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Introduction

The microservices architecture has become one of the most popular architectural
styles in the enterprise software architecture landscape. Owing to the benefits that it
brings, most enterprises are transforming their existing monolithic applications to
microservices architecture-based applications. Hence, for any software architect or
software engineer, it’s really important to understand the key architectural concepts of
the microservices architecture and how you can use those architectural principles in
practice to solve real-world business use cases.

In this book, we provide the readers a comprehensive understanding of
microservices architectural principles and discuss how to use those concepts in real-
world scenarios. Also, without locking into a particular technology or framework, we
cover a wide range of technologies and frameworks, which are most suitable for given
aspects of the microservices architecture.

One other key difference of this book is that it addresses some of the fundamental
challenges in building microservices in the enterprise architecture landscape, such
as inter-service communication, service integration with no centralized Enterprise
Service Bus (ESB), exposing microservices as APIs avoiding a centralized API gateway,
determining the scope and size of a microservice, and leveraging microservices security
patterns. All the concepts explained in this book are supported with real-world use cases
and incorporated with samples that the reader can try out. Most of these use cases are
inspired by existing microservices implementations such as Netflix and Google, as well as
the authors’ exposure to various meetups and conferences in the San Francisco Bay area.

This book covers some of the widely used and bleeding edge technologies
and patterns in realizing microservices architecture, such as technologies for
container-native deployment (Docker, Kubernetes, Helm), messaging standards and
protocols (gRPC, HTTP2, Kafka, AMQP, OpenAPI, GraphQL, etc.), reactive and active
microservices integration, service mesh (Istio and Linkerd), miroservice resiliency
patterns (circuit breaker, timeouts, bulk-heads, etc.), security standards (OAuth 2, JWT,
and certificates), using APIs, events, and streams with microservices, and building
observable microservices using logging, metrics, and tracing.
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CHAPTER 1

The Case for
Microservices

Enterprise software architecture always evolves with new architectural styles owing to the
paradigm shifts in the technology landscape and the desire to find better ways to build
applications in a fast but reliable way.

The microservices architecture has been widely adopted as an architectural style
that allows you to build software applications with speed and safety. The microservices
architecture fosters building a software system as a collection of independent
autonomous services (developed, deployed, and scaled independently) that are loosely
coupled. These services form a single software application by integrating all such
services and other systems.

In this chapter, we explore what microservices are, the characteristics of
microservices with real-world examples, and the pros and cons of microservices in the
context of enterprise software architecture.

To better understand what microservices are, we need to look at some of the
architectural styles used prior to microservices, and how the enterprise architecture has
evolved to embrace the microservices architecture.

From a Monolith to a Microservices Architecture

Exploring the evolution of enterprise architecture from monolithic applications to
microservices is a great way to understand the key motivations and characteristics of
microservices. Let’s begin our discussion with monolithic applications.
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Monolithic Applications

Enterprise software applications are designed to facilitate numerous business
requirements. In the monolithic architecture style, all the business functionalities are
piled into a single monolithic application and built as a single unit.

Consider a real-world example to understand monolithic applications further.
Figure 1-1 shows an online retail application, which is built using the monolithic
architecture style.

Online Retail
Application

Enterpirse
Portal

Order
Management

Product
Management

Web Storefront

Figure 1-1. Online retail application developed with a monolithic
architecture

The entire retail application is a collection of several components, such as order
management, payments, product management, and so on. Each of these components
offers a wide range of business functionalities. Adding or modifying a functionality to a
component was extremely expensive owing to its monolithic nature. Also, to facilitate the
overall business requirements, these components had to communicate with each other.
The communications between these components were often built on top of proprietary
protocols and standards, and they were based on the point-to-point communication
style. Hence, modifying or replacing a given component was also quite complicated. For
example, if the retail enterprise wanted to switch to a new order management system
while keeping the rest, doing so would require quite a lot of changes to the other existing

components too.
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We can generalize the common characteristics of monolithic application as follows:
e Designed, developed, and deployed as a single unit.

¢ Overwhelmingly complex for most of the real-world business use
cases, which leads to nightmares in maintaining, upgrading, and
adding new features.

o It’s hard to practice Agile development and delivery methodologies.
Since the application has to be built as a single unit, most of the
business capabilities that it offers cannot have their own lifecycles.

¢ You must redeploy the entire application in order to update any part
of it.

o Asthe monolithic app grows, it may take longer and longer to start
up, which adds to the overall cost.

o Ithasto be scaled as a single application and is difficult to scale with
conflicting resource requirements. (For example, since a monolithic
application offers multiple business capabilities, one capability may
require more CPU while another requires more memory. It’s hard to
cater to the individual needs of these capabilities.)

e One unstable service can bring the whole application down.

e It'svery difficult to adopt new technologies and frameworks, as all
the functionalities have to build on homogeneous technologies/
frameworks. (For example, if you are using Java, all new projects have
to be based on Java, even if that are better alternative technologies
out there.)

As a solution to some of the limitations of the monolithic application architecture,
Service Oriented Architecture (SOA) and Enterprise Service Bus (ESB) emerged.
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SOA and ESB

SOA tries to combat the challenges of large monolithic applications by segregating the
functionalities of monolithic applications into reusable, loosely coupled entities called
services. These services are accessible via calls over the network.

e Aservice is a self-contained implementation of a well-defined
business functionality that is accessible over the network.
Applications in SOA are built based on services.

e Services are software components with well-defined interfaces that
are implementation-independent. An important aspect of SOA is the
separation of the service interface (the what) from its implementation
(the how).

o The consumers are only concerned about the service interface and
do not care about its implementation.

e Services are self-contained (perform predetermined tasks) and
loosely coupled (for independence).

e Services can be dynamically discovered. The consumers often don’t
need to know the exact location and other details of a service. They
can discover the service’s metadata via a service metadata repository
or a service registry. When there’s a change to the service metadata,
the service can update its metadata in the service registry.

o Composite services can be built from aggregates of other services.

With the SOA paradigm, each business functionality is built as a (coarse-grained)
service (often implemented as Web Services) with several sub-functionalities. These
services are deployed inside an application server. When it comes to the consumption
of business functionalities, we often need to integrate/plumb multiple such services
(and create composite services) and other systems. Enterprise Service Bus (ESB) is used
to integrate those services, data, and systems. Consumers use the composite services
exposed from the ESB layer. Hence, ESB is used as the centralized bus (see Figure 1-2)
that connects all these services and systems.



CHAPTER 1  THE CASE FOR MICROSERVICES
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Figure 1-2. SOA/ESB style based online retail system

For example, let’s go back to our online retail application use case. Figure 1-2
illustrates the implementation of the online retail application using SOA/web services.
Here we have defined multiple web services that cater to various business capabilities
such as products, customers, shopping, orders, payments, etc. At the ESB layer, we
may integrate such business capabilities and create composite business capabilities,
which are exposed to the consumers. Or the ESB layer may just be used to expose
the functionalities as it is, with additional cross-cutting features such as security. So,
obviously the ESB layer also contains a significant portion of the business logic of the
entire application. Other cross-cutting concerns such as security, monitoring, and
analytics may also be applied at the ESB layer. The ESB layer is a monolithic entity where
all developers share the same runtime to develop/deploy their service integrations.

APIs

Exposing business functionalities as managed services or APIs has become a key
requirement of the modern enterprise architecture. However, web services/SOA is not
really the ideal solution to cater to such requirements, due to the complexity of the Web
Service-related technologies such as SOAP (used as the message format for inter-service
communication), WS-Security (to secure messaging between services), WSDLs (to
define the service contract), etc., and the lack of features to build an ecosystem around
APIs (self-servicing, etc.)



CHAPTER 1  THE CASE FOR MICROSERVICES

Therefore, most organizations put a new API Management/API Gateway layer on
top of the existing SOA implementations. This layer is known as the API facade, and
it exposes a simple API for a given business functionality and hides all the internal
complexities of the ESB/Web Services layer. The API layer is also used for security,
throttling, caching, and monetization.

For example, Figure 1-3 introduces an API gateway on top of the ESB layer. All the
business capabilities offered from our online retail application are now being exposed
as managed APIs. The API management layer is not just to expose functionalities as
managed APIs, but you will be able to build a whole ecosystem of business capabilities

Store
; Support
Admin 9

and their consumers.

Consumers
Mobile App

Web Portal
API
Management
ESB
Service Virtual/Compasite Services, Service Orchestration, Transformation,
Integration Mediation, QoS, Business Logic
' Application
N A PSR TN RSN TN NP N
Services I Product Customer Shopping Order Payment Inventory Fulifilment Delivery |:
______ 4

Systems Data Shipping Content Cloud Service
Warehouse Management (Salesforce, Paypal)

Figure 1-3. Exposing business functionalities as managed APIs through an API
Gateway layer

With the increasing demand for complex business capabilities, the monolithic
architecture can no longer cater to the modern enterprise software application
development. The centralized nature of monolithic applications results in the lack of
being able to scale applications independently, inter-application dependencies that
hinder independent application development and deployment, reliability issues due to
the centralized nature and the constraints on using diverse technologies for application
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development. To overcome most of these limitations and to cater to the modern,
complex, and decentralized application needs, a new architecture paradigm must be
conceived.

The microservices architecture has emerged as a better architecture paradigm
to overcome the drawbacks of the ESB/SOA architecture as well as the conventional
monolithic application architecture.

What Is a Microservice?

The foundation of the microservices architecture is about developing a single
application as a suite of small and independent services that are running in their own
processes, developed and deployed independently.

As illustrated in Figure 1-4, the online retail software application can be transformed
into a microservices architecture by breaking the monolithic application layer into
independent and business functionality oriented services. Also, we got rid of the central
ESB by breaking its functionalities into each service, so that the services take care of the
inter-service communication and composition logic.

Consumers
Mobile App
Promotion
Web Portal M i
API
Management
[
[
: " Order Shopping Product !
Microservices Processing Cart Customer Inventory e :
1
1
Systems Finance Content Cloud Service

System

Management

(Salesforce, Paypal)

BEE Shippin
Warehouse pping

Figure 1-4. An online retail application built using a microservices
architecture
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Therefore, each microservice at the microservices layer offers a well-defined
business capability (preferably with a small scope), which are designed, developed,
deployed, and administrated independently.

The API management layer pretty much stays the same, despite the changes to the
ESB and services layers that it communicates with. The API gateway and management
layer exposes the business functionalities as managed APIs; we have the option of
segregating the gateway into independent per-API based runtimes.

Since now you have a basic understanding of the microservices architecture, we can
dive deep into the main characteristics of microservices.

Business Capability Oriented

One of the key concepts of the microservices architecture is that your service has to be
designed based on the business capabilities, so that a given service will serve a specific
business purpose and has a well-defined set of responsibilities. A given service should
focus on doing only one thing and doing it well.

It's important to understand that a coarse-grained service (such as a web service
developed in the SOA context) or a fine-grained service (which doesn’t map to a
business capability) is not a suitable fit into the microservices architecture. Rather, the
service should be sized purely based on the scope and the business functionality. Also,
keep in mind that making services too small (i.e., oriented on fine grained features that
map to business capabilities) is considered an anti-pattern.

In the example scenario, we had coarse-grained services such as Product, Order,
etc. in SOA/Web Services implementation (see Figure 1-3) and when we move into
microservices, we identified a set of more fine-grained, yet business capability-oriented
services, such as Product Details, Order Processing, Product Search, Shopping
Cart, etc.

The size of the service is never determined based on the number of lines of
code or the number of people working on that service. The concepts such as Single
Responsibility Principle (SRP), Conway's law, Twelve Factor App, Domain Driven Design
(DDD), and so on, are useful in identifying and designing the scope and functionalities
of a microservice. We will discuss such key concepts and fundamentals of designing
microservices around business capabilities in Chapter 2, “Designing Microservices”.
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Autonomous: Develop, Deploy, and Scale Independently

Having autonomous services could well be the most important driving force behind the
realization of the microservices architecture. Microservices are developed, deployed,
and scaled as independent entities. Unlike web services or a monolithic application
architecture, services don’t share the same execution runtime. Rather they are deployed
as isolated runtimes by leveraging technologies such as containers. The successful and
increasing adaptation of containers and container management technologies such as
Docker, Kubernetes, and Mesos are vital for the realization of service autonomy and
contribute to the success of the microservices architecture as a whole. We dig deep

into the deployment aspect of microservices in Chapter 8, “Deploying and Running
Microservices”.

The autonomous services ensure the resiliency of the entire system as we have
isolated the failures along with service isolation. These services are loosely coupled
through messaging via inter-service communication over the network. The inter-service
communication can be built on top of various interaction styles and message formats
(we cover these things in detail in Chapter 3, “Inter-Service Communication”). They
expose their APIs via technology-agnostic service contracts and consumers can use
those contracts to collaborate with that service. Such services may also be exposed as
managed APIs via an API gateway.

The independent deployment of services provides the innate ability to scale services
independently. As the consumption of business functionalities varies, we can scale the
microservices that get more traffic without scaling other services.

We can observe these microservices’ characteristics in our e-commerce application
use case, which is illustrated in Figure 1-3. The coarse-grained services, such as Product,
Order, etc., share the same application server runtime as in the SOA/Web Services
approach. So, a failure (such as out of memory or CPU spinning) in one of those
services could blow off the entire application server runtime. Also, in many cases the
functionalities such as product search may be very frequently used compared to other
functionalities. With the monolithic approach, you can’t scale the product searching
functionalities because it shares the same application server runtime with other services
(you have to share the entire application server runtime instead). As illustrated in
Figure 1-4, the segregation of these coarse-grained services into microservices makes
them independently deployable, isolates failures into each service level, and allows you
to independently scale a given microservice depending how it is consumed.
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No Central ESB: Smart Endpoints and Dumb Pipes

The microservices architecture fosters the elimination of the Enterprise Service Bus
(ESB). The ESB used to be the where most of the smarts lived in the SOA/Web Services
based architecture. The microservices architecture introduces a new style of service
integration called smart endpoints and dumb pipes instead of using an ESB. As discussed
earlier in this chapter, most of the business functionalities are implemented at the ESB
level through the integration or plumbing of the underlying services and systems. With
smart endpoints and dumb pipes, all the business logic (which includes the inter-service
communication logic) resides at each microservice level (they are the smart-endpoints)
and all such services are connected to a primitive messaging system (a dumb pipe),
which doesn’t have any business logic.

Most naive microservices adopters think that by just transforming the system
into a microservices architecture, they can simply get rid of all the complexities of
the centralized ESB architecture. However, the reality is that with microservices
architecture, the centralized capabilities of the ESB are dispersed into all the
microservices. The capabilities that the ESB has offered now have to be implemented
at the microservices level.

So, the key point here is that the complexity of the ESB won’t go away. Rather it
gets distributed among all the microservices that you develop. The microservices
compositions (using synchronous or asynchronous styles), inter-services
communication via different communication protocols, application of resiliency
patterns such as circuit breakers, integrating with other applications, SaaS (e.g.,
Salesforce), APIs, data and proprietary systems, and observability of integrated services
need to be implemented as part of the microservices that you develop. In fact, the
complexity of creating compositions and inter-services communication can be more
challenging due to the number of services that you have to deal with in a microservices
architecture (services are more prone to errors due to the inter-service communications
over the network).

Most of the early microservices adopters such as Netflix just implemented most
of these capabilities from scratch. However, if we are to fully replace ESB with a
microservices architecture, we have to select specific technologies to build those ESB’s
capabilities at our microservices level rather re-implementing them from scratch.

We will take a detailed look at all these requirements and discuss some of the
available technologies to realize them in Chapter 3, “Inter-service Communication” and
Chapter 7, “Integrating Microservices”.
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Failure Tolerance

As discussed in the previous section, microservices are more prone to failures due to the
proliferation of the services and their inter-service network communications. A given
microservice application is a collection of fine-grained services and therefore a failure of
one or more of those services should not bring down the entire application. Therefore,
we should gracefully handle a given failure of a microservice so that it has minimum
impact on the business functionalities of the application. Designing microservices in
failure-tolerable fashion requires the adaptation of the required technologies from the
design, development, and deployment phases.

For example, in the retail example, let’s say the Product Details microservices
is critical to the functionality of the e-commerce application. Hence we need to apply
all the resiliency-related capabilities, such as circuit breakers, disaster recovery, load-
balancing, fail-over, and dynamic scaling based on traffic patterns, which we discuss in
detail in Chapter 7, “Integrating Microservices”.

It is really important to mimic all such possible failures as part of the service
development and testing, using tools such as Netflix’s Chaos Monkey. A given service
implementation should also be responsible for all the resiliency related activities;
such behaviors are automatically verified as part of the CICD (continuous integration,
continuous delivery) process.

The other aspect of failure tolerance is the ability to observe the behavior of the
microservices that you run in production. Detecting or predicting failures in a service
and restoring such services is quite important. For example, suppose that you have
monitoring, tracing, logging, etc. enabled for all your microservices in the online retail
application example. Then you observe a significant latency and low TPS (Transactions
Per Second) in the Product Search service. This is an indication of a possible future
outage of that service. If the microservices are observable, you should be able to analyze
the reasons for the current symptoms. Therefore, even if you have employed chaos
testing during the development phase, it’s important to have a solid observability
infrastructure in place for all your microservices to achieve failure tolerance. We will
discuss the observability techniques in detail in Chapter 13, “Observability”.

We cover failure tolerance techniques and best practices in Chapter 7, “Integrating
Microservices” and Chapter 8, “Deploying and Running Microservices” in detail.
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Decentralized Data Management

In a monolithic architecture, the application stores data in single and centralized
logical databases to implement various functionalities/capabilities of the application.
In a microservices architecture, the functionalities are dispersed across multiple
microservices. If we use the same centralized database, the microservices will be no
longer independent from each other (for instance, if the database schema is changed by
one microservice, that will break several other services). Therefore, each microservice
must have its own database and database schema.

Each microservice can have a private database to persist the data that requires
implementing the business functionality offered by it. A given microservice can only
access the dedicated private database and not the databases of other microservices.

In some business scenarios, you might have to update several databases for a single
transaction. In such scenarios, the databases of other microservices should be updated
through the corresponding service API only (they are not allowed to access the database
directly).

The decentralized data management gives you the fully decoupled microservices
and the liberty of choosing disparate data-management techniques (SQL or NoSQL
etc., different database management systems for each service). We look at the data
management techniques of the microservices architecture in detail in Chapter 5, “Data
Management”.

Service Governance

SOA governance was one of a key driving forces behind the operational success of

SOA; it provides the cooperation and coordination between the different entities in

an organization (development teams, service consumers, etc.). Although it defines a
comprehensive set of theoretical concepts as part of SOA governance, only a handful

of concepts are being actively used in practice. When we shift into a microservices
architecture, most of the useful governance concepts are discarded and the governance
in microservices is interpreted as a decentralized process, which allows each team/
entity to govern its own domain, as it prefers. Decentralized governance is applicable to
the service development, deployment, and execution process, but there’s a lot more to it
than that. Hence we deliberately didn’t use the term decentralized governance.

12
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We can identify two key aspects of governance: design-time governance of services
(selecting technologies, protocols, etc.) and runtime governance (service definitions,
service registry and discovery, service versioning, service runtime dependencies, service
ownerships and consumers, enforcing QoS, and service observerability).

Design-time governance in microservices is mostly a decentralized process where
each service owner is given the freedom to design, develop, and run their services. Then
they can use the right tool for the job, rather than standardize on a single technology
platform. However, we should define some common standards that are applicable across
the organization (for example, irrespective of the development language, all code should
go through a review process and automatically be merged into the mainline).

The runtime governance aspect of microservices is implemented at various levels
and often we don't call it runtime governance in a microservices context (service registry
and discovery is one such popular concept that is extremely useful in a microservices
architecture). So, rather than learn about these concepts as a set of discrete concepts, it’s
easier to understand them if we look at the runtime-governance perspective.

Runtime governance is absolutely critical in the microservices architecture (it is
even more important than SOA runtime governance), simply because of the number of
microservices that we have to deal with. The implementation of runtime governance is
often done as a centralized component. For example, suppose that we need to discover
service endpoints and metadata in our online retail application scenario. Then all
the services have to call a centralized registry service (which can have its own scaling
capabilities, yet a logically centralized component). Similarly, if we want to apply QoS
(quality of service) enforcements such as security, by throttling centrally, we need a
central place such as an API Manager/gateway to do that. In fact, some of the runtime
governance aspects are implemented at the API gateway layer too.

We'll look at microservices governance aspects in detail in Chapter 6, “Microservices
Governance” and API Management in Chapter 10, “APIs, Events and Streams’”.

Observability

Service observability can be considered a combination of monitoring, distributed
logging, distributed tracing, and visualization of a service’s runtime behavior and
dependencies. Hence observability can be also considered part of runtime governance.
With the proliferation of fine-grained services, the ability to observe the runtime
behavior of a service is absolutely critical. Observability components are often a
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