Microservices
for the
Enterprise

Designing, Developing, and Deploying

Kasun Indrasiri
Prabath Siriwardena

Apress’

Microservices for the
Enterprise

Designing, Developing, and
Deploying

Kasun Indrasiri
Prabath Siriwardena

Apress’

Microservices for the Enterprise

Kasun Indrasiri Prabath Siriwardena
San Jose, CA, USA San Jose, CA, USA
ISBN-13 (pbk): 978-1-4842-3857-8 ISBN-13 (electronic): 978-1-4842-3858-5

https://doi.org/10.1007/978-1-4842-3858-5
Library of Congress Control Number: 2018962968

Copyright © 2018 by Kasun Indrasiri and Prabath Siriwardena

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484238578. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3858-5

Table of Contents

About the AUtROrS........ccusmmismmmssnmmsasmssanmsnssssssasssass s sansssassssnsssansssansssansnas Xiii
About the Technical REVIEWETccusurssassssnssssnsssassssnsssasssssssssssssasssssssssnsssansssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
L1 T LT (1 Xix
Chapter 1: The Case for MiCrOServiCesS.....cccurmsssmnmmrssssnnnssssssnnssssssssnnssssssnnnnssssssnnnsssss 1
From a Monolith to a Microservices ArChiteCtUrecccveerncevnesnese e 1
Monolithic APPIICALIONSccoveerrcrerce e e 2

LA a0 =] 7S 4

APIS....ccecee e R R e Re e e e e renRe e e n s 5
WhaL IS @ MICIOSEIVICE?.....ccvivieieeeressssssssse s 7
Business Capability Oriented..........cccovvrierennririere s s saessssessesaens 8
Autonomous: Develop, Deploy, and Scale Independentlyc.ccoeevvrnvnirnnnnnienennsensenenns 9

No Central ESB: Smart Endpoints and DUmDb Pipes......cccccevvrniniennnensensenssessessesessssessessens 10
Failure TOIBIaNCecccocveririiicri s e 11
Decentralized Data Managementccccvvrernrenrnesesnsesessessse s s ssssssessnnes 12
SEIVICE GOVEIMANCE.veeereerrrseerresesrssessssesessssessssesessasesss e ssssesesse e srsse s sse s esssessssesnssasessasensnns 12
ODSEIVADITILY....ccveeeeeecerreerie e e 13
Microservices: Benefits and Liabilities ... 14
BENETIES ... ———————————————————— 14
LIADIIIEIES ..t s 15

How and When 10 USE MICIOSEIVICES........ccccruemrerenmremsissse s s 17

£ 1] 1114 7 18

iii

TABLE OF CONTENTS

Chapter 2: Designing MICrOSErViCeS....cuusmmmrrssssnssrssssnnsssssssnssssssssnssssssssnsnssssssnnnsssss 19
Domain-Driven DESIgNcccviiiiriiirir s e e e s 20
BoUNAEU CONEEXLceeerericeecri s 25

(0] 01 - OO 30
Relational PAtternsccorenerercrrserese s 32
DeSign PriNCIPIEScoveiiircrcr ettt r s e e e 40
High Cohesion And L00SE COUPIINGcccvirrinnneiesinsene s s ssssesse s ssssessesse s 41
RESIIBNCEcveeeeeeeereec e e n e ne e nr s 42
ODSEIVADIIILY.....ccveeeeirererie s e p e e e e ae e e nne s 48
L1011 U0 PSP 49

L T (0] L o o OSSO 50
010 o - T 51
DEPENUBNCIESccveeeercr e e e e e s 51
CONFIGUIALION ... e s b e e s b e s e nne s 51
BACKING SBIVICESviirererieir it s e e e b bbb e 52
Build, ReleaSE, RUN........ccccuererereesercrer e s res e re s e s sse s e sae s se s aesaesaesaesnaesnesaennean 53
PIOCESSESceeucerucesieeresese s e e e e e se e e s e e e e e s s e e e e e Re e e e e e e e nRe e R e e e e e nRe e e e s 54
o0 T o 1T o OO USROS 55
CONCUITEICY ..ouveveeeiressesseses st s ssese s e st s e s s e e bbb e e R e b e e e e e e e Re b e e et e aeebe e e e nnennens 56
DiSPOSADIIILYceueevereirece e ——————————— 56

DL 010 o T OO 57
0T SRS SRRSO 57
AQMIN PIOCESSESccucereierieesesesessese e s e s se e se s srs e s e s se s e e e s s snsnsnens 59
Beyond the 12 FACOr APD ..o s s 59
1] 4= OSSOSO 61
Chapter 3: Inter-Service Communicationccccunsemnmmssssssnmmnsssssnmmsssssnmsssssnns 63
Fundamentals of Microservices CommuniCation.............ccoceererennnnensnsnnssssse e 63
Synchronous COMMUNICATIONcccceevieirrrererr s se e s sae e e e e ene s 64
REST .ttt R R e 64
GRPC ... R R e e e 68

iv

TABLE OF CONTENTS

€T T 3 OO 72
WEDSOCKETS.....ccveeeccererrsieecre et se e e 75
L1 PP TPV SRRR 76
Asynchronous COMMUNICALIONcocoerreecrererere e 76
SINGIE RBCRIVET.......cieiticiecirere ettt e e s b e s nnn 77
MURIPIE RECEBIVEIScicreereecr ettt s r e e e s s 80
Synchronous versus Asynchronous COMMUNICALIONcccvveernrerereneseserensesese e sesessenens 85
MeSSage FOrmMatS/TYPESccoveveerreserisesesrese s s 86
JSON ANA XMLt e st 86
ProtOCOI BUFTEIS....cuceieeerrscsircse s 86
Y SRS 87
Service Definitions and CONTrACES.......c.cucvveriiisreserne e 87
E 1] 14 7R 88
Chapter 4: Developing ServiCes....uuurummmsmmmmmssssnnsesssssnsssssssnnsssssssnssssssssnsnssssssnnnsssss 89
Developer Tooling and FrameEWOIKS.........ccccuevirnnneriesensissese s sss s e ssesessssessessesressssessesnes 90
NEHIIX OSS.....ecrieieeirrrirerere e e bbb e e e 91

S 0T 200 OO 94
0 95
D0 0112 1 o OSSOSO 95
L= o O ST 96

I T 0] 0 0 OSSOSO 97
Getting Started with Spring BOOt ..o ———— 98
HEHO WOKIAL ... 99
Spring BoOt ACTUALONcoceerecrr e e ne 102
CONFIGUIAtION SEIVEN.......covi i e s p e e 104
Consuming Configurations ... s 106
Service-to-Service COMMUNICALION..........ccoveeerererrerrere e 108
Getting Started With gRPC ... 111
BUilding the gRPC SEIVICE.......ccveoerecrircreresere e s 112
Building the gRPC CHENt..........ccccoiiiiirirerr e s 115

TABLE OF CONTENTS

Event-Driven Microservices With Kafka............ccooreernnennesnencsncse e 117
Setting Up a Kafka MeSSage BrOKETccccrrerererereneris s ses s seses e sesse e sessesessssessenes 118
Building Publisher (EVENt SOUICE)cccccverereruererincrineses e ses e sesse e se s sessesessssessnaes 119
Building Consumer (EVENE SiNK)cccvviernienininnerine s sesse e ssssesessesessssessnses 120

Building GraphQL SEIVICES........ccucvieriniiirere it se s s se s s st nne s 122

£ 111 T S 123

Chapter 5: Data Management...........ccccunemmmmnnsssnmnmmnssssnmmsssssnmsssssssnsssssssssesssssnnns 125

Monolithic Applications and Shared Databases..........c.curerrenernsernsensniesensse s 125

A Database PEIr MICIOSEIVICEuevvevvrrerersersrsersessessessesessessessessssessessesssssssessessessssassessesssssssessessens 127

Sharing Data BetWeen MiCrOSEIVICEScuvuvuirrererrererersrsersersersssessersessessssessessessssessessessessssessesses 127
Eliminating Shared TADIEScccceverervriererirserere e seesessesse e s s e ssesaessssessessesasssssensesaes 128
3] (LT D L D 131
D B 00 T 0] 134

Transactions With MICTOSEIVICESccvreererererenerrnesesese s s snsnens 138
Avoiding Distributed Transactions with Two-Phase Commit...........ccccovierniinrinnrnsenennnens 138
Publishing Events Using Local TranSactions............ccccvcrverieriensnnesessensesssesessessesssessessenns 140
Database Log MiNING........ccccvvrienerirrirsee s s sr s s s e s e e s s se s e e s saessessaesaesnesnnnns 141
EVENT SOUICING .vevveveerereerteereresesessessessesessessessessesessessesasssssessesasssssensesassssssssessesssssssensesaes 142
LS - R 143

POlyglot PEIrSISTENCE. ..o s p s nne 149

02T 11 o 149

£ 10T 1117 SR 150

Chapter 6: Microservices GOVErNANCE......cccsrusssssnsssssssnssssssssnnnssssssnnssssssnnnssssssnnnnss 151

Why MiCroServices GOVEIMANCE?ccvvererrenersersersessssessessesssssssessessesssssssessesssssssessessesssssssesseses 151

Aspects 0f MiCrOSEIVICES GOVEINANCEevvrrererrerserersersersessrsersessesssssssessessesssssssessessessssessessens 152
Service DEfinition ... ——————— 152
Service RegiStry and DISCOVEIYccvvevevrrerserierssressersesessessssessessessssessessesssssssessessessssessessens 152
Service Lifecycle ManagemeNntc.ccveevererreriernressersessessssessesessessssessessessssessessessessssensessens 153
Quality of SErviCe (Q0S)......ccvrrrrrmierererirre st 153
Service ODSErVADIlITY........ccverrererrrerererr s rse e e sa e e e s ae e e e nne s 153

TABLE OF CONTENTS

Implementing MiCroSErvice GOVEIMANCEccccvcererreiinnesesessssessesessssesse s ssesessessessessssessesnens 154
Service Registry and DISCOVEIY.......couvrrerrererenerinsesese s sss e sessesessssessssesessesessssesessesenns 155
Development Lifecycle Managementcccvvnnnnniennsnsnse s sssssssessesnes 155
APl Management/APl GALEWAYcccueveriierinseninesesie s se et se s e s s e sessessssenens 155
ODSEIVADIIILY....ccceeeerreccrrer s 156

Service Registry and DISCOVEIYcccivvrrierininsine s s s s s s s s sssssssesnesnes 156
0] | O 159
1= 162
5 (o OSSP 165
Service Discovery With KUDErNetes.........cccvvvrinninicniess s sssssssessessens 165

£ ST 166

Chapter 7: Integrating MiCroServiCesccoruumssummmmsssssnnsssssssnsnssssssnnssssssnnnssssssnnnnss 167

Why We Have to Integrate MiCrOSEIVICES......c.cuurrurernserrneserese s ssssesessesessssesessessssenens 167

Smart Endpoints and DUMD PIPEScccveriernninienene s ssssesse s ssssessessessssessessesssssssessesses 169

Anti-Patterns of Microservice Integration...........ccceoeverinirse i ninrr e e 171
Monolithic APl Gateway for Integrating MiCrOSEIrVICES........ccuvrrererrrrerserersnsessessersesessessenses 171
Integrating Microservice With @an ESBcccccvvevvnnrniennnnsensese s ssssessessessssessessees 174
Using Homogeneous Technologies to Build all Your MiCroServices........c.ccveervrvenseererienaens 174

0rganizing MICIOSEIVICESc.uvcvuruererieserinesise et ss s et s st se e e 174
(0] €I T=] T L RS 175
INTEGIAtioN SEIVICES ..vuervivreierierererersere s srs s s e s e a s s e s ae s e e ae e e e e e aesae e e e naenaees 175
F o = T TP 176

Microservices Integration Patterns..........ccccovnvnnnsnsn s 176
Active Composition or Orchestration ... 176
Reactive Composition or Choreographyc.ccocvvinnnieninnnsnssess s sssssssessesnes 178
Hybrid of Active and Reactive COMpOSItion..........c.cccvvrierivninncnie e 180
Anti-COorruption LAYETc.ccccerieierinereresers e sisesese e sesseses e e s s sesss e sessesessssessssesessessssenens 181
Strangler FAGAAR ... 181

Key Requirements of Integration SErviCes..........ccucurinnrnini s sesesaens 182
Network Communication ADSTractionscccoeeereerrrenreerer s 182
ReSIlieNCy PAtLerns........ccoviiciienininsne s e s 183

TABLE OF CONTENTS

Active or Reactive COmMPOSITION........cccoviriniienn e 187
Data FOrMALS........cccoeeeeereecr e 188
Container-Native and DevOps REadY.........ccccvvverererirerernsenine s ses s ses e snesessenes 188
Governance of Integration SErVICES ... s 189
Stateless, Stateful, or Long-Running SErviCescccuvrminninninnnnsenne s sesesse s 190
Technologies for Building Integration SErviCes..........cccvrrrininnnininnnne s 190
SPIING BOOL... o i e e e e p e 191
D0)2 1 o OSSO 198
Apache Camel and Spring Integration...........ccceuvvninininnnnnn e 198
L= PP RTR 201
AKKAc.cueueeencessssssssssssssssssssss e e e e e e e e nan 204
Node, Go, Rust, and PYLNON........cccceevrvriecrcerer s rer s s s e s e s e e snesaesaeens 207
372 1= T 208
Workflow ENgine SOIULIONS.........ccoreirerernrcrinesere e ses e se et se e sse e sessesesnenens 215
Inception of the SErvice MESh ... 216
£ T o 217
Chapter 8: Deploying and Running MiCrOSErViCesS.....ccumrmssssnnsrssssannsssssssnnssssssnnnnss 219
Containers and MICIOSEIVICES.uurrerererrsisssse s se s s 219
INtroduction 10 DOCKETccorirmiiiiirir e s 220
Deploying Microservices With DOCKETcccvverevnreniniennsensene s sese e ssssessessesaessssessesaes 226
DOCKEr COMPOSE ...cuveeereerrerreererseseesessessessessssessessessesessessesaessssessessessssessesasssensesessesssssssessesses 230
Container OrcheStrationcoco s 235
Introduction t0 KUDEIMETES ... s 236
Kubernetes Core CONCEPLSccverererierierererseressessesessessesaesessessessessssessessesssssssessesasssssessesses 239
Deploying Microservices in a Kubernetes Environment..........ccccoevvvvvnennsnveniesesessensennns 243
Microservices Deployment Patterns.........ccccvverervrinnncenser s s s saenns 253
Multiple Services PEr HOSEccccevivveririerererserere s ses e sae e s sse e s s e ssesaessssesesaesasssssessesaes 253

LT T8 T gl 5 0 253
Service Per Virtual MACKINE.........ccvcvverereererrere e sesseressessesesessesaesassessessessssessessesasssssensessens 253
SErVICE PEI CONMTAINETccveereerrererrererrersesersere e sessersessesaesessessesaesas e ssesaesaesessesaesasssssensensens 253

viil

TABLE OF CONTENTS

Container-Native Microservice Frameworks..........ccccoeeerrrnereneresc e 254
METAPAITICIEccueiveiecircre e e e 254
Continuous Integration, Delivery, and Deploymentco.oooveirernnncneneser e 259
ContinUOUS INTEGrAtiONccoeeeecreeecreee e 260
CoONtINUOUS DEIIVEIY.....coueieirere et e e s 260
Continuous DEPIOYMENT.........ccoeiiirirre e 261

£ 117 o S 262
Chapter 9: Service Mesh.........ccciuinemmmmnssnnmmmmmsssmmmmsssnnmmssssnmsssss s ———— 263
WHY SErviCe MESNT?cceeieeeeesire e sn s e sr e snnne e 263
What IS @ SErvice MESN?.........o s 266
BUSINESS LOGIC «.vevetruerersessesensersessesessessessessssessessesssssssessesasssssessessesssssnsessesssnsssessesasnsssessesaes 268
Primitive Network FUNCHIONS ..o 268
Application NetWork FUNGLIONS......c.ccoeviiriereresir e sese s sse e s e ssessesessesseenes 268
L0000 8 T 269
Functionalities of @ SErvice MESh..........cccovriincnnnn s 269
Resiliency for Inter-Service CommUNICALIONS.........ccovverererenrerserreres s seesessessesnes 269
SBIVICE DISCOVEIY...cruerrirrerersersersessseressessssessessessessssessessessessssessessssssssssessessessssessessessssensessens 269
31011 T 270
ODSEIVADIIILY.....eevererrerererseserse e s s s e s s r e e s sae e s e s ae b e e e aesae e e e e aesae e e e e aenaees 270
LT 1] RS 270
DEPIOYMENL ... e 270
Inter-Service Communication ProtoCoIS.........c.coviienmnennnnnnsss s 270
ISTI0 vttt 27
IStI0 AFCRITECIUNE ... 27

L3 T S 275
LT3] o S 288
Should We Use Service MESh?...........co e 291
0L 291
0] T 292
£ TS 292

ix

TABLE OF CONTENTS

Chapter 10: APls, Events, and SIreamsccuuemmmmmssnsnmsssssssssssssssssssssssssssssssssnnss 293
APIs and APl Management ..o sesse e s s sss s e sse s se s ssessssesnesnens 294
API Publisher/API LifecyCle ManAQEN...........ccuuerrerernnerinsessssesesesessssessssesessssessssesessessssenens 296
APL GAEBWAY......cevieriierirsesire e ses e s e se s s s b s s e e e b e s e b e e e se e e nne s 297
API Store/Developer POl ... sessesesnenens 298
APl Analytics/0bServabilityc.cucvrerrinirnesine s 299
APIQOS ...t se e bbb b e e Rnnan 299
APL MONEGHZALION.......ccoeicereeriee s 300
API Definition With OPENAPL..........ccvrererrrere e e e e s sa e e naeenes 300

A Query Language for Your APIS: GraphQL...........ccccovvrrninnennnnesnse e sessesessenens 300
APl Management and Service MESH........cccverierrnrrerene s sesse e ssesesse e ssesssssssesseses 301
Implementing APl Managementc.ccooeveininin s sse s s sses 303
Y= 13 303
Event NOtIfiCationsS.........covocrrinnirerce s 304
Event-Carried State TranSTer ... sssenens 305
EVENT SOUICING .vevveveereriertesereresesessessessessssessessesassesessesasssssessessessssessesasssessssessesasssssensesaes 306
Command Query Responsibility Segregation (CQRS)ccocuvvrrinrrninnnennnsernseseseseseens 307

B3 LT 11 3T 308
SErEAM PrOCESSING ..veivieriiirciesie s s s s a s s b e e s ae e e nne s 309

A Microservices Architecture with APIs, Events, and Streams..........cccocvvvververeervensessesenennes 310
£ 10T 7 TS 312
Chapter 11: Microservices Security Fundamentals.........ccussmmmmmnmmnmnmmmmssssssssnnns 313
Monolith Versus MICIOSEIVICESccceerrererereree s s s 314
Securing Service-to-Service CommuNICAtioN..........ccccvvcrnivniesn s 316
JSON WED TOKEN (JWT)...vereeeeeeeessessssssssssssssssssssssssssssssssssssanns 317
Transport Layer Security (TLS) Mutual Authenticationc.ccoevvvvvrivnnennensenienssessensenes 324
The EAQE SECUILYccceveieccirere s e e e s 327
OAULN 2.0 p e 328

TABLE OF CONTENTS

ACCESS CONTIOL ...t e e e re e 333
XACML (eXtensible Access Control Markup Language)........cceceerreeerenrerererersenerssseressesessenens 334
EMDEAARA PDP.......oeeeeeeeceeeeees s s s ssnsssnsne s 338

SECUNTY SIABCAN.......e e se e e e 340

£ 7 o S 345

Chapter 12: Securing MIiCrOSErVICeSuuseurrsssssnnssssssnnnsssssssnnnssssssnnsssssssnnssssssnnnnss 347

Securing a Microservice With OAUth 2.0........ccovceviennnrrree e 347
Enable Transport Layer SECUKILY (TLS).....ccuurerrrurernsesrnesesenessssessssesssssssssssessssessssessssssessnnes 348
Setting Up an OAuth 2.0 Authorization SErvercucvcvnennnssssesne s 351
Protecting a Microservice with QAU 2.0..........cccvverirennesre s 355

Securing a Microservice with Self-Contained Access TOKENS (JWT)ccvcereverrenveriereenensensennes 358
Setting Up an Authorization Server t0 ISSUE JWTccocvvvriniernnnserseneses s sessessesessessessens 358
Protecting @ Microservice With JWT.......c.cvvvrvninnneniene s sese e ssssessessesesssssessesnes 361

Controlling ACCESS 10 @ MICIOSEIVICEcveruerrererierersesessersessessssessessessessssessessessssessessessessssessesses 362
Scope-Based ACCESS CONLIOL..........ccvvererererrerieresesseresesse s sse s e sessessessessesessessesaessssensessens 362
Role-Based ACCESS CONMIOLcccourerurrmneserissssssesese s s sesssnssssssens 363

Securing Service-to-Service COMMUNICALION........ccvvvvevreviererrrerserrere s ssere e sse s e rsesessessesaes 365
Service-to-Service Communication Secured With JWT.........ccoovceevnnnnisnssnssseeesesennns 365
Service-to-Service Communication Secured with TLS Mutual Authentication.................... 367

Securing Actuator ENAPOINTS.......ccccoeviininiennsinscne s 370

£ 7 o T 371

Chapter 13: Observabilitycccouusemmmmmssssnnmmmssssnnnmmsssssnnmsssssssnmsssssnsesssssnssessssnnnns 373

Three Pillars of ODSErvabilityccccuierniennesrese e 373

Distributed Tracing with Spring Cloud SIEULH ..o iririni s 374
SPring Cloud SIBULN.........cecrverere s s sa e e sae s ae e aenne e 375
Engaging Spring Cloud Sleuth with Spring Boot MiCrOSEIVICES........ccveererrererrersereesersersenaes 377
Tracing Messages Between Multiple Microservices with Spring Cloud Sleuth................... 380

Data Visualization and Correlation With ZipKin.......c.ccooevvvriniennnnsenesssensessessssssessesessssessessens 381
Event-Driven Log Aggregation ArchiteCtureccccvvrvenininsnse s sesenenns 385

xi

TABLE OF CONTENTS

Introduction t0 OPen TraCiNg......c.ccurerirrrrriere e s s re s r e nnen 386
Distributed Tracing with Open Tracing Using Spring Boot Microservices and Zipkin........... 387
Distributed Tracing with Open Tracing Using Spring Boot Microservices and Jaeger 388

Metrics With Prometheus. ... 390
Exposing Metrics from the Spring Boot MiCroServicecccvvrivncninininsnsnsesesessenennns 391
Setting Up Prometheus..........co st 393
Building Graphs with Prometheuscccvvvnvrnnnnsn e 395

Analytics and Monitoring with Grafana.............cocunnn e ————— 396
Building a Dashboard with Grafana..........c.ccccovenernnnnnenesnenesese s 396
Creating Alerts With Grafana............cccoveererresrnnsnsesrsese s s seenes 399

Using Fluentd Log Collector With DOCKETcccueerererneneseseresse s sesesss e sessesenns 402
Starting Fluentd as a DOCKEr CONTAINEN.........c.cueeverenerrenernsmsesesessese s sessesesse s sessesessnnes 403
Publishing Logs to Fluentd from a Microservice Running in a Docker Container................ 404
HOW [EWOTKS ... ese e se s s se s s sessssnssssnsssssesssssnssnsnss e nensis 405
Using Fluentd in a Microservices Deploymentc.cccvveevnnenmnnnesensesessesesesesessesessssessnns 407

BT 111 T o OSSR 408

1T . 409

xii

About the Authors

Kasun Indrasiri is an architect, author, microservice

and integration evangelist, and director of integration
architecture at WSO2. He also founded the

Microservices, APIs, and Integration meetup group, which
is a vendor-neutral microservices meetup in the San
Francisco Bay Area. He is the author of the book Beginning
WSO2 ESB(Apress) and has worked as a software architect
and a product lead with over seven years of experience

in enterprise integration. He is an Apache committer and
PMC member. Kasun has spoken at several conferences held in San Francisco, London,
and Barcelona on topics relating to enterprise integration and microservices. He also
conducts talks at Bay Area microservices, container, and cloud-native meetups, and
he publishes blogs and articles on microservices. He works with many Fortune 100
companies to provide solutions in the enterprise integration and microservices domain.

Prabath Siriwardena is an identity evangelist, author,
blogger, and the VP of Identity Management and Security

at WSO2, with more than 11 years of industry experience

in designing and building critical Identity and Access
Management (IAM) infrastructure for global enterprises,
including many Fortune 100/500 companies. As a technology
evangelist, Prabath has published five books. He blogs on
various topics from blockchain, PSD2, GDPR, and IAM, to
microservices security. He also runs a YouTube channel.

Prabath has spoken at many conferences, including the RSA Conference, Identiverse,
European Identity Conference, Consumer Identity World USA, API World, API Strategy &
Practice Con, QCon, OSCON, and WSO2Con. He has also travelled the world conducting
workshops/meetups to evangelize IAM communities. He is the founder of the Silicon
Valley IAM User Group, which is the largest IAM meetup in the San Francisco Bay Area.

xiii

About the Technical Reviewer

Alp Tunc is a software engineer. He graduated from Ege
University, Izmir/Turkey. He completed his MSc degree
while working as a research assistant. He is a software
developer by heart, with 20 years of experience in the
industry as a developer/architect/project manager of
projects of various sizes. He has a lot of hands-on experience
in a broad range of technologies. Besides technology, he
loves freezing moments in spectacular photographs, trekking

into the unknown, running, and reading and he is a jazz
aficionado. He also loves cats and dogs.

Acknowledgments

We would first like to thank Jonathan Gennick, assistant editorial director at Apress, for
evaluating and accepting our proposal for this book. Then, Jill Balzano, coordinating
editor at Apress, was extremely patient and tolerant of us throughout the publishing
process. Thank you very much, Jill, for your support. Laura Berendson, the development
editor at Apress, also helped us toward the end. Thanks Laura! Alp Tunc served as the
technical reviewer. Thanks, Alp, for your quality reviews.

Dr. Sanjiva Weerawarana, the Founder and Chief Architect at WSO2, is our constant
mentor. We are truly grateful to Dr. Sanjiva for his guidance, mentorship, and support.
We also express our gratitude to Tyler Jewel, the CEO at WSO2, and Paul Fremantle, the
CTO at WSO2, for their direction, which helped us explore the microservices domain.
Finally, we’d like to thank our families and parents; without them nothing is possible!

xvii

Introduction

The microservices architecture has become one of the most popular architectural
styles in the enterprise software architecture landscape. Owing to the benefits that it
brings, most enterprises are transforming their existing monolithic applications to
microservices architecture-based applications. Hence, for any software architect or
software engineer, it’s really important to understand the key architectural concepts of
the microservices architecture and how you can use those architectural principles in
practice to solve real-world business use cases.

In this book, we provide the readers a comprehensive understanding of
microservices architectural principles and discuss how to use those concepts in real-
world scenarios. Also, without locking into a particular technology or framework, we
cover a wide range of technologies and frameworks, which are most suitable for given
aspects of the microservices architecture.

One other key difference of this book is that it addresses some of the fundamental
challenges in building microservices in the enterprise architecture landscape, such
as inter-service communication, service integration with no centralized Enterprise
Service Bus (ESB), exposing microservices as APIs avoiding a centralized API gateway,
determining the scope and size of a microservice, and leveraging microservices security
patterns. All the concepts explained in this book are supported with real-world use cases
and incorporated with samples that the reader can try out. Most of these use cases are
inspired by existing microservices implementations such as Netflix and Google, as well as
the authors’ exposure to various meetups and conferences in the San Francisco Bay area.

This book covers some of the widely used and bleeding edge technologies
and patterns in realizing microservices architecture, such as technologies for
container-native deployment (Docker, Kubernetes, Helm), messaging standards and
protocols (gRPC, HTTP2, Kafka, AMQP, OpenAPI, GraphQL, etc.), reactive and active
microservices integration, service mesh (Istio and Linkerd), miroservice resiliency
patterns (circuit breaker, timeouts, bulk-heads, etc.), security standards (OAuth 2, JWT,
and certificates), using APIs, events, and streams with microservices, and building
observable microservices using logging, metrics, and tracing.

Xix

CHAPTER 1

The Case for
Microservices

Enterprise software architecture always evolves with new architectural styles owing to the
paradigm shifts in the technology landscape and the desire to find better ways to build
applications in a fast but reliable way.

The microservices architecture has been widely adopted as an architectural style
that allows you to build software applications with speed and safety. The microservices
architecture fosters building a software system as a collection of independent
autonomous services (developed, deployed, and scaled independently) that are loosely
coupled. These services form a single software application by integrating all such
services and other systems.

In this chapter, we explore what microservices are, the characteristics of
microservices with real-world examples, and the pros and cons of microservices in the
context of enterprise software architecture.

To better understand what microservices are, we need to look at some of the
architectural styles used prior to microservices, and how the enterprise architecture has
evolved to embrace the microservices architecture.

From a Monolith to a Microservices Architecture

Exploring the evolution of enterprise architecture from monolithic applications to
microservices is a great way to understand the key motivations and characteristics of
microservices. Let’s begin our discussion with monolithic applications.

© Kasun Indrasiri and Prabath Siriwardena 2018
K. Indrasiri and P. Siriwardena, Microservices for the Enterprise, https://doi.org/10.1007/978-1-4842-3858-5_1

CHAPTER 1 THE CASE FOR MICROSERVICES

Monolithic Applications

Enterprise software applications are designed to facilitate numerous business
requirements. In the monolithic architecture style, all the business functionalities are
piled into a single monolithic application and built as a single unit.

Consider a real-world example to understand monolithic applications further.
Figure 1-1 shows an online retail application, which is built using the monolithic
architecture style.

Online Retail
Application

Enterpirse
Portal

Order
Management

Product
Management

Web Storefront

Figure 1-1. Online retail application developed with a monolithic
architecture

The entire retail application is a collection of several components, such as order
management, payments, product management, and so on. Each of these components
offers a wide range of business functionalities. Adding or modifying a functionality to a
component was extremely expensive owing to its monolithic nature. Also, to facilitate the
overall business requirements, these components had to communicate with each other.
The communications between these components were often built on top of proprietary
protocols and standards, and they were based on the point-to-point communication
style. Hence, modifying or replacing a given component was also quite complicated. For
example, if the retail enterprise wanted to switch to a new order management system
while keeping the rest, doing so would require quite a lot of changes to the other existing

components too.

CHAPTER 1 THE CASE FOR MICROSERVICES

We can generalize the common characteristics of monolithic application as follows:
e Designed, developed, and deployed as a single unit.

¢ Overwhelmingly complex for most of the real-world business use
cases, which leads to nightmares in maintaining, upgrading, and
adding new features.

o It’s hard to practice Agile development and delivery methodologies.
Since the application has to be built as a single unit, most of the
business capabilities that it offers cannot have their own lifecycles.

¢ You must redeploy the entire application in order to update any part
of it.

o Asthe monolithic app grows, it may take longer and longer to start
up, which adds to the overall cost.

o Ithasto be scaled as a single application and is difficult to scale with
conflicting resource requirements. (For example, since a monolithic
application offers multiple business capabilities, one capability may
require more CPU while another requires more memory. It’s hard to
cater to the individual needs of these capabilities.)

e One unstable service can bring the whole application down.

e It'svery difficult to adopt new technologies and frameworks, as all
the functionalities have to build on homogeneous technologies/
frameworks. (For example, if you are using Java, all new projects have
to be based on Java, even if that are better alternative technologies
out there.)

As a solution to some of the limitations of the monolithic application architecture,
Service Oriented Architecture (SOA) and Enterprise Service Bus (ESB) emerged.

CHAPTER 1 THE CASE FOR MICROSERVICES

SOA and ESB

SOA tries to combat the challenges of large monolithic applications by segregating the
functionalities of monolithic applications into reusable, loosely coupled entities called
services. These services are accessible via calls over the network.

e Aservice is a self-contained implementation of a well-defined
business functionality that is accessible over the network.
Applications in SOA are built based on services.

e Services are software components with well-defined interfaces that
are implementation-independent. An important aspect of SOA is the
separation of the service interface (the what) from its implementation
(the how).

o The consumers are only concerned about the service interface and
do not care about its implementation.

e Services are self-contained (perform predetermined tasks) and
loosely coupled (for independence).

e Services can be dynamically discovered. The consumers often don’t
need to know the exact location and other details of a service. They
can discover the service’s metadata via a service metadata repository
or a service registry. When there’s a change to the service metadata,
the service can update its metadata in the service registry.

o Composite services can be built from aggregates of other services.

With the SOA paradigm, each business functionality is built as a (coarse-grained)
service (often implemented as Web Services) with several sub-functionalities. These
services are deployed inside an application server. When it comes to the consumption
of business functionalities, we often need to integrate/plumb multiple such services
(and create composite services) and other systems. Enterprise Service Bus (ESB) is used
to integrate those services, data, and systems. Consumers use the composite services
exposed from the ESB layer. Hence, ESB is used as the centralized bus (see Figure 1-2)
that connects all these services and systems.

CHAPTER 1 THE CASE FOR MICROSERVICES

) Store Support Promotion
Consumers Web Portal Mobile App Admin Center Management
ESB

Service Virtual/Composite Services, Service Orchestration, Transformation,
Integration Mediation, QoS, Business Logic
t I Application
S, NNy SRS TJSpUN TSN TN M N
Services : Product Customer || Shopping Order Payment || Inventory || Fullfilment [| Delivery |:
L)

Systems Data Content

Cloud Service
Warehouse Management

(Salesforce, Paypal)

Figure 1-2. SOA/ESB style based online retail system

For example, let’s go back to our online retail application use case. Figure 1-2
illustrates the implementation of the online retail application using SOA/web services.
Here we have defined multiple web services that cater to various business capabilities
such as products, customers, shopping, orders, payments, etc. At the ESB layer, we
may integrate such business capabilities and create composite business capabilities,
which are exposed to the consumers. Or the ESB layer may just be used to expose
the functionalities as it is, with additional cross-cutting features such as security. So,
obviously the ESB layer also contains a significant portion of the business logic of the
entire application. Other cross-cutting concerns such as security, monitoring, and
analytics may also be applied at the ESB layer. The ESB layer is a monolithic entity where
all developers share the same runtime to develop/deploy their service integrations.

APIs

Exposing business functionalities as managed services or APIs has become a key
requirement of the modern enterprise architecture. However, web services/SOA is not
really the ideal solution to cater to such requirements, due to the complexity of the Web
Service-related technologies such as SOAP (used as the message format for inter-service
communication), WS-Security (to secure messaging between services), WSDLs (to
define the service contract), etc., and the lack of features to build an ecosystem around
APIs (self-servicing, etc.)

CHAPTER 1 THE CASE FOR MICROSERVICES

Therefore, most organizations put a new API Management/API Gateway layer on
top of the existing SOA implementations. This layer is known as the API facade, and
it exposes a simple API for a given business functionality and hides all the internal
complexities of the ESB/Web Services layer. The API layer is also used for security,
throttling, caching, and monetization.

For example, Figure 1-3 introduces an API gateway on top of the ESB layer. All the
business capabilities offered from our online retail application are now being exposed
as managed APIs. The API management layer is not just to expose functionalities as
managed APIs, but you will be able to build a whole ecosystem of business capabilities

Store
; Support
Admin 9

and their consumers.

Consumers
Mobile App

Web Portal
API
Management
ESB
Service Virtual/Compasite Services, Service Orchestration, Transformation,
Integration Mediation, QoS, Business Logic
' Application
N A PSR TN RSN TN NP N
Services I Product Customer Shopping Order Payment Inventory Fulifilment Delivery |:
______ 4

Systems Data Shipping Content Cloud Service
Warehouse Management (Salesforce, Paypal)

Figure 1-3. Exposing business functionalities as managed APIs through an API
Gateway layer

With the increasing demand for complex business capabilities, the monolithic
architecture can no longer cater to the modern enterprise software application
development. The centralized nature of monolithic applications results in the lack of
being able to scale applications independently, inter-application dependencies that
hinder independent application development and deployment, reliability issues due to
the centralized nature and the constraints on using diverse technologies for application

6

CHAPTER 1 THE CASE FOR MICROSERVICES

development. To overcome most of these limitations and to cater to the modern,
complex, and decentralized application needs, a new architecture paradigm must be
conceived.

The microservices architecture has emerged as a better architecture paradigm
to overcome the drawbacks of the ESB/SOA architecture as well as the conventional
monolithic application architecture.

What Is a Microservice?

The foundation of the microservices architecture is about developing a single
application as a suite of small and independent services that are running in their own
processes, developed and deployed independently.

As illustrated in Figure 1-4, the online retail software application can be transformed
into a microservices architecture by breaking the monolithic application layer into
independent and business functionality oriented services. Also, we got rid of the central
ESB by breaking its functionalities into each service, so that the services take care of the
inter-service communication and composition logic.

Consumers
Mobile App
Promotion
Web Portal M i
API
Management
[
[
: " Order Shopping Product !
Microservices Processing Cart Customer Inventory e :
1
1
Systems Finance Content Cloud Service

System

Management

(Salesforce, Paypal)

BEE Shippin
Warehouse pping

Figure 1-4. An online retail application built using a microservices
architecture

CHAPTER 1 THE CASE FOR MICROSERVICES

Therefore, each microservice at the microservices layer offers a well-defined
business capability (preferably with a small scope), which are designed, developed,
deployed, and administrated independently.

The API management layer pretty much stays the same, despite the changes to the
ESB and services layers that it communicates with. The API gateway and management
layer exposes the business functionalities as managed APIs; we have the option of
segregating the gateway into independent per-API based runtimes.

Since now you have a basic understanding of the microservices architecture, we can
dive deep into the main characteristics of microservices.

Business Capability Oriented

One of the key concepts of the microservices architecture is that your service has to be
designed based on the business capabilities, so that a given service will serve a specific
business purpose and has a well-defined set of responsibilities. A given service should
focus on doing only one thing and doing it well.

It's important to understand that a coarse-grained service (such as a web service
developed in the SOA context) or a fine-grained service (which doesn’t map to a
business capability) is not a suitable fit into the microservices architecture. Rather, the
service should be sized purely based on the scope and the business functionality. Also,
keep in mind that making services too small (i.e., oriented on fine grained features that
map to business capabilities) is considered an anti-pattern.

In the example scenario, we had coarse-grained services such as Product, Order,
etc. in SOA/Web Services implementation (see Figure 1-3) and when we move into
microservices, we identified a set of more fine-grained, yet business capability-oriented
services, such as Product Details, Order Processing, Product Search, Shopping
Cart, etc.

The size of the service is never determined based on the number of lines of
code or the number of people working on that service. The concepts such as Single
Responsibility Principle (SRP), Conway's law, Twelve Factor App, Domain Driven Design
(DDD), and so on, are useful in identifying and designing the scope and functionalities
of a microservice. We will discuss such key concepts and fundamentals of designing
microservices around business capabilities in Chapter 2, “Designing Microservices”.

CHAPTER 1 THE CASE FOR MICROSERVICES

Autonomous: Develop, Deploy, and Scale Independently

Having autonomous services could well be the most important driving force behind the
realization of the microservices architecture. Microservices are developed, deployed,
and scaled as independent entities. Unlike web services or a monolithic application
architecture, services don’t share the same execution runtime. Rather they are deployed
as isolated runtimes by leveraging technologies such as containers. The successful and
increasing adaptation of containers and container management technologies such as
Docker, Kubernetes, and Mesos are vital for the realization of service autonomy and
contribute to the success of the microservices architecture as a whole. We dig deep

into the deployment aspect of microservices in Chapter 8, “Deploying and Running
Microservices”.

The autonomous services ensure the resiliency of the entire system as we have
isolated the failures along with service isolation. These services are loosely coupled
through messaging via inter-service communication over the network. The inter-service
communication can be built on top of various interaction styles and message formats
(we cover these things in detail in Chapter 3, “Inter-Service Communication”). They
expose their APIs via technology-agnostic service contracts and consumers can use
those contracts to collaborate with that service. Such services may also be exposed as
managed APIs via an API gateway.

The independent deployment of services provides the innate ability to scale services
independently. As the consumption of business functionalities varies, we can scale the
microservices that get more traffic without scaling other services.

We can observe these microservices’ characteristics in our e-commerce application
use case, which is illustrated in Figure 1-3. The coarse-grained services, such as Product,
Order, etc., share the same application server runtime as in the SOA/Web Services
approach. So, a failure (such as out of memory or CPU spinning) in one of those
services could blow off the entire application server runtime. Also, in many cases the
functionalities such as product search may be very frequently used compared to other
functionalities. With the monolithic approach, you can’t scale the product searching
functionalities because it shares the same application server runtime with other services
(you have to share the entire application server runtime instead). As illustrated in
Figure 1-4, the segregation of these coarse-grained services into microservices makes
them independently deployable, isolates failures into each service level, and allows you
to independently scale a given microservice depending how it is consumed.

CHAPTER 1 THE CASE FOR MICROSERVICES

No Central ESB: Smart Endpoints and Dumb Pipes

The microservices architecture fosters the elimination of the Enterprise Service Bus
(ESB). The ESB used to be the where most of the smarts lived in the SOA/Web Services
based architecture. The microservices architecture introduces a new style of service
integration called smart endpoints and dumb pipes instead of using an ESB. As discussed
earlier in this chapter, most of the business functionalities are implemented at the ESB
level through the integration or plumbing of the underlying services and systems. With
smart endpoints and dumb pipes, all the business logic (which includes the inter-service
communication logic) resides at each microservice level (they are the smart-endpoints)
and all such services are connected to a primitive messaging system (a dumb pipe),
which doesn’t have any business logic.

Most naive microservices adopters think that by just transforming the system
into a microservices architecture, they can simply get rid of all the complexities of
the centralized ESB architecture. However, the reality is that with microservices
architecture, the centralized capabilities of the ESB are dispersed into all the
microservices. The capabilities that the ESB has offered now have to be implemented
at the microservices level.

So, the key point here is that the complexity of the ESB won’t go away. Rather it
gets distributed among all the microservices that you develop. The microservices
compositions (using synchronous or asynchronous styles), inter-services
communication via different communication protocols, application of resiliency
patterns such as circuit breakers, integrating with other applications, SaaS (e.g.,
Salesforce), APIs, data and proprietary systems, and observability of integrated services
need to be implemented as part of the microservices that you develop. In fact, the
complexity of creating compositions and inter-services communication can be more
challenging due to the number of services that you have to deal with in a microservices
architecture (services are more prone to errors due to the inter-service communications
over the network).

Most of the early microservices adopters such as Netflix just implemented most
of these capabilities from scratch. However, if we are to fully replace ESB with a
microservices architecture, we have to select specific technologies to build those ESB’s
capabilities at our microservices level rather re-implementing them from scratch.

We will take a detailed look at all these requirements and discuss some of the
available technologies to realize them in Chapter 3, “Inter-service Communication” and
Chapter 7, “Integrating Microservices”.

10

CHAPTER 1 THE CASE FOR MICROSERVICES

Failure Tolerance

As discussed in the previous section, microservices are more prone to failures due to the
proliferation of the services and their inter-service network communications. A given
microservice application is a collection of fine-grained services and therefore a failure of
one or more of those services should not bring down the entire application. Therefore,
we should gracefully handle a given failure of a microservice so that it has minimum
impact on the business functionalities of the application. Designing microservices in
failure-tolerable fashion requires the adaptation of the required technologies from the
design, development, and deployment phases.

For example, in the retail example, let’s say the Product Details microservices
is critical to the functionality of the e-commerce application. Hence we need to apply
all the resiliency-related capabilities, such as circuit breakers, disaster recovery, load-
balancing, fail-over, and dynamic scaling based on traffic patterns, which we discuss in
detail in Chapter 7, “Integrating Microservices”.

It is really important to mimic all such possible failures as part of the service
development and testing, using tools such as Netflix’s Chaos Monkey. A given service
implementation should also be responsible for all the resiliency related activities;
such behaviors are automatically verified as part of the CICD (continuous integration,
continuous delivery) process.

The other aspect of failure tolerance is the ability to observe the behavior of the
microservices that you run in production. Detecting or predicting failures in a service
and restoring such services is quite important. For example, suppose that you have
monitoring, tracing, logging, etc. enabled for all your microservices in the online retail
application example. Then you observe a significant latency and low TPS (Transactions
Per Second) in the Product Search service. This is an indication of a possible future
outage of that service. If the microservices are observable, you should be able to analyze
the reasons for the current symptoms. Therefore, even if you have employed chaos
testing during the development phase, it’s important to have a solid observability
infrastructure in place for all your microservices to achieve failure tolerance. We will
discuss the observability techniques in detail in Chapter 13, “Observability”.

We cover failure tolerance techniques and best practices in Chapter 7, “Integrating
Microservices” and Chapter 8, “Deploying and Running Microservices” in detail.

11

CHAPTER 1 THE CASE FOR MICROSERVICES

Decentralized Data Management

In a monolithic architecture, the application stores data in single and centralized
logical databases to implement various functionalities/capabilities of the application.
In a microservices architecture, the functionalities are dispersed across multiple
microservices. If we use the same centralized database, the microservices will be no
longer independent from each other (for instance, if the database schema is changed by
one microservice, that will break several other services). Therefore, each microservice
must have its own database and database schema.

Each microservice can have a private database to persist the data that requires
implementing the business functionality offered by it. A given microservice can only
access the dedicated private database and not the databases of other microservices.

In some business scenarios, you might have to update several databases for a single
transaction. In such scenarios, the databases of other microservices should be updated
through the corresponding service API only (they are not allowed to access the database
directly).

The decentralized data management gives you the fully decoupled microservices
and the liberty of choosing disparate data-management techniques (SQL or NoSQL
etc., different database management systems for each service). We look at the data
management techniques of the microservices architecture in detail in Chapter 5, “Data
Management”.

Service Governance

SOA governance was one of a key driving forces behind the operational success of

SOA; it provides the cooperation and coordination between the different entities in

an organization (development teams, service consumers, etc.). Although it defines a
comprehensive set of theoretical concepts as part of SOA governance, only a handful

of concepts are being actively used in practice. When we shift into a microservices
architecture, most of the useful governance concepts are discarded and the governance
in microservices is interpreted as a decentralized process, which allows each team/
entity to govern its own domain, as it prefers. Decentralized governance is applicable to
the service development, deployment, and execution process, but there’s a lot more to it
than that. Hence we deliberately didn’t use the term decentralized governance.

12

CHAPTER 1 THE CASE FOR MICROSERVICES

We can identify two key aspects of governance: design-time governance of services
(selecting technologies, protocols, etc.) and runtime governance (service definitions,
service registry and discovery, service versioning, service runtime dependencies, service
ownerships and consumers, enforcing QoS, and service observerability).

Design-time governance in microservices is mostly a decentralized process where
each service owner is given the freedom to design, develop, and run their services. Then
they can use the right tool for the job, rather than standardize on a single technology
platform. However, we should define some common standards that are applicable across
the organization (for example, irrespective of the development language, all code should
go through a review process and automatically be merged into the mainline).

The runtime governance aspect of microservices is implemented at various levels
and often we don't call it runtime governance in a microservices context (service registry
and discovery is one such popular concept that is extremely useful in a microservices
architecture). So, rather than learn about these concepts as a set of discrete concepts, it’s
easier to understand them if we look at the runtime-governance perspective.

Runtime governance is absolutely critical in the microservices architecture (it is
even more important than SOA runtime governance), simply because of the number of
microservices that we have to deal with. The implementation of runtime governance is
often done as a centralized component. For example, suppose that we need to discover
service endpoints and metadata in our online retail application scenario. Then all
the services have to call a centralized registry service (which can have its own scaling
capabilities, yet a logically centralized component). Similarly, if we want to apply QoS
(quality of service) enforcements such as security, by throttling centrally, we need a
central place such as an API Manager/gateway to do that. In fact, some of the runtime
governance aspects are implemented at the API gateway layer too.

We'll look at microservices governance aspects in detail in Chapter 6, “Microservices
Governance” and API Management in Chapter 10, “APIs, Events and Streams’”.

Observability

Service observability can be considered a combination of monitoring, distributed
logging, distributed tracing, and visualization of a service’s runtime behavior and
dependencies. Hence observability can be also considered part of runtime governance.
With the proliferation of fine-grained services, the ability to observe the runtime
behavior of a service is absolutely critical. Observability components are often a

13

