

Zu diesem Buch – sowie zu vielen weiteren O’Reilly-Büchern –
können Sie auch das entsprechende E-Book im PDF-Format
herunterladen. Werden Sie dazu einfach Mitglied bei oreilly.plus :+

www.oreilly.plusPDF.

Papier

C# 7.0
kurz & gut

Joseph Albahari & Ben Albahari

Deutsche Übersetzung von
Lars Schulten & Thomas Demmig

Joseph Albahari und Ben Albahari

Lektorat: Alexandra Follenius
Übersetzung: Lars Schulten und Thomas Demmig
Korrektorat: Sibylle Feldmann, www.richtiger-text.de
Herstellung: Susanne Bröckelmann
Umschlaggestaltung: Karen Montgomery, Michael Oréal, www.oreal.de
Satz: III-Satz, www.drei-satz.de
Druck und Bindung: M.P. Media-Print Informationstechnologie GmbH, 33100 Paderborn

Bibliografische Information Der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.

ISBN:
Print 978-3-96009-072-4
PDF 978-3-96010-174-1
ePub 978-3-96010-175-8
mobi 978-3-96010-176-5

Dieses Buch erscheint in Kooperation mit O’Reilly Media, Inc. unter dem Imprint
»O’REILLY«. O’REILLY ist ein Markenzeichen und eine eingetragene Marke von O’Reilly
Media, Inc. und wird mit Einwilligung des Eigentümers verwendet.

5. Auflage
Copyright © 2018 dpunkt.verlag GmbH
Wieblinger Weg 17
69123 Heidelberg

Authorized German translation of the English edition of C# 7.0 Pocket Reference:
Instant Help for C# 7.0 Programmers, ISBN 978-1-491-98853-4 © 2017 Joseph Albahari,
Ben Albahari. This translation is published and sold by permission of O’Reilly Media, Inc.,
which owns or controls all rights to publish and sell the same.

Die vorliegende Publikation ist urheberrechtlich geschützt. Alle Rechte vorbehalten. Die
Verwendung der Texte und Abbildungen, auch auszugsweise, ist ohne die schriftliche
Zustimmung des Verlags urheberrechtswidrig und daher strafbar. Dies gilt insbesondere
für die Vervielfältigung, Übersetzung oder die Verwendung in elektronischen Systemen.

Es wird darauf hingewiesen, dass die im Buch verwendeten Soft- und Hardware-
Bezeichnungen sowie Markennamen und Produktbezeichnungen der jeweiligen Firmen
im Allgemeinen warenzeichen-, marken- oder patentrechtlichem Schutz unterliegen.

Die Informationen in diesem Buch wurden mit größter Sorgfalt erarbeitet. Dennoch
können Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und Übersetzer
übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell
verbliebene Fehler und deren Folgen.

5 4 3 2 1 0

| V

Inhalt

C# 7.0 – kurz & gut . 1

Ein erstes C#-Programm . 1
Syntax. 5
Typgrundlagen . 8
Numerische Typen. 17
Der Typ bool und die booleschen Operatoren . 25
Strings und Zeichen . 27
Arrays . 31
Variablen und Parameter . 36
Ausdrücke und Operatoren . 44
Null-Operatoren . 49
Anweisungen. 51
Namensräume . 60
Klassen . 64
Vererbung . 79
Der Typ object . 88
Structs. 93
Zugriffsmodifikatoren. 94
Interfaces . 95
Enums. 99
Eingebettete Typen. 102
Generics . 102
Delegates . 111
Events . 118
Lambda-Ausdrücke . 124
Anonyme Methoden . 128

VI | Inhalt

try-Anweisungen und Exceptions. 129
Enumeration und Iteratoren . 138
Nullbare Typen . 144
Erweiterungsmethoden. 149
Anonyme Typen . 151
Tupel (C# 7) . 152
LINQ . 154
Die dynamische Bindung . 179
Überladen von Operatoren . 188
Attribute . 191
Aufrufer-Info-Attribute . 195
Asynchrone Funktionen . 196
Unsicherer Code und Zeiger . 206
Präprozessordirektiven . 210
XML-Dokumentation . 213

Index . 217

| 1

C# 7.0 – kurz & gut

C# ist eine allgemein anwendbare, typsichere, objektorientierte Pro-
grammiersprache, die die Produktivität des Programmierers erhöhen
soll. Zu diesem Zweck versucht die Sprache, die Balance zwischen
Einfachheit, Ausdrucksfähigkeit und Performance zu finden. Die
Sprache C# ist plattformneutral, wurde aber geschrieben, um gut
mit dem .NET Framework von Microsoft zusammenzuarbeiten. C#
7.0 ist auf das .NET Framework 4.6/4.7 ausgerichtet.

Die Programme und Codefragmente in diesem Buch
entsprechen denen aus den Kapiteln 2 und 4 von
C# 7.0 in a Nutshell und sind alle als interaktive Bei-
spiele in LINQPad verfügbar. Das Durcharbeiten der
Beispiele im Zusammenhang mit diesem Buch fördert
den Lernvorgang, da Sie bei der Bearbeitung der Bei-
spiele unmittelbar die Ergebnisse sehen können, ohne
dass Sie in Visual Studio dazu Projekte und Projekt-
mappen einrichten müssten.

Um die Beispiele herunterzuladen, klicken Sie in LINQ-
Pad auf den Samples-Tab und wählen dort Download
more samples. LINQPad ist kostenlos – Sie finden es
unter http://www.linqpad.net.

Ein erstes C#-Programm
Das hier ist ein Programm, das 12 mit 30 multipliziert und das
Ergebnis ausgibt (360). Der doppelte Schrägstrich (Slash) gibt an,
dass der Rest einer Zeile ein Kommentar ist.

2 | C# 7.0 – kurz & gut

using System; // Importiert den Namensraum

class Test // Klassendeklaration
{
static void Main() // Methodendeklaration
{
int x = 12 * 30; // Anweisung 1
Console.WriteLine (x); // Anweisung 2

} // Ende der Methode
} // Ende der Klasse

Im Kern dieses Programms gibt es zwei Anweisungen. In C# werden
Anweisungen nacheinander ausgeführt und jeweils durch ein Semi-
kolon abgeschlossen. Die erste Anweisung berechnet den Ausdruck
12 * 30 und speichert das Ergebnis in einer lokalen Variablen namens
x, die einen ganzzahligen Wert repräsentiert. Die zweite Anweisung
ruft die Methode WriteLine der Klasse Console auf, um die Variable x
in einem Textfenster auf dem Bildschirm auszugeben.

Eine Methode führt eine Aktion als Abfolge von Anweisungen aus,
die als Anweisungsblock bezeichnet wird – ein (geschweiftes) Klam-
mernpaar mit null oder mehr Anweisungen. Wir haben eine ein-
zelne Methode mit dem Namen Main definiert.

Das Schreiben von High-Level-Funktionen, die Low-Level-Funktio-
nen aufrufen, vereinfacht ein Programm. Wir können unser Pro-
gramm refaktorieren, indem wir eine wiederverwendbare Methode
schreiben, die einen Integer-Wert mit 12 multipliziert:

using System;

class Test
{
static void Main()
{
Console.WriteLine (FeetToInches (30)); // 360
Console.WriteLine (FeetToInches (100)); // 1200

}

static int FeetToInches (int feet)
{
int inches = feet * 12;
return inches;

}
}

Ein erstes C#-Programm | 3

Eine Methode kann Eingabedaten vom Aufrufenden erhalten,
indem sie Parameter spezifiziert, und Daten zurück an den Aufru-
fenden geben, indem sie einen Rückgabetyp festlegt. Wir haben eine
Methode FeetToInches definiert, die einen Parameter für die Über-
gabe der Feet und einen Rückgabetyp für die berechneten Inches
hat.

Die Literale 30 und 100 sind die Argumente, die an die Methode
FeetToInches übergeben wurden. Die Methode Main hat in unserem
Beispiel leere Klammern, da sie keine Parameter besitzt, und sie ist
void, weil sie keinen Wert an den Aufrufenden zurückliefert. C#
erkennt eine Methode mit dem Namen Main als Angabe des Stan-
dardeinstiegspunkts für die Ausführung. Die Methode Main kann
optional einen Integer-Wert zurückgeben (statt void), um der Aus-
führungsumgebung einen Wert zu übermitteln. Sie kann auch opti-
onal ein Array mit Strings als Parameter erwarten (das dann durch
die Argumente gefüllt wird, die an die ausführbare Datei übergeben
werden). Hier sehen Sie ein Beispiel:

static int Main (string[] args) {...}

Ein Array (wie zum Beispiel string[]) steht für eine
feste Zahl an Elementen eines bestimmten Typs (siehe
den Abschnitt »Arrays« auf Seite 31).

Methoden sind eine der vielen Arten von Funktionen in C#. Eine
andere Art von Funktionen, die wir verwenden, ist der *-Operator,
der dazu dient, Multiplikationen auszuführen. Des Weiteren gibt es
noch Konstruktoren, Eigenschaften, Events, Indexer und Finalizer.

In unserem Beispiel sind die beiden Methoden in einer Klasse
zusammengefasst. Eine Klasse gruppiert Funktions-Member und
Daten-Member zu einem objektorientierten Building-Block. Die
Klasse Console fasst Member zusammen, die Funktionalität zur Ein-
und Ausgabe an der Befehlszeile bieten, zum Beispiel die Methode
WriteLine. Unsere Klasse Test fasst zwei Methoden zusammen –
Main und FeetToInches. Eine Klasse ist eine Art von Typ; das wird
später im Abschnitt »Typgrundlagen« auf Seite 8 genauer erläutert.

4 | C# 7.0 – kurz & gut

Auf der obersten Ebene eines Programms werden Typen in Namens-
räume eingeteilt. Die using-Direktive wird genutzt, um unserer
Anwendung den Namensraum System verfügbar zu machen, damit
sie die Klasse Console nutzen kann. Wir können alle von uns bislang
definierten Klassen folgendermaßen im TestPrograms-Namensraum
zusammenfassen:

using System;

namespace TestPrograms
{
class Test {...}
class Test2 {...}

}

Das .NET Framework ist in hierarchischen Namensräumen organi-
siert. Dazu gehört zum Beispiel der Namensraum, der die Typen für
den Umgang mit Text enthält:

using System.Text;

Die Direktive using dient der Bequemlichkeit – Sie können einen
Typ auch über seinen vollständig qualifizierten Namen ansprechen.
Das ist der Name des Typs, dem sein Namensraum vorangestellt
ist, zum Beispiel System.Text.StringBuilder.

Kompilation
Der C#-Compiler führt Quellcode, der in einer Reihe von Dateien
mit der Endung .cs untergebracht ist, in einer Assembly zusammen.
Eine Assembly ist die Verpackungs- und Auslieferungseinheit in
.NET und kann entweder eine Anwendung oder eine Bibliothek
sein. Eine normale Konsolen- oder Windows-Anwendung hat eine
Main-Methode und ist eine .exe-Datei. Eine Bibliothek ist eine .dll-
Datei – im Prinzip eine .exe-Datei ohne Einsprungpunkt. Ihr Zweck
ist es, von einer Anwendung oder anderen Bibliotheken aufgerufen
(referenziert) zu werden. Das .NET Framework ist eine Sammlung
von Bibliotheken.

Der Name des C#-Compilers ist csc.exe. Sie können entweder
eine integrierte Entwicklungsumgebung (Integrated Development
Environment, IDE) wie Visual Studio .NET nutzen, damit csc auto-

Syntax | 5

matisch aufgerufen wird, oder den Compiler selbst per Hand über
die Befehlszeile aufrufen. Um manuell zu kompilieren, speichern
Sie ein Programm zunächst in einer Datei wie MyFirstProgram.cs
und rufen dann csc auf (zu finden unter %ProgramFiles(X86)%\
msbuild\14.0\bin):

csc MyFirstProgram.cs

Das erstellt eine Anwendung namens MyFirstProgram.exe.

Eine Bibliothek (.dll) erstellen Sie mit der folgenden Anweisung:

csc /target:library MyFirstProgram.cs

Eigenartigerweise bringen die .NET Frameworks 4.6
und 4.7 den C# 5-Compiler mit. Um den C# 7-Be-
fehlszeilencompiler zu erhalten, müssen Sie Visual
Studio oder MSBuild 15 installieren.

Syntax
Die Syntax von C# ist von der Syntax von C und C++ inspiriert. In
diesem Abschnitt beschreiben wir die C#-Elemente der Syntax
anhand des folgenden Programms:

using System;

class Test
{
static void Main()
{
int x = 12 * 30;
Console.WriteLine (x);

}
}

Bezeichner und Schlüsselwörter
Bezeichner sind Namen, die Programmierer für ihre Klassen, Metho-
den, Variablen und so weiter wählen. Das hier sind die Bezeichner in
unserem Beispielprogramm in der Reihenfolge ihres Auftretens:

System Test Main x Console WriteLine

6 | C# 7.0 – kurz & gut

Ein Bezeichner muss ein ganzes Wort sein und aus Unicode-Zeichen
bestehen, wobei den Anfang ein Buchstabe oder der Unterstrich bil-
det. C#-Bezeichner unterscheiden Groß- und Kleinschreibung. Es ist
üblich, Argumente, lokale Variablen und private Felder in Camel-
Case zu schreiben (zum Beispiel myVariable) und alle anderen
Bezeichner in Pascal-Schreibweise (zum Beispiel MyMethod).

Schlüsselwörter sind Namen, die für den Compiler eine bestimmte
Bedeutung haben. Dies sind die Schlüsselwörter in unserem Bei-
spielprogramm:

using class static void int

Die meisten Schlüsselwörter sind für den Compiler reserviert, Sie
können sie nicht als Bezeichner verwenden. Hier ist eine vollstän-
dige Liste aller C#-Schlüsselwörter:

Konflikte vermeiden

Wenn Sie wirklich einen Bezeichner nutzen wollen, der mit einem
reservierten Schlüsselwort in Konflikt geraten würde, müssen Sie
ihn mit dem Präfix @ auszeichnen:

abstract
as
base
bool
break
byte
case
catch
char
checked
class
const
continue
decimal
default
delegate
do
double
else

enum
event
explicit
extern
false
finally
fixed
float
for
foreach
goto
if
implicit
in
int
interface
internal
is
lock

long
namespace
new
null
object
operator
out
override
params
private
protected
public
readonly
ref
return
sbyte
sealed
short
sizeof

stackalloc
static
string
struct
switch
this
throw
true
try
typeof
uint
ulong
unchecked
unsafe
ushort
using
virtual
void
while

Syntax | 7

class class {...} // illegal
class @class {...} // legal

Das Zeichen @ gehört nicht zum Bezeichner selbst, daher ist
@myVariable das Gleiche wie myVariable.

Kontextuelle Schlüsselwörter

Einige Schlüsselwörter sind kontextbezogen. Das heißt, sie können –
auch ohne ein vorangestelltes @-Zeichen – als Bezeichner eingesetzt
werden, und zwar folgende:

Bei den kontextabhängigen Schlüsselwörtern kann es innerhalb des
verwendeten Kontexts keine Mehrdeutigkeit geben.

Literale, Satzzeichen und Operatoren
Literale sind einfache Daten, die statisch im Programm verwendet
werden. Die Literale in unserem Beispielprogramm sind 12 und 30.
Satzzeichen helfen dabei, die Struktur des Programms abzugrenzen.
Das hier sind die Satzzeichen in unserem Beispielprogramm: {, }
und ;.

Die geschweiften Klammer gruppieren mehrere Anweisungen zu
einem Anweisungsblock. Das Semikolon beendet eine Anweisung
(die kein Block ist). Anweisungen können mehrere Zeilen über-
greifen:

Console.WriteLine
(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

Ein Operator verwandelt und kombiniert Ausdrücke. In C# werden
die meisten Operatoren mithilfe von Symbolen angezeigt, beispiels-

add
ascending
async
await
by
descending
dynamic

equals
from
get
global
group
in
into

join
let
nameof
on
orderby
partial
remove

select
set
value
var
when
where
yield

8 | C# 7.0 – kurz & gut

weise dem Multiplikationsoperator *. Die Operatoren in unserem
Programm sind folgende:

. () * =

Ein Punkt zeigt ein Member von etwas an (oder, in numerischen
Literalen, den Dezimaltrenner). Die Klammern werden in unserem
Beispiel genutzt, wenn eine Methode aufgerufen oder deklariert
wird; leere Klammern werden verwendet, wenn eine Methode keine
Argumente akzeptiert. Das Gleichheitszeichen führt eine Zuwei-
sung aus (ein doppeltes Gleichheitszeichen, ==, führt einen Ver-
gleich auf Gleichheit durch).

Kommentare
C# bietet zwei verschiedene Arten von Quellcodekommentaren:
einzeilige und mehrzeilige Kommentare. Ein einzeiliger Kommentar
beginnt mit zwei Schrägstrichen und geht bis zum Ende der aktuel-
len Zeile, zum Beispiel so:

int x = 3; // Kommentar zur Zuweisung von 3 an x

Ein mehrzeiliger Kommentar beginnt mit /* und endet mit */, zum
Beispiel so:

int x = 3; /* Das ist ein Kommentar, der
zwei Zeilen umspannt. */

Kommentare können in XML-Dokumentations-Tags (siehe »XML-
Dokumentation« auf Seite 213) eingebettet sein.

Typgrundlagen
Ein Typ definiert die Blaupause für einen Wert. In unserem Beispiel
haben wir zwei Literale des Typs int mit den Werten 12 und 30
genutzt. Wir haben außerdem eine Variable des Typs int dekla-
riert, deren Name x lautete.

Eine Variable zeigt einen Speicherort an, der mit der Zeit unter-
schiedliche Werte annehmen kann. Im Unterschied dazu repräsen-
tiert eine Konstante immer den gleichen Wert (mehr dazu später).

Typgrundlagen | 9

Alle Werte sind in C# Instanzen eines spezifischen Typs. Die
Bedeutung eines Werts und die Menge der möglichen Werte, die
eine Variable aufnehmen kann, wird durch seinen bzw. ihren Typ
bestimmt.

Vordefinierte Typen
Vordefinierte Typen (die auch als »eingebaute Typen« bezeichnet
werden), sind solche, die besonders vom Compiler unterstützt wer-
den. Der Typ int ist ein vordefinierter Typ, der die Menge der
Ganzzahlen darstellen kann, die in einen 32-Bit-Speicher passen –
von –231 bis 231–1. Wir können zum Beispiel arithmetische Funkti-
onen mit Instanzen des Typs int durchführen:

int x = 12 * 30;

Ein weiterer vordefinierter Typ in C# ist string. Der Typ string
repräsentiert eine Folge von Zeichen, zum Beispiel ».NET« oder
»http://oreilly.com«. Wir können Strings bearbeiten, indem wir
ihre Funktionen aufrufen:

string message = "Hallo Welt";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage); // HALLO WELT

int x = 2018;
message = message + x.ToString();
Console.WriteLine (message); // Hallo Welt2018

Der vordefinierte Typ bool hat genau zwei mögliche Werte: true
und false. bool wird häufig verwendet, um zusammen mit der if-
Anweisung Befehle nur bedingt ausführen zu lassen:

bool simpleVar = false;
if (simpleVar)
Console.WriteLine ("Das wird nicht ausgegeben");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
Console.WriteLine ("Das wird ausgegeben");

10 | C# 7.0 – kurz & gut

Der Namensraum System im .NET Framework ent-
hält viele wichtige Typen, die C# nicht vordefiniert
(zum Beispiel DateTime).

Benutzerdefinierte Typen
So , wie wir komplexe Funktionen aus einfachen Funktionen auf-
bauen können, können wir auch komplexe Typen aus primitiven
Typen aufbauen. In diesem Beispiel werden wir einen eigenen Typ
namens UnitConverter definieren – eine Klasse, die als Vorlage für
die Umwandlung von Einheiten dient:

using System;

public class UnitConverter
{
int ratio; // Feld

public UnitConverter (int unitRatio) // Konstruktor
{
ratio = unitRatio;

}

public int Convert (int unit) // Methode
{
return unit * ratio;

}
}

class Test
{
static void Main()
{
UnitConverter feetToInches = new UnitConverter(12);
UnitConverter milesToFeet = new UnitConverter(5280);

Console.Write (feetToInches.Convert(30)); // 360
Console.Write (feetToInches.Convert(100)); // 1200
Console.Write (feetToInches.Convert

(milesToFeet.Convert(1))); // 63360
}

}

Typgrundlagen | 11

Member eines Typs

Ein Typ enthält Daten-Member und Funktions-Member. Das Daten-
Member von UnitConverter ist das Feld mit dem Namen ratio. Die
Funktions-Member von UnitConverter sind die Methode Convert
und der Konstruktor von UnitConverter.

Symmetrie vordefinierter und benutzerdefinierter Typen

Das Schöne an C# ist, dass vordefinierte und selbst definierte Typen
nur wenige Unterschiede aufweisen. Der primitive Typ int dient als
Vorlage für Ganzzahlen (Integer). Er speichert Daten – 32 Bit – und
stellt Funktions-Member bereit, die diese Daten verwenden, zum
Beispiel ToString. Genauso dient unser selbst definierter Typ Unit-
Converter als Vorlage für die Einheitenumrechnung. Er enthält Daten
– das Verhältnis zwischen den Einheiten – und stellt Funktions-
Member bereit, die diese Daten nutzen.

Konstruktoren und Instanziierung

Daten werden erstellt, indem ein Typ instanziiert wird. Vordefi-
nierte Typen können einfach mit einem Literal wie 12 oder "Hallo
Welt" definiert werden.

Der new-Operator erstellt Instanzen von benutzerdefinierten Typen.
Wir haben unsere Main-Methode damit begonnen, dass wir zwei
Instanzen des Typs UnitConverter erstellten. Unmittelbar nachdem
der new-Operator ein Objekt instanziiert hat, wird der Konstruktor
des Objekts aufgerufen, um die Initialisierung durchzuführen. Ein
Konstruktur wird wie eine Methode definiert, aber der Methoden-
name und der Rückgabetyp werden auf den Namen des einschlie-
ßenden Typen reduziert:

public UnitConverter (int unitRatio) // Konstruktor
{
ratio = unitRatio;

}

Instanz-Member versus statische Member

Die Daten-Member und die Funktions-Member, die mit der Instanz
des Typs arbeiten, werden als Instanz-Member bezeichnet. Die

12 | C# 7.0 – kurz & gut

Methode Convert von UnitConverter und die Methode ToString von
int sind Beispiele für solche Instanz-Member. Standardmäßig sind
Member Instanz-Member.

Daten-Member und Funktions-Member, die nicht mit der Instanz
des Typs arbeiten, sondern mit dem Typ selbst, müssen als
static gekennzeichnet werden. Die Methoden Test.Main und
Console.WriteLine sind statische Methoden. Die Klasse Console
ist sogar eine statische Klasse, bei der alle Member statisch sind.
Man erzeugt nie tatsächlich Instanzen von Console – eine einzige
Konsole wird in der gesamten Anwendung verwendet.

Der Unterschied zwischen Instanz- und statischen Membern ist die-
ser: Im folgenden Beispielcode gehört das Instanz-Feld Name zu einer
Instanz eines bestimmten Panda, während Population zur Menge
aller Panda-Instanzen gehört:

public class Panda
{
public string Name; // Instanz-Feld
public static int Population; // statisches Feld

public Panda (string n) // Konstruktor
{
Name = n; // Instanz-Feld zuweisen
Population = Population+1; // statisches Feld erhöhen

}
}

Der nächste Code erzeugt zwei Instanzen von Panda und gibt ihre
Namen und dann die Gesamtpopulation aus:

Panda p1 = new Panda ("Pan Dee");
Panda p2 = new Panda ("Pan Dah");
Console.WriteLine (p1.Name); // Pan Dee
Console.WriteLine (p2.Name); // Pan Dah

Console.WriteLine (Panda.Population); // 2

Das Schlüsselwort public

Das Schlüsselwort public macht Member für andere Klassen zu-
gänglich. Wenn in diesem Beispiel das Feld Name in Panda nicht als
öffentlich markiert gewesen wäre, würde es sich um ein privates

Typgrundlagen | 13

Feld handeln, und die Klasse Test hätte es nicht ansprechen kön-
nen. Das »Öffentlichmachen« eines Members mit public lässt einen
Typ sagen: »Das hier will ich andere Typen sehen lassen – alles
andere sind meine privaten Implementierungsdetails.« In objekt-
orientierten Begriffen sagen wir, dass die öffentlichen Member die
privaten Member der Klasse kapseln.

Umwandlungen
C# kann Instanzen kompatibler Typen umwandeln. Eine Um-
wandlung erstellt immer einen neuen Wert für einen bestehenden
Wert. Umwandlungen können entweder implizit oder explizit sein.
Implizite Umwandlungen erfolgen automatisch, während explizite
Umwandlungen einen Cast erfordern. Im folgenden Beispiel kon-
vertieren wir implizit einen int in einen long (der doppelt so viel
Kapazität an Bits wie ein int bietet) und casten explizit einen int
auf einen short (der nur die halbe Bit-Kapazität eines int bietet):

int x = 12345; // int ist ein 32-Bit-Integer
long y = x; // implizite Umwandlung in einen 64-Bit-int
short z = (short)x; // explizite Umwandlung in einen 16-Bit-int

In der Regel sind implizite Umwandlungen dann zulässig, wenn der
Compiler garantieren kann, dass sie immer gelingen werden, ohne
dass dabei Informationen verloren gehen. Andernfalls müssen Sie
einen expliziten Cast nutzen, um die Umwandlung zwischen kom-
patiblen Typen durchzuführen.

Werttypen vs. Referenztypen
C#-Typen können in Werttypen und Referenztypen eingeteilt werden.

Werttypen enthalten die meisten eingebauten Typen (genauer ge-
sagt, alle numerischen Typen sowie die Typen char und bool), aber
auch selbst definierte struct- und enum-Typen. Referenztypen ent-
halten alle Klassen-, Array-, Delegate- und Interface-Typen.

Der prinzipielle Unterschied zwischen Werttypen und Referenz-
typen ist ihre Behandlung im Arbeitsspeicher.

14 | C# 7.0 – kurz & gut

Werttypen

Der Inhalt einer Werttyp-Variablen oder -Konstanten ist einfach ein
Wert. So besteht zum Beispiel der Inhalt des eingebauten Werttyps
int aus 32 Bit mit Daten.

Sie können einen selbst definierten Werttyp mithilfe des Schlüssel-
worts struct definieren (siehe Abbildung 1):

public struct Point { public int X, Y; }

Abbildung 1: Eine Werttyp-Instanz im Speicher

Das Zuweisen einer Werttyp-Instanz kopiert immer die Instanz:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1; // Zuweisung führt zum Kopieren

Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7

p1.X = 9; // ändert p1.X
Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 7

Abbildung 2 zeigt, dass p1 und p2 unabhängig voneinander gespei-
chert werden.

Abbildung 2: Eine Zuweisung kopiert eine Werttyp-Instanz.

Struct Point

Wert/Instanz
X

Y

p1

9

0

Struct Point

p2

7

0

Typgrundlagen | 15

Referenztypen

Ein Referenztyp ist komplexer als ein Werttyp. Er besteht aus
zwei Teilen: einem Objekt und der Referenz auf dieses Objekt. Der
Inhalt einer Referenztyp-Variablen oder -Konstanten ist eine Refe-
renz auf ein Objekt, das den Wert enthält. Hier ist der Typ Point
aus unserem vorigen Beispiel als Klasse umgeschrieben worden
(siehe Abbildung 3):

public class Point { public int X, Y; }

Abbildung 3: Ein Referenztyp im Speicher

Durch das Zuweisen einer Referenztyp-Variablen wird die Referenz
kopiert, nicht die Objektinstanz. Damit ist es möglich, mit mehre-
ren Variablen auf dasselbe Objekt zu verweisen – etwas, das mit
Werttypen normalerweise nicht geht. Wenn wir das vorige Beispiel
wiederholen, diesmal aber mit Point als Klasse, beeinflusst eine
Operation auf p1 auch p2:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1; // kopiert Referenz von p1

Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7

p1.X = 9; // ändert p1.X
Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 9

Wert/Instanz
X

Y

Objekt-
Metadaten

ObjektReferenz

Referenz

Klasse Point

16 | C# 7.0 – kurz & gut

Abbildung 4 zeigt, dass p1 und p2 zwei Referenzen sind, die auf das-
selbe Objekt verweisen.

Abbildung 4: Eine Zuweisung kopiert eine Referenz.

Null

Einer Referenz kann das Literal null zugewiesen werden, wodurch
ausgesagt wird, dass die Referenz auf kein Objekt zeigt – vorausge-
setzt, Point ist eine Klasse:

Point p = null;
Console.WriteLine (p == null); // True

Der Versuch, auf ein Member einer Null-Referenz zuzugreifen,
führt zu einem Laufzeitfehler:

Console.WriteLine (p.X); // NullReferenceException

Im Gegensatz dazu kann einem Werttyp auf normalem Weg kein
Null-Wert zugewiesen werden:

struct Point {...}
...
Point p = null; // Compilerfehler
int x = null; // Compilerfehler

C# bietet nullbare Typen an, mit denen Werttypen
auch Null-Werte repräsentieren können (siehe den
Abschnitt »Nullbare Typen« auf Seite 144).

9

0

Objekt-
Metadaten

p1

Referenz

Klasse Point

p2

Referenz

Numerische Typen | 17

Die Einteilung der vordefinierten Typen
Die vordefinierten Typen in C# sind folgende:

Werttypen

• Numerisch

– Ganzzahl mit Vorzeichen (sbyte, short, int, long)

– Ganzzahl ohne Vorzeichen (byte, ushort, uint, ulong)

– Reelle Zahl (float, double, decimal)

• Logisch (bool)

• Zeichen (char)

Referenztypen

• String (string)

• Objekt (object)

Die vordefinierten Typen in C# sind Aliase für .NET Framework-
Typen aus dem Namensraum System. Zwischen den beiden folgen-
den Anweisungen gibt es nur syntaktische Unterschiede:

int i = 5;
System.Int32 i = 5;

Die vordefinierten Werttypen (mit Ausnahme von decimal) werden
in der Common Language Runtime (CLR) als elementare Typen
bezeichnet. Sie heißen so, weil sie im kompilierten Code direkt über
Anweisungen unterstützt werden, die üblicherweise auf eine unmit-
telbare Unterstützung durch den zugrunde liegenden Prozessor
zurückgehen.

Numerische Typen
C# bietet die folgenden vordefinierten numerischen Typen:

C#-Typ Systemtyp Suffix Breite Bereich

Ganzzahlig mit Vorzeichen

sbyte SByte 8 Bit –27 bis 27 – 1

short Int16 16 Bit –215 bis 215 – 1

18 | C# 7.0 – kurz & gut

Von den ganzzahligen Typen sind int und long Bürger erster Klasse
und werden von C# und der Runtime bevorzugt. Die anderen ganz-
zahligen Typen werden üblicherweise im Dienste der Interoperabi-
lität eingesetzt oder wenn eine effiziente Speicherplatznutzung
wichtig ist.

Von den reellen Zahltypen werden float und double auch als Gleit-
kommatypen bezeichnet und üblicherweise für wissenschaftliche
Berechnungen sowie im Grafikumfeld genutzt. Der Typ decimal
wird in der Regel für finanzmathematische Berechnungen verwen-
det, bei denen eine exakte Basis-10-Arithmetik und hohe Genauig-
keit erforderlich sind. (Technisch betrachtet, ist decimal ebenfalls
ein Gleitkommatyp, wird normalerweise aber nicht als solcher
bezeichnet.)

Numerische Literale
Ganzzahlliterale können mit der Dezimal- oder der Hexadezi-
malnotation dargestellt werden; die Hexadezimalnotation wird mit
dem Präfix 0x angezeigt (z. B. entspricht 0x7f dem Dezimalwert
127). Seit C# 7.0 können Sie auch das Präfix 0b für Binärliterale ein-

int Int32 32 Bit –231 bis 231 – 1

long Int64 L 64 Bit –263 bis 263 – 1

Ganzzahlig ohne Vorzeichen

byte Byte 8 Bit 0 bis 28 – 1

ushort UInt16 16 Bit 0 bis 216 – 1

uint UInt32 U 32 Bit 0 bis 232 – 1

ulong UInt64 UL 64 Bit 0 bis 264 – 1

Reell

float Single F 32 Bit ± (~10–45 bis 1038)

double Double D 64 Bit ± (~10–324 bis 10308)

decimal Decimal M 128 Bit ± (~10–28 bis 1028)

C#-Typ Systemtyp Suffix Breite Bereich

