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PREFACE

I WAS WONDERING how to start this preface, and it occurred to me that writing
one is backwards. After all, this is the text before the book, but you write it after
the book is finished. I suppose that is analogous to how we have written software
for a long time. We figure out what it is we are trying to do usually though creating
systems that do what we think we want them to do; then we go back and write the
documentation about what the system actually does.

This book, in large part, is aimed at helping to make that a more harmonious
effort. Technology is moving so fast now that often we find ourselves trying to create
mobile apps and services in a very reactionary manner. We tend to be on the back
foot and playing catch up most of the time. If we could just take the time to sharpen
the proverbial axe, we’d be able to get more accomplished, faster, with a lot less
hair pulling.

I suppose over the past couple decades of doing this, I’ve seen that pattern time
and time again. But there are also some good habits and patterns that I’ve seen along
the way that in some respect were ahead of their time. Service-oriented architecture,
for example, was a great idea for connecting the myriad of systems we’ve had inside
organizations with simple, easy-to-use interfaces. In fact, this tried-and-true pattern,
or collection of patterns if you will, is more relevant today in our commodity cloud
computing, mobile app world than ever before.

This book is designed to provide some high level architectural guidance on
how to design modern mobile apps and services so that they can adapt as technol-
ogy inevitably changes. Of course, we start off with a brief history of our mobile
computing explosion, and take a look at attempts to create cross platform apps and
technology stacks.

Then I want to introduce what hopefully has become an obvious application
stack. While we have been fairly fixated on a N-tier stack, where N usually equaled
three, to truly futureproof our architectures, we really need two more clearly defined
layers to provide us an abstraction boundary which insulates our code from changes in
external client technology, as well as the rapidly changing data storage technologies
we use today.

Once we have our layers sorted out, we’ll have a look at various patterns of
application development and how they apply to this layering system to create perfor-
mant and resilient services for making powerful mobile applications.

I hope that you find this guidance useful. Perhaps it will make you think of
things in ways you hadn’t before, or validate thinking you’ve already implemented.
In any case, I hope it prevents you from having to operate in a reactionary manner to
the rapid changes of our modern computing world and lets you get on the front foot

xv



xvi PREFACE

so you can focus on creating great apps and services instead of retooling everything
because a new phone hit the market.

Target Audience

This book is for anyone who is responsible for the design, architecture, and devel-
opment of modern mobile apps and the services that support them. I’ve written this
book with futureproofing in mind. Ideally, the architectures and patterns in this book
will provide you with an approach that will futureproof your designs.

By following this guidance, you should be able to create mobile app services
that you can adapt, modify, update, change, or integrate without disrupting your
mobile apps, or your teams. You should be able to deploy new services, change
existing services, and add new client apps all without disturbing any of the running
systems.

Most of all, you should be able to adapt services and apps based on this
guidance to any new mobile platform that comes along. This will greatly increase
your code reuse, make your teams much more efficient, and make your organization
adaptable to the ever-changing mobile app landscape.
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CHAPTER 1
THE MOBILE LANDSCAPE

1.1 INTRODUCTION

When the idea of reaching people first struck home in the dark ages, we wanted to
find ways for people to use and pay for our services. We had to find a way to let
people know these services existed. In early days there were town criers, then during
the industrial revolution when we could reproduce and distribute text to a largely
literate audience, we had broadsheets. Then came the catalogue where mercantile
companies would list their wares for sale. Once we heard the first radio waves, one
of the first things they did was to sell advertising on the radio. This graduated to
television advertising. Then along came the Internet. Everyone had to get themselves
a website and would put their website address in their print, radio, and TV ads. Along
came Facebook and everyone created a Facebook page for their companies.

Now, everyone wants to have an app for their customers to download. These
apps go with customers wherever they are and provide instant interaction between
consumer and supplier. We can push advertising into them, take orders through them,
keep in touch with friends and relatives, and of course play games, listen to music
and watch videos all in the palms of our hands. These experiences require devices,
operating systems, and apps, all of which require software companies, architects, and
developers to produce them. Unfortunately, these devices and operating systems often
change.

In today’s computing world, there is one thing you can be sure of; the leading
operating system (OS) platform will change. As recently as 7 years ago, Microsoft
Windows Mobile was the leading smartphone platform and tablet computers, while
mobile, were large and clunky and ran full versions of the Windows XP and Win-
dows 7 OS. Then came Blackberry which took a lot of market share from Windows
Mobile. But that only lasted until the iPhone came along in 2007 and we went from
a feature phone dominated world to a smartphone dominated one. This set a new
benchmark and became the leading mobile computing platform. In the same year,
the Open Handset Alliance re-released Linux-based Android-powered smartphones.
Then in 2010, Google launched its Android-based Nexus series of devices. By 2011,
Android-powered smartphones made up the majority of mobile OS-powered smart-
phones shooting past the iPhone.

While phones were taking off, in 2010 Apple released the iPad. Tablet com-
puting was not new and in fact Microsoft and its Original Equipment Manufacturers

Designing Platform Independent Mobile Apps and Services, First Edition. Rocky Heckman.
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2 CHAPTER 1 THE MOBILE LANDSCAPE

OEM partners had been trying to sell tablet computers since 2003. However, the
iPad’s sleek design brought tablet computing to the masses despite the clumsy and
restrictive iOS operating system. This opened up the tablet computing market which
Android was well suited for. After the iPad’s initial success, by 2013 Google’s
Android-powered tablets had overtaken iPads as the tablet of choice. Additionally,
although lagging considerably behind, Microsoft has re-created itself to make a
run in the mobile and tablet computer markets as well. With Microsoft’s massive
install base, and very large developer ecosystem, they are likely to challenge Apple
and Google in the mobile and tablet space eventually. With Windows 10 released
as a free upgrade for over 1.5 billion eligible devices [1], it is likely to be the most
common cross platform OS. That is, over half of Gartner’s predicted 2,419,864,000
devices shipped into the market in 2014 [2]. Overnight the app ecosystem market
leader could change again.

What this means for software developers, independent software vendors (ISVs),
hobbyist app developers, and online service providers is that every few years they will
have to retarget their efforts for a new platform, new development languages, new
development tools, new skills, and new ways of thinking. This is not an attractive
proposition for anyone. However, due to the success of the iPhone and iPad, software
developers were willing to re-skill and even purchase proprietary hardware just to be
able to develop applications for the new platforms. Then when Android devices sur-
passed the Apple devices, these same developers painfully went through the whole
process again. Developers were forced to maintain three or more separate and com-
plete codebases. This is the problem that Platform-Independent Delivery of Mobile
Apps and Services solves.

If you are not planning a platform-independent strategy, you will likely be an
ex-company in 3–5 years. Due to the rapid change of the consumer and enterprise
mobile computing landscape, software developers must be able to adapt to new plat-
forms, devices, and services before their competition. While cross-platform goes a
long way toward this goal, it is still cumbersome and tends to lag behind a more
platform-independent strategy. While it is not practical to get completely away from
device-specific app code, the more you can move off of the device and put into a
reusable back-end service, the less code you have to write and maintain when a new
OS version or a new platform comes along. In this book we will examine strategies
to do this, and provide future proof foundations to support changes in the computing
landscape down the road.

Disclaimer: This book was written in late 2014. Everything in it was accurate
at that time. If you are reading this in 2025, expect that a few things have changed.
Just keep this in mind as we go through this so I don’t have to keep writing “At the
time of this writing….”

1.2 PREVIOUS ATTEMPTS AT CROSS-PLATFORM

1.2.1 Java

“Write once, run everywhere” was a slogan developed by Sun Microsystems which
promised cross-platform capability for Java applications supported by Duke, Java’s
Mascot shown in Figure 1.1. This gained significant traction in the mid to late 1990s.
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Figure 1.1 Duke

In the beginning of this era, the promise seemed legitimate. You could write the Java
code once, package up your Java byte code in .jar files and run them on any system
that had the Java Virtual Machine (JVM) interpreter. It worked so well that there are
even C to Java compilers so your C applications can run with the same cross-platform
reach that Java had.

The promise was that you could write code like this:

class CrossPlatformApp {
public static void main(String[] args) {

System.out.println("I am omnipresent!");
// Display the string.

}
}

And it would run on every computer and device that ran Java without compiling mul-
tiple versions for each target device. All you had to do was make sure that the target
device had the correct version of the JVM installed on it.

This worked fine until various vendors started creating their own versions of
the JVM to run on their platforms. By 2014, more than 70 different JVMs [3] had
been created that could run Java applications, for the most part. The catch was that
they were each slightly different.

If we take the Sun JVM to be the standard, some of these other
JVMs were better, and most were worse, at interpreting Java byte code.
Some of them such as the IBM J9 (http://en.wikipedia.org/wiki/IBM_J9), the
Azul Zing JVM (http://en.wikipedia.org/wiki/Azul_Systems), and the Microsoft
JVM (http://en.wikipedia.org/wiki/Microsoft_Java_Virtual_Machine) were better

http://en.wikipedia.org/wiki/IBM_J9
http://en.wikipedia.org/wiki/Azul_Systems
http://en.wikipedia.org/wiki/Microsoft_Java_Virtual_Machine
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and faster than the original Sun JVM. They even went so far as to add extra features
and some constructs that were more familiar to traditional C/C++ programmers in
order to make the transition easier for them.

While this seemed fantastic at the time, because it meant every platform vendor
had a JVM to run Java, they weren’t all the same. So what may work on the Sun
JVM may not work on the Microsoft or IBM implementation. Even though some of
these implementations such as the 1998–1999 Microsoft JVM outperformed the Sun
version, they weren’t entirely compatible with the Java 1.1 standard. This lead to Sun
suing Microsoft and other JVM vendors in an attempt to try to defragment the Java
playing field. The result was these other vendors stopped supporting their proprietary
versions of the JVM and true high-performance, cross-platform capability for Java
applications started to deteriorate.

This is a trade-off that you see repeatedly in cross-platform development. There
has always been a compromise between running on many different devices, and get-
ting as close to the hardware as possible for fast execution. It’s the nature of comput-
ers. Each device may have slightly different hardware running the code. This means
that the operating system and CPU may understand different instructions on each
device. Java tried to solve this with the JVM. Different JVMs are written for the dif-
ferent environments, and they provide an abstraction layer between your Java code,
and the nuances of the underlying hardware. The problems arise when one JVM inter-
preted the incoming Java code slightly differently than the next one and the Java
dream becomes fragmented.

While Java is still widely used for applications, there are many versions of
it depending on what kind of applications you are writing. There are four primary
versions of Java that are supported by Sun.

� Java Card for smartcards.
� Java Platform, Micro Edition (Java ME) for low powered devices
� Java Platform, Standard Edition (Java SE) for standard desktop environments
� Java Platform, Enterprise Edition (Java EE) for large-scale distributed internal

enterprise applications

All of them require a very standards adherent JVM to be installed on the target
machine for them to run. Often the JVM can be packaged up with the application
deployment, but the dependence on the JVM and specific versions of the JVM have
made cross-platform Java apps troublesome. This is largely because you can never
be sure of the JVM on the target device.

This is a common issue with most interpreted languages such as Java, Python,
Ruby, .NET and any other language that is Just-In-Time compiled and run in a vir-
tual environment or through a code interpreter. These kinds of things also reduce
the speed of the applications because everything is interpreted on the fly and then
translated for the CPU rather than being compiled down into Assembly or CPU level
instructions which are executed by the CPU natively. This is why C and C++ and
similar languages are referred to as native languages.

So while Java was a very good attempt at write once run anywhere, it fell short
due to its dependency on the JVM. It still has a large install base and works very
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well in many web app scenarios. It is also the primary app development language
for Android-based devices which at the time of this writing was the world’s leading
mobile device operating system. Java can also be used to create apps for Apple’s
iOS-based devices through systems such as the Oracle ADF Mobile Solution [4, 5].
However, the vast majority of iOS targeted apps are written in Objective-C using
Apple’s Xcode environment. Due to the difficulty of developing with Objective-C,
Apple introduced a new language called Swift for the iOS platform to help combat the
hard translation form Java or C# for iOS developers and to improve the performance
over Objective-C apps. At the time of this writing, Java did not work on the Windows
Modern apps or Windows Phone platforms. Java does still work in the Windows Pro
full x86 environment.

Java is perhaps the closest the industry has come to write once run anywhere.
But it has been plagued by spotty JVM support, and a push toward more proprietary
development for iOS and Windows to get the speed and integration to a more seamless
state.

1.2.2 Early Web Apps

On August 6, 1991 the first website was created by Tim Berners-Lee at CERN
(http://info.cern.ch/hypertext/WWW/TheProject.html). Ever since then, we’ve been
pushing web browsers beyond their intended limits. From their humble beginnings
as static pages of information to the preeminent source of all information and social
interaction, websites and web apps have become ubiquitous in our connected world.
It was inevitable that web access from every computer would lead to web apps being
seen as the next great cross-platform play.

Web apps have been a popular attempt to run anywhere. All you need is a web
browser on whatever device you have and you can use web apps. Well, that’s the
idea anyway. In reality this proved much more difficult than anyone hoped. Prior
to HTML 5 you naturally had HTML 4. HTML 4 was still largely just a markup
language designed to handle content formatting. Web pages displayed in the browsers
were largely static text and images. Then early browsers such as Netscape and Internet
Explorer 3 incorporated a JVM to interpret the Java code in the web pages. Web server
software such as Apache and Internet Information Services could also run server-side
Java code and send the product of the code back to the browser as an HTML page.

This worked pretty well, up until Sun sued Microsoft and they stopped includ-
ing the Microsoft JVM with Internet Explorer. Since at the time it had become the
world’s most popular browser, that was a problem for Java-based web apps. It forced
users to manually install a JVM from Sun which was an extra step most people
weren’t overly fond of.

This resulted in some interesting changes. Netscape produced its own web pro-
gramming language called LiveScript in 1995, which it then changed the name to
JavaScript when it introduced Java support in Netscape 2 in 1996. Meanwhile in
the same year Microsoft produced Active Server Pages (ASP) and in an attempt to
get around the Java JVM problem, it also included VBScript for the coding portion
in ASP. JavaScript pretty much won the client-side scripting battle when Microsoft
included support for it in Internet Explorer 3 but had to call its version JScript.

http://info.cern.ch/hypertext/WWW/TheProject.html


6 CHAPTER 1 THE MOBILE LANDSCAPE

JavaScript became adopted as a standard known as ECMAScript which is in its fifth
edition (5.1) released in June 2011.

In order to do interesting things with web apps, we needed to do things that
HTML 4 simply couldn’t do on its own. So one of the first things that was built
into web browsers was a JavaScript interpreter. Now you could run scripts in web
pages that could do things like display today’s date, manipulate text in text boxes,
and rotate pictures. This was nice, but in the days of Mosaic/Mozilla, Netscape, and
Internet Explorer 3, it was really pushing the envelope.

To get a bit more out of the web apps, people started developing plugins for
web browsers for things like audio and video. Macromedia introduced Flash in 1996
and it opened up all kinds of new opportunities to do very advanced graphics in a web
browser through the Adobe Flash Player. By 2000, Flash was everywhere and even
used to produce some animated TV commercials and 2D programs [6]. Around the
same time in 2007, Microsoft introduced Silverlight which was a competing technol-
ogy to Flash and offered audio, video, and graphics for web apps.

At the time, HTML had been reduced down to something like the following:

<HTML>
<HEAD></HEAD>
<BODY>
…
</BODY>
</HTML>

Everything between the <BODY>…</BODY> tags were references to JavaScript
and plugins of some sort that offered extended capabilities that were not part of the
HTML4 specification. This included embedded audio, video, and pluggable content.

The core of the problem was that while HTML was an open standard that every-
one understood and agreed on, things like Silverlight and Flash were not. This lead
to controversy about its use and widespread adoption due to the dependency on pro-
prietary technologies. In fact David Meyer quoted Tristan Nitot of Mozilla as saying:

“You’re producing content for your users and there’s someone in the middle deciding
whether users should see your content,” [7]

This sentiment essentially created a mistrust of proprietary technologies that started
developers looking for standards bodies to create web standards that could fill the
voids that things like Silverlight and Flash handled.

Although these technologies are still prevalent today, they met with some resis-
tance in the mobile computing era. Some of it was due to Apple initially not allowing
Flash to operate on its iOS platform. While this was fixed by allowing Adobe AIR
apps to run on an iPhone which wrapped Flash content, it was enough for Adobe to re-
evaluate its position on Flash and to withdraw support for Flash on mobile devices in
2011 unless it is embedded in Adobe AIR applications. Instead, they plan to “aggres-
sively contribute to HTML5.” [8]


