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Introduction

Modern formal logic surpasses in rigor, depth, and scope all that had previously been
done in logic, it’s said now.

But the limitations of modern formal logic are considerable and give the lie 
to that evaluation.  The analysis of arguments, explanations, causal reasoning, and
prescriptive reasoning—all part of the traditional scope of logic—depend on eval-
uating the strength of inferences, which is beyond modern formal methods that are
concerned with only validity.  Analyses of reasoning that depends on talk about 
mass or process lie outside the scope of modern formal logic, which is based on 
the assumption that the world is made up of things.

Even within the limits of the metaphysics and focus of modern formal logic,
there is much that lies outside the formal methods that have been developed.  This
series of volumes is meant to extend the scope of what we can formalize, and in 
doing so see the real limitations of what can be done.  Logic is presented as a tool 
to investigate the world through the medium and limitations of our language. 

In the first section here I set out the standard of modern formal logic: classical
predicate logic with equality.  This is only a sketch, drawing on the full development
in An Introduction to Formal Logic, which I refer to as Volume 0 of this series.
Those familiar with that book need read only Chapter 3, the aside on the language 
of predicate logic on p. 19, and Chapter 8.

In the second section I show how we can extend classical predicate logic to
formalize reasoning that involves adverbs and relative adjectives by viewing those 
as modifiers of simpler predicates.  What we previously took to be atomic predicates,
such as “barking loudly”, can then have internal structure.  Reasoning that involves
conjunctions of terms, as in “Tom and Dick lifted the table”, conjunctions of
modifiers, conjunctions of predicates, and disjunctions of predicates can also be
formalized by viewing them as part of the internal structure of atomic predicates.

The internal structure of names is the topic of the third and last section.  
Names for functions are used in classical predicate logic to form complex names,
such as “sin (x2)”, which is what I present first.  In our ordinary reasoning we use
descriptions to form functions, such as “the wife of”, and we use descriptions to
form names, such as “the cat that scratched Zoe”.  To reason with those we need to
take account of their internal structure, which we can do if we drop the assumption, 
basic to classical predicate logic, that every name must refer to a specific thing.
Then we can devise formal logics as a guide to reasoning with simple, atomic names
that do not refer.

The formal systems that are developed here are not just formalisms but are
meant to help us understand how to reason well.  Many worked examples show 
how we can use them.  They also uncover limitations of the formal work.  The 



analyses in the examples are tentative, presented with the hope of stimulating you to
deeper and clearer analyses.

The work here proceeds by abstracting and creating formal models to formalize
reasoning.  By paying attention to the process of abstracting we gain insight into why
we consider some reasoning to be good and some reasoning bad, and insight also
into the deeper assumptions we make about the world on which our judgments rely.
Questions about the metaphysics we assume for modern formal logic and the nature
of formalizing have to be faced, most particularly the assumption that the world is
made up of objects that we can name.  Again, I can present only tentative answers,
and often I can only pose a question about the relation of logic to language and how
we use both to investigate the world.  Some discussions are supplemented by my
other work, and books and papers that I cite without attribution are mine.  In the 
end I cannot tell you what is a thing.  I cannot tell you what pointing and naming are.
But by trying to clarify my ideas about things and naming I hope to lead you to
clarify your ideas, to help us find a common basis on which to build and use modern
formal logic.

The second volume of this series, Time and Space, is about how to extend
modern formal logic to formalize reasoning that takes account of time and space; 
an overview of it is presented in my “Reflections on Temporal and Modal Logic”.  
That volume shows in example after example that reasoning about process, mass,
and change is outside the scope of modern formal logic not because of our lack 
of inventiveness in devising better formal systems but because the metaphysics 
of viewing the world as made up of things cannot encompass a conception of the
world as made up of mass or process.  The third volume, The World as Process,
shows how we can talk and reason about the world as process, not just informally 
but with a rigorous formal system; an overview of that is presented in my “The
World as Process”.

Others use logic as a bulwark against the mysteries.  They build a wall within
which reason reigns and live within the cities built of logic.  I use logic as a way into
the mysteries, using reason where I can to lead me to the boundary beyond which
reason has no sway if we are to enter.  Logic is the path, not the end.  There is no end
but only a continual beginning.
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1 Propositions, Inferences, and Formal Logic

We would like rules to guide us in finding truths and, when that is not straight-
forward, to determine what follows from given assumptions: if this were true, then
that would follow.  To do this, we must agree on what it is that is true or false.
___________________________________________________________________

Proposition  A proposition is a written or uttered part of speech used in such a way
that it is true or false, but not both.
___________________________________________________________________

By “uttered” I include silent uttering to oneself, what we might call thinking of the
sentence.1

Some say that propositions are abstract objects or thoughts that can be shared
by all people and that what I have defined here are physical linguistic representatives
of propositions.  But those who hold such views reason using linguistic propositions,
which can serve as a common basis on which to begin our work, as I discuss in
Appendix 1.

Typically, we identify equiform words for our reasoning, where what we deem
to be equiform depends on the uses we are making of the words.  Similarly, we iden-
tify equiform propositions, though for those it is more difficult to be clear about what
is or is not important for reasoning. 
___________________________________________________________________

Words and propositions are types  Throughout any particular discussion equiform
words can be treated as the same for our reasoning.  We identify them and treat them
as if they were the same word.  Equiform propositions, too, will be identified and
treated as the same for our reasoning.  Briefly, a word or a proposition is a type.
___________________________________________________________________

1  In my previous work I defined a proposition to be a written or uttered declarative sentence that
we agree to view as true or false, explaining that agreements need not be explicit (see Propositional
Logics and Predicate Logic).  I now think it is better to talk about how we use parts of speech.  
Also, to define “proposition” in terms of the notion of a declarative sentence is bad for two reasons.  
First, it is circular, for we typically define a declarative sentence to be one that is a proposition 
or is true or false.  For example, Edward Sapir says:

The sentence has, like the word, a psychological as well as a merely logical or abstracted
existence.  Its definition is not difficult.  It is the linguistic expression of a proposition.  

Language, Chapter 2, paragraph 12

Second, we will consider parts of speech in artificial languages that we will want to treat as true or
false, and, though they may formalize declarative sentences, they are not what we could normally 
call declarative sentences.  Compare what Jean Buridan says in his Summulae de Dialectica, 9.6, 
Third Sophism:

Even a barrel hoop hanging in front of a tavern is a proposition, “for it is equivalent in
its signification to the conventionally signficative utterance that someone might yell at
the entrance of the tavern: ‘Wine is sold here!’ ”



2     Chapter 1

Some say that types are abstract objects, in accord with their belief that propo-
sitions are abstract.  In that case the assumption that words and propositions are types
concerns which inscriptions and utterances (which is what we actually use in our
reasoning) represent or express or point to the same abstract thing.

A proposition is true or false.  But what does that mean?  That is a big question
which will occupy us throughout this book.  For now, I will assume only that we
have enough idea of what it means for a proposition to be true for us to begin our
studies.

Propositions are true or false.  An inference is what we use to say that one
proposition follows from one or more others.
___________________________________________________________________

Inference  An inference is a collection of two or more propositions—one of 
which is designated the conclusion and the others the premises—that is intended 
by the person who sets it out as either showing that the conclusion follows from 
the premises or investigating whether that is the case.
___________________________________________________________________

Some say that inferences, too, are abstract things.  But all who reason use
linguistic inferences, and it is those we can study whether or not we consider them 
to be representatives of abstract entities.2

When does an inference show that the conclusion follows from the premises?
That depends in part on what kind of reasoning we are analyzing.  Different condi-
tions apply depending on whether we are concerned with arguments, explanations,
mathematical reasoning, reasoning about cause and effect, or conditionals.3  In our
work here, we will consider an inference good only if it is valid.
___________________________________________________________________

Valid inferences  An inference is valid means that there is no way the world could
be in which the premises are true and conclusion false at the same time.
___________________________________________________________________

For example, the following is valid:

(1) Ralph is a dog.
All dogs bark.
Therefore, Ralph barks.

I can’t prove that to you.  At best I rephrase it in other words.  If you understand
English, it’s clear that it’s valid.  

Similar inferences are also valid:

2  Intent is crucial in determining whether what has been uttered is an inference, as can be seen in
hundreds of examples in Critical Thinking.  The examples of inferences in this book should be
understood as prefaced by “imagine that someone has put forward the following inference”.
3  See Reasoning in Science and Mathematics, The Fundamentals of Argument Analysis, and
Cause and Effect, Conditionals, Explanations.
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Dick is a student.
All students study hard.
Therefore, Dick studies hard.

Suzy is a cheerleader.
All cheerleaders have a liver.
Therefore, Suzy has a liver.

It would facilitate our reasoning if we could clarify in what way these infer-
ences are similar, for we have the intuition that we don’t need to know anything
about cheerleaders, or students, or dogs to see that they are valid.  Somehow, it is
the forms of the propositions in these inferences that matter.
___________________________________________________________________

Formal logic  Formal logic is the analysis of inferences for validity in terms 
of the structure of the propositions appearing in the inference and the analysis 
of propositions for truth in terms of their structure.
___________________________________________________________________

Now consider:

Fido is a dog
Therefore, Fido barks.

To show that this is not valid, we show that there is a way the world could be in
which the premise is true and conclusion false: Fido could be a basenji, a kind of
dog that can’t bark.

To invoke a way the world could be, a possibility, in the evaluation of an
inference, we use a description when we wish to reason together.  A description
of the world is a collection of claims: we suppose that this, and that, and this are
true.  We do not require that we give a complete description of the world, for no
one is capable of presenting such a description nor would anyone be capable of
understanding one if presented.  By using collections of claims to describe or to
stand in for possibilities, we need not commit ourselves to a possibility being
something real, such as a world in which I am not bald.

But what qualifies some collections of claims as describing a possibility
and others not?  Regardless of how we conceive of possibilities, we always seem
to agree that a description of a way the world could be must be consistent.  That
is, it cannot have or entail a contradiction.  It must be logically possible.  So
there is no way the world could be in which there is a square circle.  But there
seems to be no contradiction inherent in postulating that a dog could give birth 
to a donkey: it is logically possible.4

4  Some logicians have formulated how to reason when the information we have is or might be
inconsistent.  A few have argued that contradictions, such as there being square circles, are possible.
But such an assumption is not needed for reasoning around contradictions, as I show in “Paraconsis-
tent Logics with Simple Semantics”, and it would leave us with no semantic basis from which to start
our analysis of possibilities, as I discuss in “Truth and Reasoning”.
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So a collection of claims describes a way the world could be if it neither
contains nor entails a contradiction.  Yet that requires knowing what it means 
for a collection of claims to entail another claim, which is what we are trying 
to understand.  We find ourselves in a circle.

One way to extricate ourselves from this circle is to investigate parts of our
reasoning, picking out just this or that kind of reasoning relative to restricted
semantic and syntactic assumptions that allow for clarity of analysis, developing
a formal logic.  Then we can have a clearer notion of possibility and of valid
inference for that kind of reasoning.  As we extend our investigations to allow for
more kinds of reasoning, we will have fuller analyses of logical possibilities and
valid inferences.



2 Classical Propositional Logic

The simplest formal logics are propositional logics in which the only structure of
propositions we consider is how they are formed by combination from other proposi-
tions.  Traditionally, we confine our interest to four ways of combining or making
propositions from others using the connectives “and”, “or”, “not”, and “if . . . then . . .”.
We adopt symbols for our abstractions of the ordinary language connectives:

Ï negation for “not”

∨ disjunction for “or”

∧ conjunction for “and”

→ the conditional for “if . . . then . . .”

These are formal connectives.  So we might write “Juney is a dog ∧  Juney
barks” in place of “Juney is a dog and Juney barks”.  We might write “Tom sang →
Dick played the piano” in place of “If Tom sang, then Dick played the piano”.  These
phrases with formal connectives are not propositions until we say how we will
understand these symbols.

To start, we need to set out how we can form new propositions from given ones
using formal connectives.  By defining a formal language we can give the structure
of all the propositions we can form from any propositions we start with.  First we
take propositional symbols or variables, p0 , p1 , . . .  that can stand for any propos-
itions, though the intention is that they’ll stand for ones that don’t contain a formal
connective or word that we would formalize as a formal connective.  We then need
metavariables to stand for any of the propositional symbols or complex expressions
we’ll form from those; we’ll use A, B, C, A0 , A1, A2 , . . .   .  The analogue of a
sentence in English is a well-formed formula (wff  ), which we define inductively.
___________________________________________________________________

Wffs and the formal language   L(p0, p1, . . . , Ï, → , ∧ , ∨ )

Vocabulary 
propositional variables  p0   p1  . . . 

connectives  Ï  →   ∧   ∨
parentheses  )  (

Well-formed formulas (wffs)

Each of (p0) ,  (p1),  (p2) ,  (p3), . . . is a wff of length 1.

If A is a wff of length n, then (ÏA) is a wff of length n + 1.

If A and B are wffs and the maximum of their lengths is n, then (A→ B), 
(A ∧ B), and (A∨ B) are wffs of length n + 1. 
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A concatenation of symbols of the vocabulary is a wff  just in case 
it is a wff of length n for some n ≥ 1.

  
Wffs of length 1 are atomic; all others are compound.

___________________________________________________________________

No formal wff such as “p0 ∧ Ïp1” is a proposition.  Only when we agree on
how we understand the formal connectives and then assign propositions to the
variables, such as “p0” stands for “Ralph is a dog” and “p1” stands for “Four cats 
are sitting in a tree,” do we have a formula “Ralph is a dog ∧  Ï (four cats are sitting
in a tree)” that can be true or false.
___________________________________________________________________

Realizations and semi-formal languages  A realization is an assignment of
propositions to some or all of the propositional symbols.  The realization of a
formal wff is the formula we get when we replace the propositional symbols
appearing in the formal wff with the propositions assigned to them; it is a semi-
formal wff.  The semi-formal language given by a realization is the collection 
of realizations of the formal wffs.___________________________________________________________________

I’ll use the same metavariables A, B, C, A0 , A1, A2, . . . to stand for semi-
formal wffs, too, and p, q to stand for atomic propositions that realize the proposi-
tional symbols.  We abbreviate “A if and only if B” as “A iff B”, which means 
“if A, then B; and if B then A”, and we write “A ↔ B” for “(A→ B) ∧  (B→ A)”.

I’ve been using quotation marks around parts of speech or formal symbols 
to show that I’m talking about the linguistic item or symbol and not using it in the
ordinary way.  For example, I write “Dick” to indicate that I’m talking about the
word and not using the word to refer to someone as when I write: Dick is a student.
In what follows I’ll often write formal symbols without quotation marks when it’s
clear I’m talking about the formal symbol, as when I say that ∧  is a connective.

We’ve described the linguistic forms we’ll study.  This is the syntax of the
theory of reasoning we’re developing.  We did so without any talk of what the formal
symbols mean, other than knowing that they will be abstractions of certain English
words or phrases, and also without any talk of the meanings or truth or falsity of 
the formulas of a semi-formal language, that is, the semantics of semi-formal
languages.  We have separated syntax from semantics, and this is what we must do 
if we want a simple inductive definition of the formal language that we can use in
proofs about the language and semi-formal languages.  Explicitly, we make the
following assumption.
___________________________________________________________________

Form and meaningfulness  What is grammatical and meaningful is determined
solely by form and what primitive parts of speech are taken as meaningful.  For 
a given semi-formal language every wff is a proposition.
___________________________________________________________________
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There is an additional way we want to make the semantics independent of the
syntax.  Given a semi-formal wff, once the semantic values of the whole are
determined, then any other proposition that has the same semantic values can be
substituted for it in any logical analysis.  That is, semantically it does not matter that
“∧ ” appears in a formula such as “Ralph is a dog ∧  dogs bark” except for how that
determines the semantic values of the whole.  Explicitly, we make the following
assumption.
___________________________________________________________________

Division of form and content  If two propositions have the same semantic values,
they are indistinguishable in any semantic analysis regardless of their form.
___________________________________________________________________

What are the semantic values?  We’ve agreed to view each proposition as
having a truth-value, that is, as being true or false.  Often we want to take into
account in our reasoning other semantic values such as subject matter, or the ways 
in which a proposition could be known to be true, or the likelihood of a proposition
being true or false, or what things a proposition refers to, or what time it is meant to
be about.  But here, we’ll make an assumption that will lead to the simplest formal
system of propositional logic.
___________________________________________________________________

The classical abstraction for propositional logic  The only semantic aspect of a
proposition that matters to our reasoning is its truth-value.
___________________________________________________________________

The only question then is in what way, if any, the truth-value of the whole
depends on its form and the semantic values of its parts.  We might abstract very
little from ordinary English and say that “and” has so many different kinds of uses
that there is no regular relation between the truth-values of “Ralph is a dog” and
“Ralph barks” that determines the truth-value of “Ralph is a dog ∧  Ralph barks”.  
If we do that, we’ll have a poor guide for how to reason.  Rather, we abstract
considerably by making the following assumption.
___________________________________________________________________

Compositionality  The semantic values of the whole are determined by its form 
and the semantic values of its parts.
___________________________________________________________________

So with the classical abstraction, the truth-value of the whole is a function of 
the truth-values of its parts and of nothing else.  Of the various ways we could inter-
pret the formal symbols in accord with these assumptions, we adopt the following:

ÏA is true  iff  A is false.

A∧ B is true  iff  both A is true and B is true.

A∨ B is true  iff  A is true or B is true or both are true.

A→ B is true  iff  A is false or B is true.
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Note that I’ve used “and”, “or”, “not”, and “if . . . then” to explain the evaluations of
the formal connectives.  This is not circular.  We are not defining or giving meaning
to “and”, “or”, “not”, “if . . . then . . .” but to ∧ , ∨ , Ï, → .  I must assume you under-
stand English.  

Suppose now that we have a realization.  We agree that the sentences assigned
to the propositional variables, for example, “Ralph is a dog” for p0 , are propositions,
that is, each has a truth-value.  It is a further agreement to say which truth-value each
has.  Whether an atomic proposition is true or false is not for us as logicians to decide.
We assign truth-values to the atomic propositions of the formal language by any
method.  Then we extend those to the compound propositions of the semi-formal
language by the definitions above, where I use T to stand for “true” and F for “false”
___________________________________________________________________

Models  A model is a semi-formal language, a valuation v that assigns truth-values
to the atomic propositions, and the extension of that assignment to all formulas of the
semi-formal language via the classical truth-tables.  If v(A) = T, A is true in the
model, and we write vÅA, read as “v validates A”.  If v(A) = F, A is false in the
model, and we write våA, read as “v does not validate A”. 
___________________________________________________________________

Models, then, are the possibilities that classical propositional logic recognizes.
For those possibilities to characterize validity, there have to be enough of them.
___________________________________________________________________

Sufficiency of the collection of models  For any realization, any assignment of
truth-values to the atomic propositions defines a model.

Valid inferences  For a collection of formal wffs Γ and a formal wff A, the infer-
ence Γ  therefore A is valid  means that there is no model in which all the wffs in Γ
are true and A is false.  In that case we say that A is a semantic consequence of Γ ,
or that the pair Γ , A is a semantic consequence.

A semi-formal inference is valid if it is the realization of a formal inference
that is valid.  An inference in ordinary English is valid if there is a formalization
of it on which we feel certain we’d all agree is valid.

We write ΓÅA for “A is a semantic consequence of Γ ”, which we also read
as “Γ  validates A”.  We write ΓåA when it’s not the case that ΓÅA.
___________________________________________________________________

We can formalize “Ralph is a dog or Ralph isn’t a dog” as “Ralph is a dog ∨
Ï (Ralph is a dog)”.  This is true regardless of whether “Ralph is a dog” is true or
“Ralph is a dog” is false.  Indeed, any semi-formal proposition of the form A∨ (ÏA)
is true, as you can check.  The form of such propositions, relative to the assumptions
of classical propositional logic, guarantees their truth.
___________________________________________________________________

Tautologies  A formal wff is a tautology or valid  iff in every model its realization
is evaluated as true.  In that case we write ÅA .  
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A semi-formal proposition is a tautology iff it is the realization of a wff that
is a classical tautology.  

A proposition in ordinary English is a tautology if there is a good formali-
zation of it that is a tautology.
___________________________________________________________________
___________________________________________________________________

Classical propositional logic  The formal language, the definitions of realization, 
models, tautology, and semantic consequence together comprise classical
propositional logic.
___________________________________________________________________

Another way to characterize classical propositional logic is syntactically with
an axiom system.  Briefly, letting Γ , Σ, Δ, and subscripted versions of those stand 
for collections of wffs, semi-formal propositions, or ordinary language propositions,
according to context, we have the following definition.
___________________________________________________________________

Proofs   Given a collection of wffs, called the axioms, that are taken to be 
self-evidently true due to their form, a proof  or derivation of  B is a sequence 
A 1 , . . . , An such that An is B and each Ai is either an axiom or is a result of
applying a rule of the system to one or more of the preceding Aj’s.  If there is 
a proof of B, we say that B is a theorem, and we notate that as ÍB.

A proof of a proposition B from some wffs Γ  is a sequence A 1 , . . . , An
such that An is B and each Ai is an axiom, or is a wff from Γ , or is a result of
applying a rule of the system to one or more of the preceding Aj’s.  In there is 
a proof of B from Γ , then we say that B is a syntactic consequence of  Γ , which 
we notate as ΓÍB.  If B is not a syntactic consequenceof A, we write ΓßB.

We can write  A1, . . . , An t o mean that A 1 , . . . , AnÍB .                                __________
                                        B___________________________________________________________________

___________________________________________________________________

Consistency, completeness, and theories   
Γ  is consistent  iff  for every A either ΓßA or ΓßÏA .

Γ  is complete  iff  for every A, either ΓÍA or ΓÍÏA .

Γ  is a theory  iff  for every A, if ΓÍA, then A is in Γ .

Soundness and completeness of an axiomatization  
Given a syntax, a semantics, and an axiom system:

The axiomatization is sound means for every A, if ÍA then ÅA.

The axiomatization is complete means for every A, ÍA iff ÅA.  

The axiomatization is strongly complete means for every Γ  and A,  ΓÅA È ΓÍA .
___________________________________________________________________
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Here is an axiom system for classical propositional logic, where A, B, C stand
for any wffs of the formal language.
___________________________________________________________________

Classical Propositional Logic

  1.   ÏA→ (A→ B)

  2.   B→ (A→ B)

  3.   (A→ B)→  ((ÏA→ B)→ B)

  4.   (A→ (B→ C)) →  ( (A→ B)→ (A→ C) )

  5.   A →  (B→ (A∧ B))

  6.   (A∧ B)→ A

  7.   (A∧ B)→ B

  8.   A→ (A∨ B)

  9.   B→ (A∨ B)

10.   (A→ C) →  ((B→ C) →  ((A∨ B)→ C))

rule     
A A B, →

B
     modus ponens

___________________________________________________________________

In Appendix 7, I prove the following.

Strong completeness of the axiomatization of classical predicate logic    

For any wffs Γ  and any wff A,  ΓÍA È ΓÅA .



3 Formal Theories of Reasoning Well and 
Limitations of Propositional Logic

Classical propositional logic is meant to serve as a guide to us in our reasoning.  We
begin by considering the use of certain ordinary language sentence connectives and
various examples of inferences.  We try to describe, by formalizing, what we see as
correct ways to evaluate inferences.  Then we say that these are indeed the correct
ways to evaluate inferences relative to the assumptions we have made.  If the theory
disagrees with an intuition of ours about what is true or what follows from what, we
either give up that intuition in the belief that the assumptions on which we based our
theory are correct and that the theory formalizes those well, or we show in what way
the formal theory is inadequate to deal with that kind of reasoning due to other
aspects of form or meaning of propositions that are crucial in that reasoning.

Creating and evaluating models or theories of reasoning or indeed any human
activity or any science can be done well only by restricting our attention to some
aspects of our experience and ignoring others.5  It is beyond our ability to take
account at one time of all of experience—if that phrase even makes sense.  We
cannot pay attention to all we encounter in the world at any one time, nor would 
we wish to.  We cannot pay attention even to all aspects of what we and others say.
It is nonsense when Donald Davidson proclaims his more than Leibnizian dream of 
a perfect calculus of meaning:

I dream of a theory that makes the transition from ordinary idiom to canonical
notation purely mechanical, and a canonical notation rich enough to capture, in 
its dull and explicit way, every difference and connection legitimately considered
the business of a theory of meaning.6

These issues become clearer when we consider the limitations of propositional
logic.  I’ll discuss only classical propositional logic, though similar remarks apply to
other propositional logics.  Consider the inference:

(1) Ralph is a dog.
All dogs bark.
Therefore, Ralph barks.

This is valid.  There are no propositional connectives in it.  So each proposition in
the inference is atomic for propositional logic.  Hence, the form of it in propositional
logic is: p1, p2, therefore p3 .  In a model we can assign truth or falsity to each atomic
proposition independently of all others, and hence we can have a model in which 

5  See “On Models and Theories” and “Prescriptive Theories?”.  See particularly the section 
“The method of reflective equilibrium” in the latter article for a case study of what goes wrong 
when formal theories are evaluated solely by their consequences.
6  “The Logical Form of Action Sentences”, p. 115.
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“Ralph is a dog” is true, “All dogs bark” is true, and “Ralph barks” is false.  The
inference is not valid in classical propositional logic.

Yet we all know that such an assignment of truth-values cannot be.  It is not
possible for the premises of (1) to be true and its conclusion false.  So we cannot
formalize the inference in classical propositional logic, for an informally valid
inference should be formalized as a valid formal inference according to our criteria
of formalization.  There must be some aspect of these propositions that is not
accounted for in classical propositional logic.

It might be just the meaning of the words in this inference.  But then we think
of the other inferences we looked at in Chapter 1:

Dick is a student.
All students study hard.
Therefore, Dick studies hard.

Suzy is a cheerleader.
All cheerleaders have a liver.
Therefore, Suzy has a liver.

We see a pattern.  We note that the repetition of certain words in certain places in 
the inference matters to the evaluation of whether it is valid.  In the second example
it matters that the name “Suzy” appears in the first premise and the conclusion.  It
matters that the words “cheerleader” and “liver” appear in certain places.  And the
word “all” is crucial to the reasoning.  The internal structure of the propositions in
these inferences is significant for our reasoning, and hence the semantic aspects of
parts of propositions matter, too.



4 The Language of Predicate Logic

We want to parse the internal structure of what we took to be atomic propositions 
in order to give structural analyses of examples of reasoning like those we saw in 
the last chapter.  We have to relate parts of propositions—words and phrases—to 
our experience in order to attribute semantic values to them.  But what parts and
what experience?

The examples we saw in the last chapter are notably about things: dogs, Ralph,
students, Dick, cheerleaders, Suzy.  We have lots of words for things: chairs, tables,
rocks, people, trees, . . . and lots of names for particular things.  We organize our
experience through our language in terms of things.  Not all of our experience is in
terms of things, for we also talk about water and mud, about the burning of a flame
in a fireplace and the push of the wind, which don’t seem to be things.  But enough
of our talk and our reasoning can be understood as about things for us to make the
one big assumption on which modern formal logic is based.
___________________________________________________________________

Things, the world, and propositions  The world is made up at least in part of things.
The only propositions we will be interested in are those that are about things.
___________________________________________________________________

What do we mean by “thing”?  We seem to be able to agree that rocks, people,
dogs, tables, chairs, and trees are things.  What we consider most basic about them is
not what they’re made of nor whether we happen to be looking at them, but only that
they are individuals: this rock, that person, this dog, that tree.  A thing—whatever it
is—is individual and distinct from all else in the world.  Yes, a thing may be com-
posed of other things or masses, but what makes it a thing is that it is a whole, a
distinct individual.  How odd that sounds, for we seem to be saying over and over
what we have no way to say except by saying “a thing” or “an individual”.

Since each thing is distinct from all else, each is in some way distinguishable
from all else.  What we mean by saying that we can distinguish each thing we are
talking about from all others will be determined in part by the kind of things we are
talking about.  Equally, it will determine what we consider to be a thing.  There is no
fixed answer to our question of what we mean by “distinguishable” that we can agree
on for all things.  Nonetheless, this is where we will start, refining and comparing our
notions of things and distinguishability as we proceed in our work.

Consider now the proposition “Spot is a dog”.  This is about Spot.  What we’re
saying about him is just the rest of the proposition: “is a dog”.  Generally, if a propo-
sition has one or more names in it, we can take the names out and label that as the
“about”, what we’ll call a “predicate”.  For example, we can parse the proposition
“Spot loves Dick” as composed of two names “Spot” and “Dick” and a predicate 
“— loves —”, or we can take just one of the names out and get a predicate “Spot
loves —” or “— loves Dick”.
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___________________________________________________________________

Names and predicates  A name is a word (or phrase) that we intend to use to pick
out a single thing.  A predicate is any incomplete phrase with specified gaps such
that when the gaps are filled with names the phrase becomes a proposition.
___________________________________________________________________

Some people think that predicates, like propositions, are abstract.  But in their
reasoning they use what we have defined as predicates, though they consider those 
to be only representatives or expressions of abstract predicates.

What further structure of propositions will we recognize?  Since we continue 
to take propositions as fundamental in our reasoning, we can continue to use the
ways of forming new propositions from old ones with the formal connectives of
propositional logic.  We’ll formalize “Ralph is a dog and Ralph barks” as “Ralph is 
a dog ∧  Ralph barks”, and so we have a predicate “— is a dog ∧  — barks”.

We talk not only of specific things but of things in general.  Doing so, we say
how many: seventeen, at least one, no more than forty-seven, many, almost all, each
and every.  To begin, as is traditional, let’s restrict ourselves to considering just two
ways: those that can be assimilated to talk about some thing or things, and those that
can be assimilated to talk about all things.  

These, then, are the parts we will use to parse propositions: names, predicates,
propositional connectives, and ways to say “some” or “all”.  This is enough to begin.
To make clear how we will parse propositions, we need to set out a formal language
that will specify the structures we’ll consider.

We start with symbols for names: c0, c1 , . . .  .  But we don’t have names for
everything we want to talk about, nor is it worth our time to name each thing prior to
reasoning about it, even if that were possible.  Rather, as in ordinary English, we can
use temporary names.  We say “that” and point, and if in the context of our conver-
sation it’s clear we mean to pick out the lamp on my table, then “that” functions as a
temporary name to pick out the lamp.  Formally, we can use the symbols x0 , x1 , . . .
as variables to play the role of temporary names.

For our formalizations of “all” and “every”, we’ll use “∀”, and for our formal-
izations of “some” or “there is” or “there exists”, we’ll use “∃”.  These are the
universal and existential quantifiers.  Then to formalize “Something barks” we can
use variables to write “∃x0 (x0 barks)”, where the predicate is “— barks” and the
first use of x0 is for the “thing” in “something” and the second is for the pronoun
when we rewrite the informal proposition as “There is something such that it barks”.
Similarly, we can write “Everything breathes” as “∀ x17 (x17 breathes)”.

Variables also serve to allow for cross-referencing.  For example, if we wish to
formalize “Everyone loves itself”, we’d use the predicate “— loves —” intending for
both blanks to be filled with a name of the same thing, as in “∀x1 (x1 loves x1)”.

Predicates can differ depending on how many blanks they have.  If there is one
blank, as in “—barks”, we say the predicate is unary; if there are two blanks, as in
“—loves —”, we say the predicate is binary; if there are three blanks, as in 
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“— and — are the parents of —”, we say the predicate is ternary; if there are n
blanks, we say the predicate is n-ary, or its arity is n.  It might seem we don’t
normally use predicates that are even 4-ary, but we do, as in “Spot chased Puff
towards Dick and away from Suzy”.  It’s hard, though, to think of an example where
we would use a 47-ary predicate.  But mathematicians do.  It’s a harmless generali-
zation to allow for predicates of any arity in our formal work, a generalization that
allows us not to worry in the middle of our reasoning whether we’ve got all the tools
we need.  So we’ll take as formal symbols for predicates  P0

1 ,  P0
2 ,  P0

3 , . . . ,   P1
1 ,   P1

2 ,   P1
3 ,

. . . , where the superscript tells us the arity of the predicate symbol, and the subscript
tells us which predicate symbol it is in the list.  Since it’s usually clear what the arity
of a predicate symbol is when we use it, I’ll normally not write the superscript.

We need to be able to talk about parts of the formal language:

i,  j,  k,  n, and subscripted versions of those stand for counting numbers;

x as well as y, z, w, and subscripted versions of the latter stand for variables;

u, v, and subscripted versions of those stand for terms (names or variables); 

A, B, C, and subscripted versions of those stand for variables;

P, Q, and subscripted versions of Q stand for atomic predicates.
___________________________________________________________________

Wffs and the formal language7  L(Ï, → , ∧ , ∨ , ∀, ∃, P0 , P1 , . . . , c0 , c1 , . . . )

Vocabulary predicate symbols   Pi
n  for n ≥ 0 and i ≥ 1, where i is the arity

name symbols   c0 , c1 , . . .
                                                        ⎫⎬⎭ terms

variables   x0 , x1 , . . .

propositional connectives   Ï, → , ∧ , ∨

quantifiers   ∀, ∃

Punctuation parentheses  (   )       comma   ,       blank  —

Well-formed formulas (wffs)

i. If P is a k-ary predicate symbol and u1, . . . , uk are terms, then 

( P(—, . . . , —) (u1, . . . , uk) ) 

is a wff of length 1.  The term ui fills the i th blank in P (reading from the left).
If ui is a variable, it is free in the wff; if it is a name symbol, it is not free.

ii. If A is a wff of length n, then (ÏA) is a wff of length n + 1.  
     An occurrence of a variable in (ÏA) is free iff it is free in A.8

7  I explain the unusual parts of this particular definition in an aside on p. 19. 
8  This is an abbreviated statement which in full should read:

The ith occurrence of a variable in (ÏA) reading from the left is free in (ÏA) 
iff  the ith occurrence of a variable in A reading from the left is free. 

The succeeding steps of the definition can be made more precise in the same way.
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iii. If A and B are wffs and the maximum of the lengths of A and B is n, then each 
of (A→ B) and (A∧ B) and (A∨ B) is a wff of length n + 1.  
     An occurrence of a variable in (A→ B) is free iff the corresponding occurrence
of the variable in A or in B is free, and similarly for (A∧ B) and (A∨ B).  

iv. If A is a wff of length n and some occurrence of x is free in A, then each of
(∀x A) and (∃x A) is a wff of length n + 1.  
     An occurrence of a variable in either (∀x A) or (∃x A) is free iff the variable
is not x and the corresponding occurrence in A is free.

A concatenation of symbols of the vocabulary is a wff iff it is a wff of length n
for some n ≥ 1.

A wff of length 1 is atomic.  All other wffs are compound.
In (∀x A) the initial ∀x has scope A and binds each free occurrence of 

x in A, and similarly for (∃x A).
A wff is closed if there is no occurrence of a variable free in it; otherwise 

it is open.
___________________________________________________________________

We adopt a convention on informally deleting parentheses:

• The parentheses around atomic wffs and the outer parentheses around 
the entire wff can be deleted. 

• Parentheses between successive quantifiers at the beginning of a wff 
may be deleted.  

• Ï  binds more strongly than  ∧  and  ∨ , which bind more strongly 
than  →  .  And  ∀x , ∃x  bind more strongly than any of those.  

• A conjunction or disjunction without parentheses is understood as 
associating the conjuncts or disjuncts to the left.  

• Square brackets may be used in place of parentheses.
___________________________________________________________________

A term is free for a variable 
A(x) means x occurs free in A (other variables may also be free in A).

A(u/x) is the formula that results by replacing every free occurrence of x
in A by the term u (unless we say that it replaces only some).  We say that
A(u/x) is the result of substituting u for x.

The variable y is free for an occurrence of x in A if that occurrence of x
is free and does not lie within the scope of an occurrence of ∀y or ∃ y.
It is free for x in A if y is free for every free occurrence of x in A.

___________________________________________________________________

A formula of the formal language is not a proposition; it is the form of a
proposition.  Only when we assign predicates to the predicate symbols in it and
names to the name symbols in it can we have a proposition.  For example, consider:
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  P0
1(—) (c2)  ∧  ∀x3 (  P0

1(—) (x3) →   P2
1(—) (x3))

We can assign “— is a dog” to   P0
1(—), “— barks” to  P2

1(—), “Ralph” to c2 , and get:

(— is a dog) (Ralph)  ∧  ∀x3 ( ( —is a dog) (x3) →  (— barks) (x3))

This is a proposition when we fix on a particular interpretation of the formal connec-
tives, as we did in Chapter 2, and fix on a way to understand the quantifiers and
variables, which we’ll do in the next chapter.
___________________________________________________________________

Realizations and semi-formal languages  An ordinary language name or predicate
is simple iff it contains no part we could formalize as a name, predicate, proposi-
tional connective, variable, or quantifier, or combination of those.

A realization of the formal language is an assignment of simple names to
none, some, or all of the name symbols and simple predicates to at least one of the
predicate symbols.  The realization of a formal wff is what we get when we replace
the formal symbols in it with the parts of ordinary language that are assigned to
them; it is a semi-formal wff.  The semi-formal language for a realization is the
realizations of all formal wffs.
___________________________________________________________________

The realization of a predicate symbol is the simplest predicate we can have in
our semi-formal language.  It has no structure relative to our other vocabulary except
for the placement of blanks.

I’ll use the same metavariables for parts of a semi-formal language; for
example, A, B, C, A0 , A1 , . . . can stand for semi-formal wffs.  The terminology 
of the formal language will be understood to apply to semi-formal formulas, so 
we can say that the formula “( (— barks) (x1))” is open, and a simple predicate
realizing a predicate symbol is atomic.

In a semi-formal language we divide the vocabulary into three parts.
___________________________________________________________________

Categorematic vocabulary, logical vocabulary, and punctuation 

The categorematic vocabulary of a semi-formal language consists of the predicates
that realize the predicate symbols and the names that realize the name symbols.

The syncategorematic or logical vocabulary of a semi-formal language consists of
the formal symbols ∀, ∃, Ï, → , ∧ , ∨ , x0 , x1 , . . .  .

Punctuation is that part of the vocabulary that is not meant to formalize anything
but is used only to facilitate reading wffs: blanks, commas, and parentheses.

Categorematic parts of the formal language joined by logical vocabulary and
punctuation are categorematic.
___________________________________________________________________

We would like to formalize much of our reasoning in our system.  That
includes reasoning we do about the system, which involves predicates such as 
“— is a wff ”, “— is a proposition”, “— is true”, and names for parts of the language.
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However, serious problems arise if we allow for these to be in a semi-formal
language.  If we realize the predicate symbol   P0

1(—) as “— is true” and the name
symbol “c0” as a name for the semi-formal wff “Ï (— is true) (c0)”, we’ll have a
version of the liar paradox: “This sentence is not true”.  Resolving whether or if 
that is true or false is a tortuous issue.9  We can avoid that problem by imposing a
sharp distinction between reasoning in our system, that is, our logic, and reasoning
about our system, that is, our metalogic.
___________________________________________________________________

Metalogic vs. logic        No name symbol can be realized as a name of any wff or part
of a wff of the semi-formal language.  No predicate symbol can be realized as a
predicate that can apply to wffs or parts of wffs of the semi-formal language. 
___________________________________________________________________

With the quantifier “∃” we can formalize “there is” or “there exists” but only
by treating those phrases as stipulating how many: at least one.  However, in English
we also use “exists” as a predicate, as in “Ralph exists”.  Should we allow that 
“— exists” can realize a predicate?  If we do, then we can have a formalization of
“There is something that doesn’t exist” as “∃x (Ï (— exists) (x))”.  Resolving how
to evaluate such sentences will require choices that do not seem essential to our basic
work.  We’ll defer such issues to the last section of this book, adopting the following.
___________________________________________________________________

Existence and ∃∃∃∃   Assertions about existence can be formalized only by using the
quantifier ∃.  The phrase “— exists” and other predicates informally equivalent 
to it are excluded from our realizations.
___________________________________________________________________

Unlike propositional logic, in predicate logic not every formula of a semi-
formal language is a proposition.  Consider, for example:

(1) (—barks) (x1) →  (—is a cat) (x2)

This is not a proposition even if we’ve settled on how to understand the connectives,
variables, and quantifiers.  It’s a proposition only when we say what “x1” and “x2”
stand for, which cannot be done within the formal language.  So it is only when we
add quantifiers to (1), making it a closed formula, that we have a proposition.  For
example, we could have ∀x1 ∃x2 ( (—barks)(x1) →  (—is a cat)(x2) ) .  Once
we’ve fixed on how we’ll understand the formal symbols, this is a proposition.
Only closed formulas of the semi-formal language are propositions.

Some mathematicians and logicians view open formulas, such as x < y →  
Ï (y < x), as propositions, understanding the free occurrences of variables to be
universally quantified.  This is confusing because we’re never sure whether someone
is talking about an open formula or a proposition.  Here we’ll be explicit, writing, for
example, ∀x ∀y (x < y →  Ï (y < x)).  We can transform any open formula into
a proposition in this way.

9  See Chapters IV and XXII of Classical Mathematical Logic.
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The universal closure of a wff   Let xi1
, . . . , xin

 be a list of all the variables 
that occur free in A in alphabetical order, that is, i1 < . . . < in.  The universal
closure of A is:  ∀. . . A  ≡Def  ∀xi1

 . . . ∀xin 
A.

___________________________________________________________________

Aside:  Unusual features of this formal language
This definition of the formal language differs from most in two respects.  The first concerns
the use of variables.  Variables typically have three roles in a formal language of predicate
logic: (i) they indicate what is being quantified, (ii) they serve as temporary names, and 
(iii) they index blanks in a predicate.  The first two roles work together in our semantic
analysis of quantification, as we’ll see in the next chapter.  But the third role creates two
problems.  

First, if we say that “x1 is a dog” is or stands for a predicate, then so does “x2 is a
dog”, and something must be said about why those are or stand for the same predicate.  We
can’t say that it’s because the variable is just a placeholder, because that isn’t clear, and why
can two different placeholders give the same predicate?  After all, in “x1 is a dog ∧  x2 is a
dog” we don’t say that these are the same predicate.  Nor can we say that “it doesn’t matter
what variable we use” until we’ve explained variables, and that depends on already knowing
what predicates are.  A second problem, which will become clear later in the text, is that the
use of variables without blanks makes it difficult to distinguish a predicate modifier from a
propositional operator.  So in the formal language here, the blanks are retained in the predi-
cates.  Though in English, blanks can appear in various places in a predicate, for the formal
language I write the blanks following the predicate symbol, separated by commas, as in 

  P2
3 ( —, —, —) .  Blanks are retained in semi-formal wffs, too, as in “(— is a dog) (Ralph)”.

The second difference is that the usual definition of a formal language allows for
superfluous quantifications such as ∀x3 ( P0

1(c0)).  The rationale for including such formu-
las is that to do so simplifies the definition of the formal language, allowing a definition of
bound and free variables to be made after the definition of the language.  But the disadvan-
tage is that semi-formal languages then contain formulas such as “∀x3 (Ralph is a dog)” 
that would correspond to the nonsensical “For everything, Ralph is a dog”.  The semantics
for such uses of superfluous quantifiers simply ignore the quantifier, treating that wff as
equivalent to “Ralph is a dog”.  That is not consonant with our normally treating nonsense 
as false, as I discuss in “Truth and Reasoning”.  The advantages of not allowing superfluous
quantification, beyond ridding our semi-formal languages of nonsense, are significant:

We need no axiom schemes for superfluous quantification.

Many proofs about the language are simplified by no longer having to treat cases 
of superfluous quantification separately.

All variable-binding operators can be treated uniformly.  

So in this formal language and in others that follow, no superfluous quantifiers are allowed.
This requires that the definition of what it means for a variable to be bound or free has to be
incorporated into the definition of the formal language.


