functionality or if
using VARCHAR with a smaller number of characters may be more appropriate. The
only consideration for using the TEXT data type going forward should be as needed for
backward compatibility of your applications. The TEXT data type is primarily used in
situations with very large strings that have variable length. In many cases, this would

be where the length of data saved is more than 8000 characters. The maximum number
of characters that can be saved to the TEXT data type is 2,147,483,647. There may be
occasions where the total number of characters that can be stored is less than this number.

10

CHAPTER 1 DATATYPES

Unicode String Data Types

Prior to SQL Server 2019, any Unicode text data would need to be saved as a special data
type. This is still true for situations where UTF-8 encoding cannot be enabled.

NCHAR and NVARCHAR

When using Unicode values, there are a couple of options available. These options
include storing a fixed or variable-length string. In order to avoid unexpected results, you
should understand how these data types work if the number of characters or collation is
not specified.

Once you have determined that you need to use the NCHAR or NVARCHAR data
types, choosing between them gets easy. If the data being stored will have generally
similar lengths, then the NCHAR data type is the correct choice. However, if the values
stored will vary significantly, then the NVARCHAR data type may be a better choice. In
addition, if the number of characters to be stored is over 4000, it is recommended to use
NVARCHAR(MAX).

Typically, it is best practice to specify the number of characters when declaring the
NCHAR or NVARCHAR data types. The default number of characters for data definition
or variable declaration is one character for NCHAR or NVARCHAR. However, when
using the CAST or CONVERT function, the default number of characters is 30 if none
are specified. If a collation is not specified for the NCHAR or NVARCHAR data type, the
default database collation will be used.

Understanding the amount of space required to store this data type also allows
you to make better decisions about if this is the correct data type and the number of
characters that need to be stored. Storing NCHAR takes up twice as many bytes as the
string length of the byte pairs, while using NVARCHAR the number of bytes stored is
twice the string length in byte pairs plus 2 bytes.

NTEXT

Previously, storing very large variable-length Unicode data was accomplished using the
NTEXT data type. If this data type is still in use in your systems, you can expect it to store
up to 1,073,741,823 characters. However, due the size associated with Unicode values,
the total length stored may be less. Going forward, it is no longer best practice to use this
data type. Instead, use the NVARCHAR(MAX) data type.

11

CHAPTER 1 DATATYPES

Binary String Data Types

At some point, you may want to store data that is neither a number nor a character. In
these cases, the use of binary strings may be appropriate. There are a couple alternatives
when using binary string data types.

BINARY and VARBINARY

The options available for storing binary string data involved storing either fixed length
or variable-length character strings. Like the other string data types discussed, there are
also some considerations when dealing with these data types.

Using binary strings for storing items that are strings without characters may be
useful. These can include audio, video, images, or other similar items. Two of the
available data types are BINARY and VARBINARY. The best option for storing binary
strings with similar lengths is the BINARY data type. Conversely, when storing binary
strings with significantly varying lengths of data, the VARBINARY data type is a better
choice. If the total length of the binary string is expected to exceed 4000 characters, then
it is suggested to use VARBINARY(MAX).

Using the BINARY and VARBINARY data types for data definition or variable
declaration will have a default length of one if the number of characters is not specified.
When converting the BINARY to VARBINARY with the CAST or CONVERT function,
the default number of characters will be 30. Use caution when converting to BINARY or
VARBINARY from a variable with a different length as SQL Server may pad or truncate
the binary data as necessary.

The BINARY data types stores the same number of bytes as the length of data
being stored, whereas VARBINARY uses 2 bytes plus the same number of bytes as
the length of data being stored. In both data types, the length can be up to 8000. For
VARBINARY(MAX), the maximum storage size is 2 GB.

IMAGE

One of the items that can be stored in a binary string is image. When working with
images, it is important to consider how this data should be stored and if so what data
type should be used.

12

CHAPTER 1 DATATYPES

This IMAGE data type has been used to store large variable-length binary data. While
this data type can have a length of 2,147,483,647, there are times where the allowable
length stored may be less. In the case of the IMAGE data type, you should use the
VARBINARY(MAX) data type going forward as the IMAGE data type is deprecated.

Date and Time Data Types

Each database transaction occurs at a specific point in time. There may be a need to
reference or know when a transaction happened. Your application may record important
dates for a person including birthdays or anniversaries. Dates and times can also be used
to determine pricing and functionality. By using dates and times, you can determine
when functionality should be enabled or disabled. Dates and times can also show when
a user account is inactive or access to a given system is enabled or expired. Pricing and
billing rates can cover multiple different date ranges. When one set of pricing becomes
inactive, another set may be active. Due to regulations, your company may need to
record the pricing over a period of time. This includes indicating when the pricing rates
may have started and stopped. Depending on the purpose for tracking this information,
you may only need to know only the date or time of the transaction. There are other
situations where it is best to know both the date and time associated with a certain
action.

DATE

When working with transactions, there may be a specific occasion where you want
to record when something happened. In some cases, it may only matter on what day
in which the transaction happened. The DATE data type can also be used to store
aggregated data for a given day. While recording the date of the activity, there may also
be some options available as to how that data is displayed. When choosing if the DATE
data type is right for you, it is also important to consider not only how much data is
stored for the DATE data type but any possible limitations in how the data can be stored.
There will be times when an application or a user needs to know when a specific
action happened. When deciding if a DATE data type is the right choice, you will want
to consider the need for the information both in terms of user and application usage. In
some cases, it is easier to think about when a DATE data type would not be preferable.

13

CHAPTER 1 DATATYPES

For any action where you would want to know a specific time when something
happened, the DATE data type would not be a good choice. However, if it is only
necessary to know on what day an action occurred, then the DATE data type would be a
great option.

For the DATE data types, there are several options as to how a DATE can be
displayed. With the date format, the default is YYYY-MM-DD. In this case YYYY
represents the four-digit year with the range of 0001 to 9999. MM represents the month
number from 01 to 12, and DD stands for the day ranging from 01 to 31, per the number
of days in a month. The DATE can be displayed in a variety of numeric and alphabetic
formats. However, the format ydm is not supported.

The DATE values that can be stored range from 0001-01-01 to 9999-12-31. The DATE
data type has a ten-digit character length with a precision of 10 and a scale of 0. The
DATE data type takes up 3 bytes and is stored as an INT.

Dates can be converted to DATETIME, SMALLDATETIME, DATETIME?2, or
DATETIMEOFFSET. However, the time value will be set to midnight. However, dates
cannot be converted to the TIME data type, and any attempts to perform this conversion
will fail with an error. In addition, dates do not have a time zone offset and are not
daylight saving time aware.

TIME

Another data type related to when an action happened is the TIME data type. It is useful
to understand how time is stored and formatted. When using the TIME data type,
it is helpful to know the implications of converting the data type to other DATE and
DATETIME data types. There are also some limitations when using the TIME data type.
TIME can be used to record a specific time when a transaction or activity occurred.
When this happens, the time is recorded independently of the date and the date may
not be able to be determined in the future. One way around this issue could be to store
the date separately from time. The accuracy of TIME is up to 100 nanoseconds, and the
default value for TIME is 00:00:00.
The default format for TIME is hh:mm:ss[.nnnnnnn]. In this format, hh stands for
a two-digit hour ranging from 0 to 23, mm is for a two-digit minute ranging from 0 to
59, and ss is for a two-digit second from 0 to 59. The TIME data type allows for varying
precision, and if specified, up to seven decimal places can be used for fractional seconds
as represented by nnnnnnn. These values can range from 0 to 9999999.

14

CHAPTER 1 DATATYPES

Due to how AM and PM are used to differentiate between morning and evening,
there are additional considerations when working with TIME. If AM or PM is not
provided and the value for hour is between 00 and 11, the time will be recorded as
AM. For hours 12 to 23, the time will be saved as PM. When writing TIME, if 12 AM is
entered, this value will be converted to the 0 hour.

The range of TIME is 00:00:00.0000000 to 23:59:59.9999999. The character length
can vary from 8 to 16 digits, depending on the precision specified for TIME. In either
scenario, TIME will be saved as fixed 5 bytes. If TIME is converted to any data type with a
date and time, the day value will be represented as 1900-01-01. If the fractional precision
is higher for TIME than the new data type, the value will be truncated. Any attempt to
convert the TIME data type to a DATE will fail. Like DATE, TIME is neither time zone nor
daylight saving time aware.

SMALLDATETIME, DATETIME, DATETIMEZ,
DATETIMEOFFSET

There are occasions where saving the date or time may not be enough. For these
scenarios, it may be best to combine the date and time values together. Sometimes these
values can be somewhat simpler, need more precision, or need to be time zone aware.

One such data type is the SMALLDATETIME. This data type is used to record both a
specific date and time. It has a default value of 1900-01-01 00:00:00. While the accuracy
of this data type is listed as 1 second, it is important to note that the seconds will always
be saved as 00 in the database.

As with the date data type, the SMALLDATETIME data type can be displayed in
a variety of numeric and alphabetical formats. The range for the SMALLDATETIME
is somewhat limited as compared to other DATE and DATETIME data types. The day
portion of this data type can span 1900-01-01 to 2079-06-06. While the time entered
can range from 00:00:00 to 23:59:59, the value saved in the database will be 00:00:00 to
23:59:00. The overall length of the SMALLDATETIME is up to 19 characters, and the
storage size required is a total of 4 fixed bytes.

When converting SMALLDATETIME to other DATETIME data types, keep in mind
that any additional precision needed will be recorded with 0s. While it may be tempting
to use the SMALLDATETIME, this data type is not ANSI compliant. As stated previously,
the seconds for this data type will be rounded depending on the value passed for the

15

CHAPTER 1 DATATYPES

seconds. If the seconds passed are less than or equal to 29.998, the minute will be
rounded down. Otherwise, the minute will be rounded up. Like the date and time data
types, SMALLDATETIME is also not time zone or daylight saving time aware.

There are more options available than just SMALLDATETIME. DATETIME has been
an option for a higher level of precision than the previously mentioned data types. There
are also several key considerations when using this data type.

While the DATETIME data type can record a specific day and time, it may not
comply with the SQL Standard. One of the key issues with this data type has to do with
the limitations related to accuracy. The DATETIME data type can record three decimal
places for fractional seconds; the third decimal place is always rounded to an increment
ending in .000, .003, or .007.

If a value is not specified, the default for DATETIME will be 1900-01-01 00:00:00.
There are many numeric and alphabetical formats available when using this data type.
The year range for DATETIME is 1753-01-01 to 2999-12-31, and the time can range from
00:00:00.000 to 23:59:59.997. The size of this data type is 8 bytes with a character length
ranging from 19 to 26.

While it is possible to convert other data types to DATETIME, it is not recommended
as this data type does not meet SQL Standards and is not ANSI compliant. The DATETIME
data type is also limited due to the rounding that occurs allowing only increments of .000,
.003, and .007. This data type is also not time zone or daylight saving time aware.

The DATETIME2 data type has some additional advantages over the data types
previously mentioned. While some of the previously mentioned data types have a fixed
size, this data type works a little differently. We will also look at storing and formatting
available for this data type.

The DATETIME2 data type allows for a specific date and time to be recorded with
an accuracy of up to 100 nanoseconds. The default value for DATETIME2 is 1900-01-01
00:00:00. Due to this level of precision, this is a great data type to use for scenarios where
the time must be known to a fraction of a second. As DATETIME2 doesn’t have the same
rounding issues as DATETIME, it is also more straightforward to work with this data type
when writing code.

The DATETIME2 data type supports multiple numeric and alphabetical ways to
display the information. The date range for DATETIME is from 1753-01-01 to 2999-12-31,
and the time range is from 00:00:00 to 23:59:59.9999999. Multiple precision options are
allowed, thus causing the character length to range from 19 for the precision to the second
all the way up to 27 for the precision to 0.0000001 nanoseconds.

16

CHAPTER 1 DATATYPES

The variation in the precision also affects the storage size of the DATETIME2 data
type. One byte is used to store the precision of DATETIME2 plus the number of bytes
needed depending on the precision of time. If the precision is less than three decimal
places for nanoseconds, then there are another 6 bytes used to store the DATETIME2
value. If the precision is 3 or 4, there is 1 byte to store the precision and 7 bytes to store
the value, for a total of 8 bytes. However, the total will be 9 bytes for any values with a
precision of more than four decimal places.

Due to the high level of accuracy, the probability of converting values to DATETIME2
is highly likely. If a date is converted to DATETIME2, the time component will be
recorded as 00:00:00. If time is converted to DATETIME2, the day will be 1900-01-01.

In the case of SMALLDATETIME to DATETIME2, the date and time will be copied. Any
additional precision will be represented with 0s. Going from DATETIMEOFFSET to
DATETIME2 will cause the time zone to be truncated. When going from DATETIME to
DATETIME2, make sure to use explicit conversions to avoid unexpected results. The
main limitation of using DATETIME?2 is that the data type is not time zone aware or
daylight saving aware.

The final data type for dates and times is DATETIMEOFFSET. When discussing the
DATETIMEOFFSET, there is some additional functionality that has not been seen before
with the other data types. There are also things to keep in mind when formatting, storing,
or converting to this data type.

The DATETIMEOFFSET data type records the specific date and time, with a high level
of accuracy, for transactions or actions that have taken place. One of the key advantages
to this data type is the ability to have an offset on the time, thus allowing databases from
multiple geographic locations to not only be aware of when something happened in
relation to their local time but also in relation to local time at another location.

The DATETIMEOFFESET is accurate to 100 nanoseconds and has a default value of
1900-01-01 00:00:00. The format of DATETIMEOFFSET is YYYY-MM-DD hh:mm:ss.
nnnnnnn +|- hh:mm. The +|- hh:mm portion of this data type is related to the offset. The
offset can range from +14 to -14 for the number of hours that a given time can have an
offset. As with the other time and DATETIME data types, this date can be formatted or
displayed numerically or alphabetically.

The dates can range from 0001-01-01 to 2999-12-31. The time that can be saved
ranges from 00:00:00 to 23:59:59.9999999. When the precision is saved as YYYY-MM-DD
hh:mm:ss {+|-} hh:mm, the character length is 26. The character length can go up to 34
when the precision is YYYY-MM-DD hh:mm:ss.0000000 {+|-} hh:mm. The storage space
required for the DATETIMEOFFSET data type is a fixed 10 bytes.

17

CHAPTER 1 DATATYPES

Other Data Types

In addition to the data types discussed previously, SQL Server has several other data
types that are available. Some of these data types can be used in table definition and
may have special purposes, while some of the other data types may only be usable as
variables or inside stored procedures.

UNIQUEIDENTIFIER

This data type can be a column in a table or used as a variable. The UNIQUEIDENTIFIER
takes up 16 bytes and has a maximum number of characters that can be stored in this data
type is 36. While non-unicode character strings can be converted to UNIQUEIDENTIFIER,
if the total number of characters exceeds 36, those results will be truncated.

This data type is a GUID, or Globally Unique Identifier. The concept is that these
unique values will only ever be used once. However, there have been reports of this not
being true. Either way, the UNIQUEIDENTIFIER can be populated one of several ways.
These include using the functions NEWID() and NEWSEQUENTIALID(). Otherwise,
these values can be manually populated if the overall format of the GUID is correct and
uses valid hexadecimal values of 0-9 and a-f.

While the UNIQUEIDENTIFIER can be used in place of IDENTITY, I would only
recommend it for scenarios where it is absolutely required. Not only does it take up
significantly more space than an INT or BIGINT, but UNIQUEIDENTIFIER is limited in
the types of constraints that can be used with this data type. UNIQUEIDENTIFER can be
an IDENTITY but other table constraints are not allowed.

XML

Various systems and applications send, use, or store XML data. While there is the option
to parse this data and save it in tables, there are also times where it may be necessary to
store the XML data intact. When storing XML data, there are other considerations that
include what data is in the XML.

For the XML data type, the data must be in a valid XML format. In order to be valid,
there are several requirements. These include all starting tags must have matching end
tags. In addition, nested elements must begin and end within the same parent element.
XML elements cannot have more than one attribute and markup characters must be

18

