

DESIGNING PLATFORM
INDEPENDENT MOBILE
APPS AND SERVICES

IEEE Press Editorial Board
Tariq Samad, Editor in Chief

George W. Arnold Xiaoou Li Ray Perez
Giancarlo Fortino Vladimir Lumelsky Linda Shafer
Dmitry Goldgof Pui-In Mak Zidong Wang
Ekram Hossain Jeffrey Nanzer MengChu Zhou

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

About IEEE Computer Society

IEEE Computer Society is the world’s leading computing membership organi-
zation and the trusted information and career-development source for a global
workforce of technology leaders including: professors, researchers, software
engineers, IT professionals, employers, and students. The unmatched source for
technology information, inspiration, and collaboration, the IEEE Computer Soci-
ety is the source that computing professionals trust to provide high-quality, state-
of-the-art information on an on-demand basis. The Computer Society provides a
wide range of forums for top minds to come together, including technical confer-
ences, publications, and a comprehensive digital library, unique training webinars,
professional training, and the TechLeader Training Partner Program to help orga-
nizations increase their staff’s technical knowledge and expertise, as well as the
personalized information tool myComputer. To find out more about the commu-
nity for technology leaders, visit http://www.computer.org.

IEEE/Wiley Partnership

The IEEE Computer Society and Wiley partnership allows the CS Press authored
book program to produce a number of exciting new titles in areas of computer
science, computing, and networking with a special focus on software engineering.
IEEE Computer Society members continue to receive a 15% discount on these
titles when purchased through Wiley or at wiley.com/ieeecs.

To submit questions about the program or send proposals, please contact Mary
Hatcher, Editor, Wiley-IEEE Press: Email: mhatcher@wiley.com, Telephone:
201-748-6903, John Wiley & Sons, Inc., 111 River Street, MS 8-01, Hoboken,
NJ 07030-5774.

http://www.computer.org
mailto:mhatcher@wiley.com

DESIGNING PLATFORM
INDEPENDENT MOBILE
APPS AND SERVICES

ROCKY HECKMAN

Cover image © gettyimages.com

Copyright © 2016 by the IEEE Computer Society, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Names: Heckman, Rocky, author.
Title: Designing platform independent mobile apps and services / Rocky

Heckman.
Description: Hoboken, New Jersey : John Wiley & Sons, Inc., [2016] | Includes

index.
Identifiers: LCCN 2016009419| ISBN 9781119060147 (cloth) | ISBN 9781119060185

(epub) | ISBN 9781119060154 (Adobe PDF)
Subjects: LCSH: Mobile computing. | Cell phones–Programming. | Mobile apps.
Classification: LCC QA76.59 .H43 2016 | DDC 005.25–dc23 LC record available at
https://lccn.loc.gov/2016009419

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com
https://lccn.loc.gov/2016009419

Thank you to all my friends who finally convinced me to write a book.
Most of all, thank you to my wife Stefanie, and my two beautiful girls
Elyssia and Keiralli for not only pushing me to finish, but putting up

with all the time I spent doing it. I love you all very much.
Look Dad, I did it!

TABLE OF CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xiii

PREFACE xv

ACKNOWLEDGMENTS xvii

CHAPTER 1 THE MOBILE LANDSCAPE 1

1.1 Introduction 1

1.2 Previous Attempts at Cross-Platform 2

1.2.1 Java 2

1.2.2 Early Web Apps 5

1.2.3 Multiple Codebases 7

1.3 Breadth Versus Depth 9

1.4 The Multi-Platform Targets 10

1.4.1 Traditional 10

1.4.2 Mobile 11

1.4.3 Wearables 12

1.4.4 Embedded 13

CHAPTER 2 PLATFORM-INDEPENDENT DEVELOPMENT TECHNOLOGIES 15

The Golden Rule 15

2.1 Vendor Lock-In 16

2.2 Recommended Standards and Guidelines 18

2.2.1 Respecting the Device 18

2.2.2 Respecting the Network 19

2.2.3 Communication Protocols 21

2.2.4 Data Formats 31

2.2.5 Mobile User Experience Guidelines 40

2.2.6 Authentication 45

2.2.7 Dealing with Offline and Partially Connected Devices 47

2.3 Wrapping Up 63

CHAPTER 3 PLATFORM-INDEPENDENT DEVELOPMENT STRATEGY 64

3.1 High-Level App Development Flow 64

3.2 Five-Layer Architecture 65

3.3 Five-Layer Architecture Detail 66

3.3.1 The User Interface Layer 66

3.3.2 The Service Interface Layer 68

vii

viii CONTENTS

3.3.3 The Service Layer 69

3.3.4 The Data Abstraction Layer 70

3.3.5 The Data Layer 70

CHAPTER 4 THE USER INTERFACE LAYER 72

4.1 Porting Versus Wrapping 72

4.2 Multi-Client Development Tools 73

4.2.1 PhoneGap (http://phonegap.com/) 73

4.2.2 Xamarin (http://xamarin.com/) 74

4.2.3 Unity (http://www.unity3d.com) 75

4.2.4 Visual Studio 76

4.3 Cross-Platform Languages 76

4.4 Avoid Writing for the Least Common Denominator 77

4.5 Wrapping Up 78

CHAPTER 5 THE SERVICE INTERFACE LAYER 79

5.1 Message Processing 79

5.1.1 Push versus Pull 80

5.1.2 Partially Connected Scenarios 81

5.2 Message Processing Patterns 82

5.3 High-Volume Messaging Patterns 85

5.3.1 Queue Services and Microsoft Azure Event Hubs 86

5.3.2 Web Sockets 89

5.4 High-Volume Push Notifications 91

5.4.1 Third Party Notification Hubs 93

5.5 Message Translation and Routing 97

5.5.1 Message Translation 97

5.5.2 Message Routing 103

5.5.3 Handling Large Amounts of Data 108

5.6 Wrapping Up 111

CHAPTER 6 THE SERVICE LAYER 114

6.1 Thinking in Nodes 114

6.1.1 Scale Out and Scale Up 114

6.1.2 Scale Out versus Scale Up 114

6.2 Planning for Horizontal Scaling 117

6.2.1 Node Sizing 117

6.2.2 Statelessness 120

6.3 Designing Service Layers for Mobile Computing 121

6.3.1 Service Componentization 122

6.4 Implementation Abstraction 124

6.4.1 Service Interface Abstraction 124

6.5 Using CQRS/ES for Service Implementation 127

6.5.1 CQRS Overview 127

6.5.2 Why CQRS 129

6.5.3 Being Able to Separate Data Models 129

6.5.4 Aggregates and Bounded Contexts 131

http://phonegap.com/
http://xamarin.com/
http://www.unity3d.com

CONTENTS ix

6.5.5 The Read and Write Sides 132

6.5.6 CQRS Communications 132

6.6 Side by Side Multi-Versioning 140

6.7 Service Agility 141

6.8 Consumer, Business, and Partner Services 141

6.9 Portable and Modular Service Architectures 142

6.9.1 Designing Pluggable Services 145

6.9.2 Swapping Services 147

6.9.3 Deployment and Hosting Strategies 151

6.10 Wrapping up 152

CHAPTER 7 THE DATA ABSTRACTION LAYER 154

7.1 Objects to Data 154

7.2 Using the DAL with External Services 157

7.3 Components of a DAL 159

7.3.1 Data Mapper 160

7.3.2 Query Mapper 161

7.3.3 Repository 166

7.3.4 Serializers 168

7.3.5 Storage Consideration 169

7.3.6 Cache 172

7.4 Wrapping Up 174

CHAPTER 8 THE DATA LAYER 176

8.1 Overview 177

8.2 Business Rules in the Data Layer 178

8.3 Relational Databases 178

8.4 NoSQL Databases 181

8.4.1 Key Value Database 183

8.4.2 Document Database 186

8.4.3 Column Family Databases 189

8.4.4 Graph Database 194

8.4.5 How to Choose? 197

8.5 File Storage 197

8.6 Blended Approach 200

8.6.1 The Polyglot Data Layer 201

8.7 Wrapping up 203

CHAPTER 9 STRATEGIES FOR ONGOING IMPROVEMENT 204

9.1 Feature Expansion 204

9.1.1 User Interface 206

9.1.2 Service Interface Layer 206

9.1.3 Service Layer 206

9.1.4 Data Abstraction Layer 206

9.1.5 Data Layer 207

9.2 Data Collection Matters 207

9.3 Multi-Versioning 209

x CONTENTS

9.4 Version Retirement 212

9.4.1 Scale Back 214

9.5 Client Upgrades 216

9.6 Wrapping Up 220

CHAPTER 10 CONCLUSION 221

REFERENCES 225

INDEX 229

LIST OF FIGURES

1.1 Duke 3

1.2 Breadth versus Depth 9

1.3 Excel Online https://office.live.com/start/excel.aspx 10

2.1 SOAP Message Format 28

2.2 User Satisfaction versus Response Time 41

2.3 System Unreachable 56

2.4 Hash-Based Dupe Message Detection 59

3.1 High Level App Flow 65

3.2 Five Layer Architecture 66

3.3 Service Interface Layer Routing 68

5.1 Many to One Pull Message Queue 83

5.2 Point to Point Channel 84

5.3 One to Many Publish/Subscribe Message Queue 84

5.4 One to Many Push Message Queue 85

5.5 Event Hub Offsets 89

5.6 Multiple Proprietary Push Notification Services 92

5.7 Using a SaaS PNS 95

5.8 SaaS PNS Routed Through TFS 96

5.9 Message Translation Chaining 100

5.10 Content Enricher Pattern 101

5.11 Content Filter Pattern 102

5.12 Claim Check Pattern 103

5.13 Service Bus Relay with Outbound Service Connections 106

5.14 Split Service Layer for Internal and External Hosting 107

5.15 Cloud Hosted SIL as a DMZ 109

5.16 Data at Rest on Premises 110

5.17 Components of the SIL 112

6.1 Compute Nodes 115

6.2 Cost Per User Comparison 118

6.3 Node Efficiency with User Growth 119

6.4 Monolithic Service Deployment 123

6.5 Componentized Service Deployment 123

6.6 Message Routing 125

6.7 Incorrect Service Deployment 126

6.8 Clients Grouped in UI Layer, Services Behind the SIL 127

6.9 CQRS 133

6.10 Tradeoff Triangle 136

6.11 CQRS Write Side 137

xi

https://office.live.com/start/excel.aspx

xii LIST OF FIGURES

6.12 Related Independent Services 144

6.13 Round Robin Load Balancing 148

6.14 Message Router Normal Configuration 149

6.15 Instance One Out of Rotation and Updated 150

6.16 Instance Two Out of Rotation and Updated 150

6.17 All Instances Updated 151

7.1 Typical Logical Interaction Flow 157

7.2 Physical Interaction Flow 158

7.3 Customer Class 162

7.4 QM Data Aggregation 165

7.5 Repository Over a Polyglot Data Layer 167

7.6 Polyglot Serialized Data 172

7.7 DAL Components 174

8.1 Basic Data Storage Mechanisms 177

8.2 CQRS/ES with a Single Relational Database 180

8.3 NameInfo and AddressInfo Families 193

8.4 Graph Database Sample 195

8.5 Data Layer Components 200

8.6 Polyglot Data Storage 201

9.1 Type One Cluster Distribution 215

9.2 Type Two Cluster Distribution 216

9.3 Type Three Cluster Distribution 217

10.1 The Five-Layer Mobile App Architecture 222

LIST OF TABLES

2.1 Serialized File Size Comparison 38

5.1 Push Notification Service Comparison 94

5.2 Translation Mapping Table 99

5.3 Message Translation Layers 99

6.1 Event Sources 135

7.1 Simple Metadata Mapping 164

7.2 Type and Property Metadata Mapping 164

8.1 Denormalized Address Table 178

8.2 Denormalized Phone Number Table 179

8.3 Normalized Address Table 179

8.4 Normalized Phone Number Table 179

8.5 Normalized User Info Table 179

8.6 Hashed Partition Key 183

8.7 KVDB Collisions 184

8.8 Single Document Links 189

8.9 Hierarchical Document Links 189

8.10 Normalized Address Table 190

8.11 Normalized Phone Number Table 190

8.12 Normalized User Info Table 190

8.13 Column Family Logical Structure 191

8.14 NameInfo Column Family 191

8.15 AddressInfo Column Family 192

8.16 PhoneInfo Column Family 192

8.17 NoSQL Choices 198

9.1 App Store Update Nuances 217

xiii

PREFACE

I WAS WONDERING how to start this preface, and it occurred to me that writing
one is backwards. After all, this is the text before the book, but you write it after
the book is finished. I suppose that is analogous to how we have written software
for a long time. We figure out what it is we are trying to do usually though creating
systems that do what we think we want them to do; then we go back and write the
documentation about what the system actually does.

This book, in large part, is aimed at helping to make that a more harmonious
effort. Technology is moving so fast now that often we find ourselves trying to create
mobile apps and services in a very reactionary manner. We tend to be on the back
foot and playing catch up most of the time. If we could just take the time to sharpen
the proverbial axe, we’d be able to get more accomplished, faster, with a lot less
hair pulling.

I suppose over the past couple decades of doing this, I’ve seen that pattern time
and time again. But there are also some good habits and patterns that I’ve seen along
the way that in some respect were ahead of their time. Service-oriented architecture,
for example, was a great idea for connecting the myriad of systems we’ve had inside
organizations with simple, easy-to-use interfaces. In fact, this tried-and-true pattern,
or collection of patterns if you will, is more relevant today in our commodity cloud
computing, mobile app world than ever before.

This book is designed to provide some high level architectural guidance on
how to design modern mobile apps and services so that they can adapt as technol-
ogy inevitably changes. Of course, we start off with a brief history of our mobile
computing explosion, and take a look at attempts to create cross platform apps and
technology stacks.

Then I want to introduce what hopefully has become an obvious application
stack. While we have been fairly fixated on a N-tier stack, where N usually equaled
three, to truly futureproof our architectures, we really need two more clearly defined
layers to provide us an abstraction boundary which insulates our code from changes in
external client technology, as well as the rapidly changing data storage technologies
we use today.

Once we have our layers sorted out, we’ll have a look at various patterns of
application development and how they apply to this layering system to create perfor-
mant and resilient services for making powerful mobile applications.

I hope that you find this guidance useful. Perhaps it will make you think of
things in ways you hadn’t before, or validate thinking you’ve already implemented.
In any case, I hope it prevents you from having to operate in a reactionary manner to
the rapid changes of our modern computing world and lets you get on the front foot

xv

xvi PREFACE

so you can focus on creating great apps and services instead of retooling everything
because a new phone hit the market.

Target Audience

This book is for anyone who is responsible for the design, architecture, and devel-
opment of modern mobile apps and the services that support them. I’ve written this
book with futureproofing in mind. Ideally, the architectures and patterns in this book
will provide you with an approach that will futureproof your designs.

By following this guidance, you should be able to create mobile app services
that you can adapt, modify, update, change, or integrate without disrupting your
mobile apps, or your teams. You should be able to deploy new services, change
existing services, and add new client apps all without disturbing any of the running
systems.

Most of all, you should be able to adapt services and apps based on this
guidance to any new mobile platform that comes along. This will greatly increase
your code reuse, make your teams much more efficient, and make your organization
adaptable to the ever-changing mobile app landscape.

ACKNOWLEDGMENTS

These kinds of things don’t happen without a lot of people in the background pushing,
pulling, helping, and sometimes simply nodding and smiling. I would like to thank
Chris Bright for encouraging me and allowing me the time to put this together. I’d
also like to thank Andrew Coates and Dave Glover for letting me harass them with
ideas, and “what if” questions all the time.

Most important of all, I need to thank my wife Stefanie Heckman, and my two
girls Elyssia and Keiralli. They not only encouraged me to finish, but were patient
with me, and gave me the time to keep typing away. I think, in the end, their love and
enthusiasm are what really got this book over the line. So if you like it, don’t forget
to thank them too.

xvii

CHAPTER 1
THE MOBILE LANDSCAPE

1.1 INTRODUCTION

When the idea of reaching people first struck home in the dark ages, we wanted to
find ways for people to use and pay for our services. We had to find a way to let
people know these services existed. In early days there were town criers, then during
the industrial revolution when we could reproduce and distribute text to a largely
literate audience, we had broadsheets. Then came the catalogue where mercantile
companies would list their wares for sale. Once we heard the first radio waves, one
of the first things they did was to sell advertising on the radio. This graduated to
television advertising. Then along came the Internet. Everyone had to get themselves
a website and would put their website address in their print, radio, and TV ads. Along
came Facebook and everyone created a Facebook page for their companies.

Now, everyone wants to have an app for their customers to download. These
apps go with customers wherever they are and provide instant interaction between
consumer and supplier. We can push advertising into them, take orders through them,
keep in touch with friends and relatives, and of course play games, listen to music
and watch videos all in the palms of our hands. These experiences require devices,
operating systems, and apps, all of which require software companies, architects, and
developers to produce them. Unfortunately, these devices and operating systems often
change.

In today’s computing world, there is one thing you can be sure of; the leading
operating system (OS) platform will change. As recently as 7 years ago, Microsoft
Windows Mobile was the leading smartphone platform and tablet computers, while
mobile, were large and clunky and ran full versions of the Windows XP and Win-
dows 7 OS. Then came Blackberry which took a lot of market share from Windows
Mobile. But that only lasted until the iPhone came along in 2007 and we went from
a feature phone dominated world to a smartphone dominated one. This set a new
benchmark and became the leading mobile computing platform. In the same year,
the Open Handset Alliance re-released Linux-based Android-powered smartphones.
Then in 2010, Google launched its Android-based Nexus series of devices. By 2011,
Android-powered smartphones made up the majority of mobile OS-powered smart-
phones shooting past the iPhone.

While phones were taking off, in 2010 Apple released the iPad. Tablet com-
puting was not new and in fact Microsoft and its Original Equipment Manufacturers

Designing Platform Independent Mobile Apps and Services, First Edition. Rocky Heckman.
© 2016 the IEEE Computer Society, Inc. Published 2016 by John Wiley & Sons, Inc.

1

2 CHAPTER 1 THE MOBILE LANDSCAPE

OEM partners had been trying to sell tablet computers since 2003. However, the
iPad’s sleek design brought tablet computing to the masses despite the clumsy and
restrictive iOS operating system. This opened up the tablet computing market which
Android was well suited for. After the iPad’s initial success, by 2013 Google’s
Android-powered tablets had overtaken iPads as the tablet of choice. Additionally,
although lagging considerably behind, Microsoft has re-created itself to make a
run in the mobile and tablet computer markets as well. With Microsoft’s massive
install base, and very large developer ecosystem, they are likely to challenge Apple
and Google in the mobile and tablet space eventually. With Windows 10 released
as a free upgrade for over 1.5 billion eligible devices [1], it is likely to be the most
common cross platform OS. That is, over half of Gartner’s predicted 2,419,864,000
devices shipped into the market in 2014 [2]. Overnight the app ecosystem market
leader could change again.

What this means for software developers, independent software vendors (ISVs),
hobbyist app developers, and online service providers is that every few years they will
have to retarget their efforts for a new platform, new development languages, new
development tools, new skills, and new ways of thinking. This is not an attractive
proposition for anyone. However, due to the success of the iPhone and iPad, software
developers were willing to re-skill and even purchase proprietary hardware just to be
able to develop applications for the new platforms. Then when Android devices sur-
passed the Apple devices, these same developers painfully went through the whole
process again. Developers were forced to maintain three or more separate and com-
plete codebases. This is the problem that Platform-Independent Delivery of Mobile
Apps and Services solves.

If you are not planning a platform-independent strategy, you will likely be an
ex-company in 3–5 years. Due to the rapid change of the consumer and enterprise
mobile computing landscape, software developers must be able to adapt to new plat-
forms, devices, and services before their competition. While cross-platform goes a
long way toward this goal, it is still cumbersome and tends to lag behind a more
platform-independent strategy. While it is not practical to get completely away from
device-specific app code, the more you can move off of the device and put into a
reusable back-end service, the less code you have to write and maintain when a new
OS version or a new platform comes along. In this book we will examine strategies
to do this, and provide future proof foundations to support changes in the computing
landscape down the road.

Disclaimer: This book was written in late 2014. Everything in it was accurate
at that time. If you are reading this in 2025, expect that a few things have changed.
Just keep this in mind as we go through this so I don’t have to keep writing “At the
time of this writing….”

1.2 PREVIOUS ATTEMPTS AT CROSS-PLATFORM

1.2.1 Java

“Write once, run everywhere” was a slogan developed by Sun Microsystems which
promised cross-platform capability for Java applications supported by Duke, Java’s
Mascot shown in Figure 1.1. This gained significant traction in the mid to late 1990s.

1.2 PREVIOUS ATTEMPTS AT CROSS-PLATFORM 3

Figure 1.1 Duke

In the beginning of this era, the promise seemed legitimate. You could write the Java
code once, package up your Java byte code in .jar files and run them on any system
that had the Java Virtual Machine (JVM) interpreter. It worked so well that there are
even C to Java compilers so your C applications can run with the same cross-platform
reach that Java had.

The promise was that you could write code like this:

class CrossPlatformApp {
public static void main(String[] args) {

System.out.println("I am omnipresent!");
// Display the string.

}
}

And it would run on every computer and device that ran Java without compiling mul-
tiple versions for each target device. All you had to do was make sure that the target
device had the correct version of the JVM installed on it.

This worked fine until various vendors started creating their own versions of
the JVM to run on their platforms. By 2014, more than 70 different JVMs [3] had
been created that could run Java applications, for the most part. The catch was that
they were each slightly different.

If we take the Sun JVM to be the standard, some of these other
JVMs were better, and most were worse, at interpreting Java byte code.
Some of them such as the IBM J9 (http://en.wikipedia.org/wiki/IBM_J9), the
Azul Zing JVM (http://en.wikipedia.org/wiki/Azul_Systems), and the Microsoft
JVM (http://en.wikipedia.org/wiki/Microsoft_Java_Virtual_Machine) were better

http://en.wikipedia.org/wiki/IBM_J9
http://en.wikipedia.org/wiki/Azul_Systems
http://en.wikipedia.org/wiki/Microsoft_Java_Virtual_Machine

4 CHAPTER 1 THE MOBILE LANDSCAPE

and faster than the original Sun JVM. They even went so far as to add extra features
and some constructs that were more familiar to traditional C/C++ programmers in
order to make the transition easier for them.

While this seemed fantastic at the time, because it meant every platform vendor
had a JVM to run Java, they weren’t all the same. So what may work on the Sun
JVM may not work on the Microsoft or IBM implementation. Even though some of
these implementations such as the 1998–1999 Microsoft JVM outperformed the Sun
version, they weren’t entirely compatible with the Java 1.1 standard. This lead to Sun
suing Microsoft and other JVM vendors in an attempt to try to defragment the Java
playing field. The result was these other vendors stopped supporting their proprietary
versions of the JVM and true high-performance, cross-platform capability for Java
applications started to deteriorate.

This is a trade-off that you see repeatedly in cross-platform development. There
has always been a compromise between running on many different devices, and get-
ting as close to the hardware as possible for fast execution. It’s the nature of comput-
ers. Each device may have slightly different hardware running the code. This means
that the operating system and CPU may understand different instructions on each
device. Java tried to solve this with the JVM. Different JVMs are written for the dif-
ferent environments, and they provide an abstraction layer between your Java code,
and the nuances of the underlying hardware. The problems arise when one JVM inter-
preted the incoming Java code slightly differently than the next one and the Java
dream becomes fragmented.

While Java is still widely used for applications, there are many versions of
it depending on what kind of applications you are writing. There are four primary
versions of Java that are supported by Sun.

� Java Card for smartcards.
� Java Platform, Micro Edition (Java ME) for low powered devices
� Java Platform, Standard Edition (Java SE) for standard desktop environments
� Java Platform, Enterprise Edition (Java EE) for large-scale distributed internal

enterprise applications

All of them require a very standards adherent JVM to be installed on the target
machine for them to run. Often the JVM can be packaged up with the application
deployment, but the dependence on the JVM and specific versions of the JVM have
made cross-platform Java apps troublesome. This is largely because you can never
be sure of the JVM on the target device.

This is a common issue with most interpreted languages such as Java, Python,
Ruby, .NET and any other language that is Just-In-Time compiled and run in a vir-
tual environment or through a code interpreter. These kinds of things also reduce
the speed of the applications because everything is interpreted on the fly and then
translated for the CPU rather than being compiled down into Assembly or CPU level
instructions which are executed by the CPU natively. This is why C and C++ and
similar languages are referred to as native languages.

So while Java was a very good attempt at write once run anywhere, it fell short
due to its dependency on the JVM. It still has a large install base and works very

1.2 PREVIOUS ATTEMPTS AT CROSS-PLATFORM 5

well in many web app scenarios. It is also the primary app development language
for Android-based devices which at the time of this writing was the world’s leading
mobile device operating system. Java can also be used to create apps for Apple’s
iOS-based devices through systems such as the Oracle ADF Mobile Solution [4, 5].
However, the vast majority of iOS targeted apps are written in Objective-C using
Apple’s Xcode environment. Due to the difficulty of developing with Objective-C,
Apple introduced a new language called Swift for the iOS platform to help combat the
hard translation form Java or C# for iOS developers and to improve the performance
over Objective-C apps. At the time of this writing, Java did not work on the Windows
Modern apps or Windows Phone platforms. Java does still work in the Windows Pro
full x86 environment.

Java is perhaps the closest the industry has come to write once run anywhere.
But it has been plagued by spotty JVM support, and a push toward more proprietary
development for iOS and Windows to get the speed and integration to a more seamless
state.

1.2.2 Early Web Apps

On August 6, 1991 the first website was created by Tim Berners-Lee at CERN
(http://info.cern.ch/hypertext/WWW/TheProject.html). Ever since then, we’ve been
pushing web browsers beyond their intended limits. From their humble beginnings
as static pages of information to the preeminent source of all information and social
interaction, websites and web apps have become ubiquitous in our connected world.
It was inevitable that web access from every computer would lead to web apps being
seen as the next great cross-platform play.

Web apps have been a popular attempt to run anywhere. All you need is a web
browser on whatever device you have and you can use web apps. Well, that’s the
idea anyway. In reality this proved much more difficult than anyone hoped. Prior
to HTML 5 you naturally had HTML 4. HTML 4 was still largely just a markup
language designed to handle content formatting. Web pages displayed in the browsers
were largely static text and images. Then early browsers such as Netscape and Internet
Explorer 3 incorporated a JVM to interpret the Java code in the web pages. Web server
software such as Apache and Internet Information Services could also run server-side
Java code and send the product of the code back to the browser as an HTML page.

This worked pretty well, up until Sun sued Microsoft and they stopped includ-
ing the Microsoft JVM with Internet Explorer. Since at the time it had become the
world’s most popular browser, that was a problem for Java-based web apps. It forced
users to manually install a JVM from Sun which was an extra step most people
weren’t overly fond of.

This resulted in some interesting changes. Netscape produced its own web pro-
gramming language called LiveScript in 1995, which it then changed the name to
JavaScript when it introduced Java support in Netscape 2 in 1996. Meanwhile in
the same year Microsoft produced Active Server Pages (ASP) and in an attempt to
get around the Java JVM problem, it also included VBScript for the coding portion
in ASP. JavaScript pretty much won the client-side scripting battle when Microsoft
included support for it in Internet Explorer 3 but had to call its version JScript.

http://info.cern.ch/hypertext/WWW/TheProject.html

6 CHAPTER 1 THE MOBILE LANDSCAPE

JavaScript became adopted as a standard known as ECMAScript which is in its fifth
edition (5.1) released in June 2011.

In order to do interesting things with web apps, we needed to do things that
HTML 4 simply couldn’t do on its own. So one of the first things that was built
into web browsers was a JavaScript interpreter. Now you could run scripts in web
pages that could do things like display today’s date, manipulate text in text boxes,
and rotate pictures. This was nice, but in the days of Mosaic/Mozilla, Netscape, and
Internet Explorer 3, it was really pushing the envelope.

To get a bit more out of the web apps, people started developing plugins for
web browsers for things like audio and video. Macromedia introduced Flash in 1996
and it opened up all kinds of new opportunities to do very advanced graphics in a web
browser through the Adobe Flash Player. By 2000, Flash was everywhere and even
used to produce some animated TV commercials and 2D programs [6]. Around the
same time in 2007, Microsoft introduced Silverlight which was a competing technol-
ogy to Flash and offered audio, video, and graphics for web apps.

At the time, HTML had been reduced down to something like the following:

<HTML>
<HEAD></HEAD>
<BODY>
…
</BODY>
</HTML>

Everything between the <BODY>…</BODY> tags were references to JavaScript
and plugins of some sort that offered extended capabilities that were not part of the
HTML4 specification. This included embedded audio, video, and pluggable content.

The core of the problem was that while HTML was an open standard that every-
one understood and agreed on, things like Silverlight and Flash were not. This lead
to controversy about its use and widespread adoption due to the dependency on pro-
prietary technologies. In fact David Meyer quoted Tristan Nitot of Mozilla as saying:

“You’re producing content for your users and there’s someone in the middle deciding
whether users should see your content,” [7]

This sentiment essentially created a mistrust of proprietary technologies that started
developers looking for standards bodies to create web standards that could fill the
voids that things like Silverlight and Flash handled.

Although these technologies are still prevalent today, they met with some resis-
tance in the mobile computing era. Some of it was due to Apple initially not allowing
Flash to operate on its iOS platform. While this was fixed by allowing Adobe AIR
apps to run on an iPhone which wrapped Flash content, it was enough for Adobe to re-
evaluate its position on Flash and to withdraw support for Flash on mobile devices in
2011 unless it is embedded in Adobe AIR applications. Instead, they plan to “aggres-
sively contribute to HTML5.” [8]

