O'REILLY"

kurz & gut

O'REILLYS TASCHEN-
BIBLIOTHEK

Joseph Albahari
Ben Albahari

Ubersetzung von
Lars Schulten und Thomas Demmig

Pa ier Zu diesem Buch — sowie zu vielen weiteren O'Reilly-Biichern —
konnen Sie auch das entsprechende E-Book im PDF-Format
p u.; herunterladen. Werden Sie dazu einfach Mitglied bei oreilly.plus™:

PD F. www.oreilly.plus

G#7.0

kurz & gut

Joseph Albahari & Ben Albahari

Deutsche Ubersetzung von
Lars Schulten & Thomas Demmig

Joseph Albahari und Ben Albahari

Lektorat: Alexandra Follenius

Ubersetzung: Lars Schulten und Thomas Demmig

Korrektorat: Sibylle Feldmann, www.richtiger-text.de

Herstellung: Susanne Brockelmann

Umschlaggestaltung: Karen Montgomery, Michael Oréal, www.oreal.de

Satz: I1I-Satz, www.drei-satz.de

Druck und Bindung: M.P. Media-Print Informationstechnologie GmbH, 33100 Paderborn

Bibliografische Information Der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet tiber

http://dnb.d-nb.de abrufbar.

ISBN:

Print 978-3-96009-072-4
PDF 978-3-96010-174-1
ePub 978-3-96010-175-8
mobi 978-3-96010-176-5

Dieses Buch erscheint in Kooperation mit O’Reilly Media, Inc. unter dem Imprint
»O’REILLY«. O’REILLY ist ein Markenzeichen und eine eingetragene Marke von O’Reilly
Media, Inc. und wird mit Einwilligung des Eigentiimers verwendet.

5. Auflage

Copyright © 2018 dpunkt.verlag GmbH
Wieblinger Weg 17

69123 Heidelberg

Authorized German translation of the English edition of C# 7.0 Pocket Reference:

Instant Help for C# 7.0 Programmers, ISBN 978-1-491-98853-4 © 2017 Joseph Albahari,
Ben Albahari. This translation is published and sold by permission of O’Reilly Media, Inc.,
which owns or controls all rights to publish and sell the same.

Die vorliegende Publikation ist urheberrechtlich geschiitzt. Alle Rechte vorbehalten. Die
Verwendung der Texte und Abbildungen, auch auszugsweise, ist ohne die schriftliche

Zustimmung des Verlags urheberrechtswidrig und daher strafbar. Dies gilt insbesondere
fir die Vervielfaltigung, Ubersetzung oder die Verwendung in elektronischen Systemen.

Es wird darauf hingewiesen, dass die im Buch verwendeten Soft- und Hardware-
Bezeichnungen sowie Markennamen und Produktbezeichnungen der jeweiligen Firmen
im Allgemeinen warenzeichen-, marken- oder patentrechtlichem Schutz unterliegen.

Die Informationen in diesem Buch wurden mit grofter Sorgfalt erarbeitet. Dennoch
konnen Fehler nicht vollstindig ausgeschlossen werden. Verlag, Autoren und Ubersetzer
iibernehmen keine juristische Verantwortung oder irgendeine Haftung fiir eventuell
verbliebene Fehler und deren Folgen.

543210

Inhalt

GHE7.0-Kurz&qut ..ooovviiiiiiii 1
Ein erstes CH-Programm.........oooiiiiiiiiii e 1
)11 5
Typgrundlagenooiiii 8
Numerische TYpen.veie et 17
Der Typ bool und die booleschen Operatoren 25
Stringsund Zeichen ... 27
ArTays .o 31
Variablen und Parameter...............ooiiiiiiiii 36
Ausdriicke und Operatorenvvvuvviiiiiiiiiiinnnns 44
NUI-0PEratorenuueeee e e e e e 49
ANWRISUNGEN. ...\ttt 51
NAMENSTAUME e 60
KIassen 64
Vererbung ... 79
DerTyp object .. .vve e 88
SHTUCES. oo 93
Zugriffsmodifikatoren.............. .. 9%
INterfacesoovei e 95
ENUMS. .o 99
Eingebettete Typen..........ooveriii e 102
O 1 1« S 102
DElBGAES . . v vttt m
EVeNES . oo 18
Lambda-Ausdriicke.ooiiiii 124
Anonyme Methoden.......... ..o 128

try-Anweisungen und Exceptions.coooiiiiiiiiiiiii e 129

Enumeration und Iteratoren. ..o 138
Nullbare Typenooveiiii i 144
Erweiterungsmethoden. ... 149
Anonyme Typenooeeni 151
TUpel (CH 7)o 152
LINQ . ettt 154
Die dynamische Bindung.............cooviiiiiiiiiiiiia 179
Uberladen von Operatorencocvvieiriiininannnn. 188
Attribute . ..o 191
Aufrufer-Info-Attribute ... 195
Asynchrone Funktionen............cooiiiiiiiiiiiiiii 196
Unsicherer Code und Zeigerovvvvvvrnriinniiiiiiiinnnnns 206
Praprozessordirektiven ... 210
XML-Dokumentationcoeiiiiiiiiiii 213
T G 217

Vi

| Inhalt

C#7.0 — kurz & gut

C# ist eine allgemein anwendbare, typsichere, objektorientierte Pro-
grammiersprache, die die Produktivitdt des Programmierers erhohen
soll. Zu diesem Zweck versucht die Sprache, die Balance zwischen
Einfachheit, Ausdrucksfihigkeit und Performance zu finden. Die
Sprache C# ist plattformneutral, wurde aber geschrieben, um gut
mit dem .NET Framework von Microsoft zusammenzuarbeiten. C#
7.0 ist auf das .NET Framework 4.6/4.7 ausgerichtet.

Die Programme und Codefragmente in diesem Buch
entsprechen denen aus den Kapiteln 2 und 4 von
C# 7.0 in a Nutshell und sind alle als interaktive Bei-
spiele in LINQPad verfiigbar. Das Durcharbeiten der
Beispiele im Zusammenhang mit diesem Buch férdert
den Lernvorgang, da Sie bei der Bearbeitung der Bei-
spiele unmittelbar die Ergebnisse sehen kénnen, ohne
dass Sie in Visual Studio dazu Projekte und Projekt-
mappen einrichten miissten.

Um die Beispiele herunterzuladen, klicken Sie in LINQ-
Pad auf den Samples-Tab und wihlen dort Download
more samples. LINQPad ist kostenlos — Sie finden es
unter hitp://www.lingpad.net.

Ein erstes C#-Programm

Das hier ist ein Programm, das 12 mit 30 multipliziert und das
Ergebnis ausgibt (360). Der doppelte Schrigstrich (Slash) gibt an,
dass der Rest einer Zeile ein Kommentar ist.

using System; // Importiert den Namensraum
class Test // Klassendeklaration
{
static void Main() // Methodendeklaration
{
int x = 12 * 30; // Anweisung 1
Console.WriteLine (x); // Anweisung 2
1 // Ende der Methode
} // Ende der Klasse

Im Kern dieses Programms gibt es zwei Anweisungen. In C# werden
Anweisungen nacheinander ausgefiihrt und jeweils durch ein Semi-
kolon abgeschlossen. Die erste Anweisung berechnet den Ausdruck
12 * 30 und speichert das Ergebnis in einer lokalen Variablen namens
x, die einen ganzzahligen Wert reprisentiert. Die zweite Anweisung
ruft die Methode Writeline der Klasse Console auf, um die Variable x
in einem Textfenster auf dem Bildschirm auszugeben.

Eine Methode fiihrt eine Aktion als Abfolge von Anweisungen aus,
die als Anweisungsblock bezeichnet wird — ein (geschweiftes) Klam-
mernpaar mit null oder mehr Anweisungen. Wir haben eine ein-
zelne Methode mit dem Namen Main definiert.

Das Schreiben von High-Level-Funktionen, die Low-Level-Funktio-
nen aufrufen, vereinfacht ein Programm. Wir kénnen unser Pro-
gramm refaktorieren, indem wir eine wiederverwendbare Methode
schreiben, die einen Integer-Wert mit 12 multipliziert:

using System;

class Test
{
static void Main()
{
Console.WriteLine (FeetToInches (30)); // 360
Console.WriteLine (FeetToInches (100)); // 1200

}

static int FeetToInches (int feet)
{
int inches = feet * 12;
return inches;
}
}

2 | C#7.0-kurz&qut

Eine Methode kann Eingabedaten vom Aufrufenden erhalten,
indem sie Parameter spezifiziert, und Daten zuriick an den Aufru-
fenden geben, indem sie einen Riickgabetyp festlegt. Wir haben eine
Methode FeetToInches definiert, die einen Parameter fiir die Uber-
gabe der Feet und einen Riickgabetyp fiir die berechneten Inches
hat.

Die Literale 30 und 100 sind die Argumente, die an die Methode
FeetToInches iibergeben wurden. Die Methode Main hat in unserem
Beispiel leere Klammern, da sie keine Parameter besitzt, und sie ist
void, weil sie keinen Wert an den Aufrufenden zuriickliefert. C#
erkennt eine Methode mit dem Namen Main als Angabe des Stan-
dardeinstiegspunkts fir die Ausfithrung. Die Methode Main kann
optional einen Integer-Wert zuriickgeben (statt void), um der Aus-
fihrungsumgebung einen Wert zu iibermitteln. Sie kann auch opti-
onal ein Array mit Strings als Parameter erwarten (das dann durch
die Argumente gefiillt wird, die an die ausfithrbare Datei tibergeben
werden). Hier sehen Sie ein Beispiel:

static int Main (string[] args) {...}

Ein Array (wie zum Beispiel string[]) steht fiir eine
feste Zahl an Elementen eines bestimmten Typs (siche
den Abschnitt »Arrays« auf Seite 31).

Methoden sind eine der vielen Arten von Funktionen in C#. Eine
andere Art von Funktionen, die wir verwenden, ist der *-Operator,
der dazu dient, Multiplikationen auszufiihren. Des Weiteren gibt es
noch Konstruktoren, Eigenschaften, Events, Indexer und Finalizer.

In unserem Beispiel sind die beiden Methoden in einer Klasse
zusammengefasst. Eine Klasse gruppiert Funktions-Member und
Daten-Member zu einem objektorientierten Building-Block. Die
Klasse Console fasst Member zusammen, die Funktionalitit zur Ein-
und Ausgabe an der Befehlszeile bieten, zum Beispiel die Methode
WritelLine. Unsere Klasse Test fasst zwei Methoden zusammen —
Main und FeetToInches. Eine Klasse ist eine Art von Typ; das wird
spéter im Abschnitt » Typgrundlagen« auf Seite 8 genauer erliutert.

Ein erstes C#-Programm | 3

Auf der obersten Ebene eines Programms werden Typen in Namens-
rdume eingeteilt. Die using-Direktive wird genutzt, um unserer
Anwendung den Namensraum System verfiigbar zu machen, damit
sie die Klasse Console nutzen kann. Wir konnen alle von uns bislang
definierten Klassen folgendermafRen im TestPrograms-Namensraum
zusammenfassen:

using System;

namespace TestPrograms

{
class Test {...}
class Test2 {...}

}

Das .NET Framework ist in hierarchischen Namensriumen organi-
siert. Dazu gehort zum Beispiel der Namensraum, der die Typen fiir
den Umgang mit Text enthilt:

using System.Text;

Die Direktive using dient der Bequemlichkeit — Sie kénnen einen
Typ auch iiber seinen vollstindig qualifizierten Namen ansprechen.
Das ist der Name des Typs, dem sein Namensraum vorangestellt
ist, zum Beispiel System.Text.StringBuilder.

Kompilation

Der C#-Compiler fithrt Quellcode, der in einer Reihe von Dateien
mit der Endung .cs untergebracht ist, in einer Assembly zusammen.
Eine Assembly ist die Verpackungs- und Auslieferungseinheit in
NET und kann entweder eine Anwendung oder eine Bibliothek
sein. Eine normale Konsolen- oder Windows-Anwendung hat eine
Main-Methode und ist eine .exe-Datei. Eine Bibliothek ist eine .dll-
Datei — im Prinzip eine .exe-Datei ohne Einsprungpunkt. Thr Zweck
ist es, von einer Anwendung oder anderen Bibliotheken aufgerufen
(referenziert) zu werden. Das .NET Framework ist eine Sammlung
von Bibliotheken.

Der Name des C#-Compilers ist csc.exe. Sie konnen entweder
eine integrierte Entwicklungsumgebung (Integrated Development
Environment, IDE) wie Visual Studio .NET nutzen, damit csc auto-

4 | C#7.0-kurz&qut

matisch aufgerufen wird, oder den Compiler selbst per Hand tiber
die Befehlszeile aufrufen. Um manuell zu kompilieren, speichern
Sie ein Programm zunichst in einer Datei wie MyFirstProgram.cs
und rufen dann csc auf (zu finden unter %ProgramFiles(X86)%\

msbuild\14.0\bin):
csc MyFirstProgram.cs
Das erstellt eine Anwendung namens MyFirstProgram.exe.
Eine Bibliothek (.dll) erstellen Sie mit der folgenden Anweisung:

csc /target:library MyFirstProgram.cs

Eigenartigerweise bringen die .NET Frameworks 4.6
und 4.7 den C# 5-Compiler mit. Um den C# 7-Be-
“ fehlszeilencompiler zu erhalten, miissen Sie Visual
\ Studio oder MSBuild 15 installieren.

Syntax

Die Syntax von C# ist von der Syntax von C und C++ inspiriert. In
diesem Abschnitt beschreiben wir die C#-Elemente der Syntax
anhand des folgenden Programms:

using System;
class Test

static void Main()
{
int x = 12 * 30;
Console.Writeline (x);
}
}

Bezeichner und Schliisselworter

Bezeichner sind Namen, die Programmierer fiir ihre Klassen, Metho-
den, Variablen und so weiter wihlen. Das hier sind die Bezeichner in
unserem Beispielprogramm in der Reihenfolge ihres Auftretens:

System Test Main x Console Writeline

Syntax | 5

Ein Bezeichner muss ein ganzes Wort sein und aus Unicode-Zeichen
bestehen, wobei den Anfang ein Buchstabe oder der Unterstrich bil-
det. C#-Bezeichner unterscheiden GroR- und Kleinschreibung. Es ist
iiblich, Argumente, lokale Variablen und private Felder in Camel-
Case zu schreiben (zum Beispiel myVariable) und alle anderen
Bezeichner in Pascal-Schreibweise (zum Beispiel MyMethod).

Schliisselworter sind Namen, die fiir den Compiler eine bestimmte
Bedeutung haben. Dies sind die Schliisselworter in unserem Bei-
spielprogramm:

using class static void int

Die meisten Schlisselworter sind fiir den Compiler reserviert, Sie
konnen sie nicht als Bezeichner verwenden. Hier ist eine vollstin-
dige Liste aller C#-Schliisselworter:

abstract enum long stackalloc
as event namespace static
base explicit new string
bool extern null struct
break false object switch
byte finally operator this
case fixed out throw
catch float override true
char for params try
checked foreach private typeof
class goto protected uint
const if public ulong
continue implicit readonly unchecked
decimal in ref unsafe
default int return ushort
delegate interface sbyte using
do internal sealed virtual
double is short void
else lock sizeof while
Konflikte vermeiden

Wenn Sie wirklich einen Bezeichner nutzen wollen, der mit einem
reservierten Schliisselwort in Konflikt geraten wiirde, miissen Sie
ihn mit dem Prifix @ auszeichnen:

6 | C#7.0-kurz&qut

class class {...} // illegal
class @class {...} // legal

Das Zeichen @ gehért nicht zum Bezeichner selbst, daher ist
@myVariable das Gleiche wie myvariable.
Kontextuelle Schliisselworter

Einige Schliisselworter sind kontextbezogen. Das heifit, sie konnen —
auch ohne ein vorangestelltes @-Zeichen — als Bezeichner eingesetzt
werden, und zwar folgende:

add equals join select
ascending from let set
async get nameof value
await global on var
by group orderby when
descending in partial where
dynamic into remove yield

Bei den kontextabhingigen Schliisselwértern kann es innerhalb des
verwendeten Kontexts keine Mehrdeutigkeit geben.

Literale, Satzzeichen und Operatoren

Literale sind einfache Daten, die statisch im Programm verwendet
werden. Die Literale in unserem Beispielprogramm sind 12 und 30.
Satzzeichen helfen dabei, die Struktur des Programms abzugrenzen.
Das hier sind die Satzzeichen in unserem Beispielprogramm: {, }
und ;.

Die geschweiften Klammer gruppieren mehrere Anweisungen zu
einem Anweisungsblock. Das Semikolon beendet eine Anweisung
(die kein Block ist). Anweisungen koénnen mehrere Zeilen iiber-
greifen:
Console.Writeline
(1+2+3+4+5+6+7+8+9+10);

Ein Operator verwandelt und kombiniert Ausdriicke. In C# werden
die meisten Operatoren mithilfe von Symbolen angezeigt, beispiels-

Syntax | 7

weise dem Multiplikationsoperator *. Die Operatoren in unserem
Programm sind folgende:

0 * -

Ein Punkt zeigt ein Member von etwas an (oder, in numerischen
Literalen, den Dezimaltrenner). Die Klammern werden in unserem
Beispiel genutzt, wenn eine Methode aufgerufen oder deklariert
wird; leere Klammern werden verwendet, wenn eine Methode keine
Argumente akzeptiert. Das Gleichheitszeichen fiihrt eine Zuwei-

sung aus (ein doppeltes Gleichheitszeichen, ==, fiithrt einen Ver-
gleich auf Gleichheit durch).

Kommentare

C# bietet zwei verschiedene Arten von Quellcodekommentaren:
einzeilige und mehrzeilige Kommentare. Ein einzeiliger Kommentar
beginnt mit zwei Schrigstrichen und geht bis zum Ende der aktuel-
len Zeile, zum Beispiel so:

int x = 3; // Kommentar zur Zuweisung von 3 an x
Ein mehrzeiliger Kommentar beginnt mit /* und endet mit */, zum
Beispiel so:

int x = 3; /* Das ist ein Kommentar, der
zwei Zeilen umspannt. */

Kommentare kénnen in XML-Dokumentations-Tags (sieche »XML-
Dokumentation« auf Seite 213) eingebettet sein.

Typgrundlagen

Ein Typ definiert die Blaupause fiir einen Wert. In unserem Beispiel
haben wir zwei Literale des Typs int mit den Werten 12 und 30
genutzt. Wir haben auRerdem eine Variable des Typs int dekla-
riert, deren Name x lautete.

Eine Variable zeigt einen Speicherort an, der mit der Zeit unter-
schiedliche Werte annehmen kann. Im Unterschied dazu reprisen-
tiert eine Konstante immer den gleichen Wert (mehr dazu spiter).

8 | C#7.0-kurz&qut

Alle Werte sind in C# Instanzen eines spezifischen Typs. Die
Bedeutung eines Werts und die Menge der méglichen Werte, die
eine Variable aufnehmen kann, wird durch seinen bzw. ihren Typ
bestimmit.

Vordefinierte Typen

Vordefinierte Typen (die auch als »eingebaute Typen« bezeichnet
werden), sind solche, die besonders vom Compiler unterstiitzt wer-
den. Der Typ int ist ein vordefinierter Typ, der die Menge der
Ganzzahlen darstellen kann, die in einen 32-Bit-Speicher passen —
von —23! bis 231-1. Wir kénnen zum Beispiel arithmetische Funkti-
onen mit Instanzen des Typs int durchfiithren:

int x = 12 * 30;

Ein weiterer vordefinierter Typ in C# ist string. Der Typ string
reprisentiert eine Folge von Zeichen, zum Beispiel ».NET« oder
»http://oreilly.com«. Wir kénnen Strings bearbeiten, indem wir
ihre Funktionen aufrufen:

string message = "Hallo Welt";
string upperMessage = message.ToUpper();

Console.Writeline (upperMessage); // HALLO WELT
int x = 2018;

message = message + x.ToString();

Console.WriteLine (message); // Hallo Welt2018

Der vordefinierte Typ bool hat genau zwei mdogliche Werte: true
und false. bool wird hiufig verwendet, um zusammen mit der if-
Anweisung Befehle nur bedingt ausfiithren zu lassen:

bool simpleVar = false;
if (simplevar)
Console.Writeline ("Das wird nicht ausgegeben");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
Console.WriteLine ("Das wird ausgegeben");

Typgrundlagen | 9

Der Namensraum System im .NET Framework ent-
hilt viele wichtige Typen, die C# nicht vordefiniert
(zum Beispiel DateTime).

Benutzerdefinierte Typen

So , wie wir komplexe Funktionen aus einfachen Funktionen auf-
bauen konnen, konnen wir auch komplexe Typen aus primitiven
Typen aufbauen. In diesem Beispiel werden wir einen eigenen Typ
namens UnitConverter definieren — eine Klasse, die als Vorlage fiir
die Umwandlung von Einheiten dient:

using System;

public class UnitConverter

{
int ratio; // Feld

public UnitConverter (int unitRatio) // Konstruktor

{
}

public int Convert (int unit) // Methode
{

}
}

ratio = unitRatio;

return unit * ratio;

class Test

static void Main()

{
UnitConverter feetToInches = new UnitConverter(12);
UnitConverter milesToFeet = new UnitConverter(5280);
Console.Write (feetToInches.Convert(30)); // 360
Console.Write (feetToInches.Convert(100)); // 1200
Console.Write (feetToInches.Convert

(milesToFeet.Convert(1))); // 63360
}
}

10 | C#7.0-kurz&gqut

Member eines Typs

Ein Typ enthilt Daten-Member und Funktions-Member. Das Daten-
Member von UnitConverter ist das Feld mit dem Namen ratio. Die
Funktions-Member von UnitConverter sind die Methode Convert
und der Konstruktor von UnitConverter.

Symmetrie vordefinierter und benutzerdefinierter Typen

Das Schone an C# ist, dass vordefinierte und selbst definierte Typen
nur wenige Unterschiede aufweisen. Der primitive Typ int dient als
Vorlage fiir Ganzzahlen (Integer). Er speichert Daten — 32 Bit — und
stellt Funktions-Member bereit, die diese Daten verwenden, zum
Beispiel ToString. Genauso dient unser selbst definierter Typ Unit-
Converter als Vorlage fiir die Einheitenumrechnung. Er enthilt Daten
— das Verhiltnis zwischen den Einheiten — und stellt Funktions-
Member bereit, die diese Daten nutzen.

Konstruktoren und Instanziierung

Daten werden erstellt, indem ein Typ instanziiert wird. Vordefi-
nierte Typen konnen einfach mit einem Literal wie 12 oder "Hallo
Welt" definiert werden.

Der new-Operator erstellt Instanzen von benutzerdefinierten Typen.
Wir haben unsere Main-Methode damit begonnen, dass wir zwei
Instanzen des Typs UnitConverter erstellten. Unmittelbar nachdem
der new-Operator ein Objekt instanziiert hat, wird der Konstruktor
des Objekts aufgerufen, um die Initialisierung durchzufithren. Ein
Konstruktur wird wie eine Methode definiert, aber der Methoden-
name und der Riickgabetyp werden auf den Namen des einschlie-
Renden Typen reduziert:

public UnitConverter (int unitRatio) // Konstruktor

{

ratio = unitRatio;

}

Instanz-Member versus statische Member

Die Daten-Member und die Funktions-Member, die mit der Instanz
des Typs arbeiten, werden als Instanz-Member bezeichnet. Die

Typgrundlagen | 11

Methode Convert von UnitConverter und die Methode ToString von
int sind Beispiele fuir solche Instanz-Member. StandardmiRig sind
Member Instanz-Member.

Daten-Member und Funktions-Member, die nicht mit der Instanz
des Typs arbeiten, sondern mit dem Typ selbst, miissen als
static gekennzeichnet werden. Die Methoden Test.Main und
Console.WritelLine sind statische Methoden. Die Klasse Console
ist sogar eine statische Klasse, bei der alle Member statisch sind.
Man erzeugt nie tatsidchlich Instanzen von Console — eine einzige
Konsole wird in der gesamten Anwendung verwendet.

Der Unterschied zwischen Instanz- und statischen Membern ist die-
ser: Im folgenden Beispielcode gehort das Instanz-Feld Name zu einer
Instanz eines bestimmten Panda, wihrend Population zur Menge
aller Panda-Instanzen gehort:

public class Panda

{
public string Name; // Instanz-Feld
public static int Population; // statisches Feld
public Panda (string n) // Konstruktor
{
Name = n; // Instanz-Feld zuweisen
Population = Population+1; // statisches Feld erhdhen
}
}

Der nichste Code erzeugt zwei Instanzen von Panda und gibt ihre
Namen und dann die Gesamtpopulation aus:

Panda p1 = new Panda ("Pan Dee");

Panda p2 = new Panda ("Pan Dah");

Console.WriteLine (p1.Name); // Pan Dee
Console.WriteLine (p2.Name); // Pan Dah

Console.WriteLine (Panda.Population); // 2

Das Schliisselwort public

Das Schliisselwort public macht Member fiir andere Klassen zu-
ginglich. Wenn in diesem Beispiel das Feld Name in Panda nicht als
offentlich markiert gewesen wire, wiirde es sich um ein privates

12 | C#7.0-kurz&gut

Feld handeln, und die Klasse Test hiitte es nicht ansprechen kén-
nen. Das »Offentlichmachen« eines Members mit public lisst einen
Typ sagen: »Das hier will ich andere Typen sehen lassen — alles
andere sind meine privaten Implementierungsdetails.« In objekt-
orientierten Begriffen sagen wir, dass die 6ffentlichen Member die
privaten Member der Klasse kapseln.

Umwandlungen

C# kann Instanzen kompatibler Typen umwandeln. Eine Um-
wandlung erstellt immer einen neuen Wert fiir einen bestehenden
Wert. Umwandlungen kénnen entweder implizit oder explizit sein.
Implizite Umwandlungen erfolgen automatisch, wihrend explizite
Umwandlungen einen Cast erfordern. Im folgenden Beispiel kon-
vertieren wir implizit einen int in einen long (der doppelt so viel
Kapazitit an Bits wie ein int bietet) und casten explizit einen int
auf einen short (der nur die halbe Bit-Kapazitit eines int bietet):

int x = 12345; // int ist ein 32-Bit-Integer

long y = x; // implizite Umwandlung in einen 64-Bit-int

short z = (short)x; // explizite Umwandlung in einen 16-Bit-int
In der Regel sind implizite Umwandlungen dann zulissig, wenn der
Compiler garantieren kann, dass sie immer gelingen werden, ohne
dass dabei Informationen verloren gehen. Andernfalls miissen Sie
einen expliziten Cast nutzen, um die Umwandlung zwischen kom-
patiblen Typen durchzufiihren.

Werttypen vs. Referenztypen
C#-Typen konnen in Werttypen und Referenztypen eingeteilt werden.

Werttypen enthalten die meisten eingebauten Typen (genauer ge-
sagt, alle numerischen Typen sowie die Typen char und bool), aber
auch selbst definierte struct- und enum-Typen. Referenztypen ent-
halten alle Klassen-, Array-, Delegate- und Interface-Typen.

Der prinzipielle Unterschied zwischen Werttypen und Referenz-
typen ist ihre Behandlung im Arbeitsspeicher.

Typgrundlagen | 13

Werttypen

Der Inhalt einer Werttyp-Variablen oder -Konstanten ist einfach ein
Wert. So besteht zum Beispiel der Inhalt des eingebauten Werttyps

int aus 32 Bit mit Daten.

Sie kénnen einen selbst definierten Werttyp mithilfe des Schliissel-
worts struct definieren (siehe Abbildung 1):

public struct Point { public int X, VY; }

Struct Point

I —’— Wert/Instanz

Abbildung 1: Eine Werttyp-Instanz im Speicher

Das Zuweisen einer Werttyp-Instanz kopiert immer die Instanz:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1;

Console.WriteLine (p1.X);
Console.WriteLine (p2.X);

p1.X = 9;
Console.WriteLine (p1.X);
Console.WriteLine (p2.X);

// Zuweisung fiihrt zum Kopieren

/17
i

// @andert p1.X
/79
/77

Abbildung 2 zeigt, dass p1 und p2 unabhingig voneinander gespei-

chert werden.

Struct Point
p1 p2
9 7
L. i S S .

Abbildung 2: Eine Zuweisung kopiert eine Werttyp-Instanz.

14 | 7.0-kurz&gut

Referenztypen

Ein Referenztyp ist komplexer als ein Werttyp. Er besteht aus
zwei Teilen: einem Objekt und der Referenz auf dieses Objekt. Der
Inhalt einer Referenztyp-Variablen oder -Konstanten ist eine Refe-
renz auf ein Objekt, das den Wert enthilt. Hier ist der Typ Point
aus unserem vorigen Beispiel als Klasse umgeschrieben worden
(siehe Abbildung 3):

public class Point { public int X, Y; }

Klasse Point
Referenz Objekt
Referenz E >
Objekt-

Metadaten
I K
..... Y- R Wert/Instanz

Abbildung 3: Ein Referenztyp im Speicher

Durch das Zuweisen einer Referenztyp-Variablen wird die Referenz
kopiert, nicht die Objektinstanz. Damit ist es moglich, mit mehre-
ren Variablen auf dasselbe Objekt zu verweisen — etwas, das mit
Werttypen normalerweise nicht geht. Wenn wir das vorige Beispiel
wiederholen, diesmal aber mit Point als Klasse, beeinflusst eine
Operation auf p1 auch p2:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1; // kopiert Referenz von p1

Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7

p1.X = 9; // @ndert p1.X
Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 9

Typgrundlagen | 15

Abbildung 4 zeigt, dass p1 und p2 zwei Referenzen sind, die auf das-
selbe Objekt verweisen.

Klasse Point
p1
Referenz Ii »>
Objekt-
Metadaten
7 9
;

Abbildung 4: Eine Zuweisung kopiert eine Referenz.

Null

Einer Referenz kann das Literal null zugewiesen werden, wodurch
ausgesagt wird, dass die Referenz auf kein Objekt zeigt — vorausge-
setzt, Point ist eine Klasse:

Point p = null;
Console.WriteLine (p == null); // True

Der Versuch, auf ein Member einer Null-Referenz zuzugreifen,
fithrt zu einem Laufzeitfehler:

Console.WriteLine (p.X); // NullReferenceException

Im Gegensatz dazu kann einem Werttyp auf normalem Weg kein
Null-Wert zugewiesen werden:

struct Point {...}

Point p = null; // Compilerfehler
int x = null; // Compilerfehler

C# bietet nullbare Typen an, mit denen Werttypen
auch Null-Werte reprisentieren konnen (siehe den
Abschnitt »Nullbare Typen« auf Seite 144).

16 | C#7.0-kurz&gut

Die Einteilung der vordefinierten Typen
Die vordefinierten Typen in C# sind folgende:
Werttypen

* Numerisch
— Ganzzahl mit Vorzeichen (sbyte, short, int, long)
— Ganzzahl ohne Vorzeichen (byte, ushort, uint, ulong)
— Reelle Zahl (float, double, decimal)
* Logisch (bool)
e Zeichen (char)
Referenztypen

* String (string)
* Objekt (object)

Die vordefinierten Typen in C# sind Aliase fir .NET Framework-
Typen aus dem Namensraum System. Zwischen den beiden folgen-

den Anweisungen gibt es nur syntaktische Unterschiede:

int i = 5;
System.Int32 i = 5;

Die vordefinierten Werttypen (mit Ausnahme von decimal) werden
in der Common Language Runtime (CLR) als elementare Typen
bezeichnet. Sie heiflen so, weil sie im kompilierten Code direkt tiber
Anweisungen unterstiitzt werden, die iiblicherweise auf eine unmit-
telbare Unterstiitzung durch den zugrunde liegenden Prozessor

zuriickgehen.

Numerische Typen

C# bietet die folgenden vordefinierten numerischen Typen:
Cit-Typ Systemtyp Suffix Breite Bereich
Ganzzahlig mit Vorzeichen
sbyte SByte 8 Bit =27bis2’ -1
short Int16 16 Bit =215 his 2151

Numerische Typen

17

Ci-Typ Systemtyp Suffix Breite Bereich

int Int32 32Bit =2Phis P11
long Int64 L 64 Bit —283bis 2% -1
Ganzzahlig ohne Vorzeichen

byte Byte 8 Bit 0bis 28 -1
ushort UInt16 16 Bit 0bis216 -1

uint UInt32 U 32Bit 0bis2%2-1
ulong UInt64 uL 64 Bit 0bis 264 -1

Reell

float Single F 32 Bit + (~107% bis 10%)
double Double D 64 Bit + (~107324 bis 10308)
decimal Decimal M 128 Bit + (~1072 bis 102)

Von den ganzzahligen Typen sind int und long Biirger erster Klasse
und werden von C# und der Runtime bevorzugt. Die anderen ganz-
zahligen Typen werden {iblicherweise im Dienste der Interoperabi-
litdt eingesetzt oder wenn eine effiziente Speicherplatznutzung
wichtig ist.

Von den reellen Zahltypen werden float und double auch als Gleit-
kommatypen bezeichnet und iiblicherweise fir wissenschaftliche
Berechnungen sowie im Grafikumfeld genutzt. Der Typ decimal
wird in der Regel fiir finanzmathematische Berechnungen verwen-
det, bei denen eine exakte Basis-10-Arithmetik und hohe Genauig-
keit erforderlich sind. (Technisch betrachtet, ist decimal ebenfalls
ein Gleitkommatyp, wird normalerweise aber nicht als solcher
bezeichnet.)

Numerische Literale

Gangzzahlliterale kénnen mit der Dezimal- oder der Hexadezi-
malnotation dargestellt werden; die Hexadezimalnotation wird mit
dem Prifix 0x angezeigt (z. B. entspricht ox7f dem Dezimalwert
127). Seit C# 7.0 koénnen Sie auch das Prifix ob fiir Binirliterale ein-

18 | C#7.0-kurz&gqut

