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Preface

If logic is the right way to reason, why are there so many logics?

Viewing logics as formalizations of how we do or should reason, we can find
a structural and conceptual unity based on common assumptions about the relation
of language, reasoning, and the world. What we pay attention to in reasoning deter-
mines which logic is appropriate.

In order for you to understand this I have retraced my steps: from the concrete
to the abstract, from examples to general theory, and then to reflections on the signi-
ficance of the work. In doing so I have had to begin at the beginning: What is logic?
What is a proposition? What is a connective? If much seems too well known to be
of interest, then plunge ahead. The chapters can be read more or less independently,
which explains the occasional repetitions.

Chapter I is devoted to assumptions about the nature of propositions and what
forms of propositions we will study. In Chapter II we then have the simplest
symbolic model of reasoning we can devise given those assumptions. In classical
logic a proposition is abstracted to only its truth-value and its form, relative to the
propositional connectives. This provides a standard of reference for other logics.

In Chapter II I also present a Hilbert-style formalization of the notion of proof
and syntactic deduction that I use throughout the book. The metalogical investiga-
tions that I concentrate on concern the relation between the semantic and syntactic
notions of consequence, and whether or how those can be represented in terms of
theorems or valid formulas by means of a deduction theorem.

Chapter III sets out the simplest example of a logic that incorporates some
aspect of propositions other than truth-value into the semantic analysis. Taking
the subject-matter of a proposition to be a primitive notion, we get the archetype
of how to incorporate differing aspects of propositions into semantics.

Following Chapter III is a Summary and Overview which serves as an
introduction to all that follows. The succeeding chapters present examples of
many different logics based on differing semantic intuitions all of which can be
understood within a general framework that is presented in Chapter IX. That
framework arises from the view that each logic, except for classical logic, incor-
porates into the semantics some aspect of propositions other than truth-value and
form. Each logic analyzes an ‘if . . . then . ..” proposition classically if the aspects
of antecedent and consequent are appropriately connected, while rejecting the
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proposition otherwise. As we vary the aspect, we vary the logic. Ihave argued for

this bivalent falsity-default analysis of semantics throughout this volume, in part by
presenting a wide variety of logics in that form, and I have used that analysis further
in Epstein, 1992 and Epstein, 2012A.

The general form of semantics is not intended to replace other semantics. For
example, under certain assumptions possible-world semantics are a good explanation
of the ideas of modal logics. But providing uniform semantics that are in reasonable
conformity with the ideas on which various logics are based allows for comparisons
and gives us a uniform way in which to approach the sometimes overwhelming
multiplicity of logics.

In particular, the overview of the general framework allows Stanistaw
Krajewski and I to consider in Chapter X the extent to which one logic or way
of seeing the world can be reduced to another. We present a general theory of
translations and try to characterize what we mean when we say that a translation
preserves meaning.

The semantic framework I set out in Chapter IX is a very weak general form of
logic that becomes usable only upon the choice of which aspect of propositions we
deem significant. But then is logic relative to the logician? Or does a notion of
necessary truth lie in this general framework? In Chapter XI I discuss how our
agreements about how we reason determine our notion of objectivity.

Throughout I have tried to find and then make explicit those assumptions on
which our reasoning and logic are based. I have repeated the statement of certain
of those assumptions in different places, partly because I want the chapters to be as
self-contained as possible but also because it is important to see those assumptions
and agreements in different contexts and applied differently to be able to grasp their
plausibility and pervasiveness.

What I am doing here can be seen as founding logic in ordinary language and
reasoning. When nonconstructive assumptions are used to apply mathematics to
logic to prove theorems about our formalizations we can see precisely where they are
needed. Those assumptions I treat as abstractions from experience. However, they
need not be viewed that way, and I have attempted to provide alternate readings of
the technical work based on the view that abstract things such as propositions are as
real or more real than the objects we daily encounter. Most of the discussion of these
matters is in Chapter I and in the development of classical logic in Chapter II, parti-
cularly Section II.G. In Chapter IX I point out specific nonconstructive, infinitistic
abstractions of the semantics that we usually make in pursuing metalogical investi-
gations. This general approach to modeling and theories is explored more fully in
my essays in Reasoning in Science and Mathematics, while the issue of whether
logic is prescriptive or descriptive is explored in my book Prescriptive Reasoning.

I have included many exercises, some of them routine, many requiring
considerable thought, and some which are open questions (marked ‘Open’).
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Depending on the choice of which are assigned, this book can serve as a text in an
undergraduate course, a text for a graduate course, or as the basis for research.

There are important subjects in the study of propositional logics that I do not
deal with here. I have not discussed the algebraic analyses of propositional logics,
for which you can consult Rasiowa, 1974 and Blok and Pigozzi, 1989. 1have made
no attempt to connect this work with the categorial interpretation of logic, for which
you can consult Goldblatt, 1979. Nor have I dealt with other approaches to the
notion of proof in propositional logics. And there are many propositional logics I
have not discussed, quite a few of which are surveyed also in Marciszewski, 1981 as
well as in Haack, 1974, and Gabbay and Guenthner, 1989, which also discuss
philosophical issues.

This is not the story of all propositional logics. But I hope to have done
enough to convince you that it is a good story of many logics that brings a kind of
unity to them.

In the discussions of the wise there is found unrolling and rolling up,
convincing and conceding; agreements and disagreements are reached.
And in all that the wise suffer no disturbance. —Nagasena

Come, let us reason together.

Preface to the third edition

In 1992 I was asked to publish Predicate Logic, the second volume of this series
The Semantic Foundations of Logic. 1 suggested also doing a second edition of
Propositional Logics. There were a few corrections that colleagues had pointed out,
and I thought I could clean up the text a bit. It turned out that a lot of corrections
were needed, both to the technical work and the exposition. For that edition I revised
the entire text, with more changes than I could easily list here. Among the most
significant are the correction or simplification of many axiomatizations, the addition
of examples of formalization of ordinary reasoning, and the addition of exercises to
make the text more suitable for individual or classroom use.

In 2011 Esperanza Buitrago-Diaz came to the Advanced Reasoning Forum at
Dogshine as an ARF Student Fellow to work through the second edition of this text
with me. Her questions and comments, difficulties and insights led me to prepare
this new edition. The most notable differences from the second edition are:

* The chapter on the general framework now follows the development of
the examples of logics rather than preceding them.
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« In the chapter on modal logics the logic of logical necessity is developed
before accessibility relations are introduced

« In the chapter on paraconsistent logics a new approach to paraconsistency
is introduced by modifying the notion of semantic consequence.

In my recent studies I have tried to place formal logic in the larger context of
a general theory of inference. The first presentation of that was in my Five Ways
of Saying “Therefore”. The mature version can be found in my series of books
Essays on Logic as the Art of Reasoning Well. 1t would have been too large a
project to modify this text to fully take account of that work, although I have made
some changes in Chapters I and II to reflect those ideas.

There is, after all, no end but only a continual beginning.
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A. What is Logic?

Logic is the study of how to reason, how to deduce from hypotheses, how to demon-
strate. As presented here, logic is concerned with providing symbolic models of
acceptable reasoning.

What do we mean by ‘acceptable’? Is logic concerned only with the psychol-
ogy of how people reason, setting out pragmatic standards? I, or you and I together,
can reflect on our rules for reasoning but those cover only very simple cases. We are
led, therefore, to formal systems, devised to reflect, model, guide, and/or abstract
from our native ability to reason. These formal systems are based on our under-
standing of certain notions such as truth and reference, and those in turn seem to be
dependent on (i) how we understand the world and (ii) how the world really is.

But is there any difference between (i) and (ii)? And if so, is it a difference
we perceive and can take into account? We must ask these questions in doing logic,
for they concern how we will account for objectivity in our work and to what extent
we shall see our systems as prescriptive, not just a model of what is, but what should
be done.
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B.

)

Propositions

Let’s begin by asking what objects, what things we are going to study in logic.

1. Sentences, propositions, and truth

When we argue, when we prove, we do so in a language. And we seem to be able to
confine ourselves to declarative sentences in our reasoning.

For our purposes here I will assume that what a sentence is and what a
declarative sentence is are well enough understood by us to be taken as primitive,
that is, undefined in terms of any other fundamental notions or concepts. Disagree-
ments about some particular examples may arise and need to be resolved, but our
common understanding of what a declarative sentence is will generally suffice.

So we begin with sentences, written (or uttered) concatenations of inscriptions
(or sounds). To study these we may ignore certain aspects, such as what color ink
they are written in, leaving ourselves only certain features of sentences to consider in
reasoning. The most important of these aspects for logic are called #ruth and falsiry.

I will not try to explain truth and falsity here. In general we understand well
enough what it means for a simple sentence such as ‘Ralph is a dog’ to be taken as
true or to be taken as false. For such sentences we can regard truth as a primitive
notion, one we understand how to use in most applications, while falsity we can
understand as the opposite of truth, the not-true. Our goal, then, is to formalize truth
and falsity in more complex and controversial situations, leading us, according to
various conceptions of truth, to various formal logics.

Which declarative sentences are true or false, that is, have a truth-value?
Some, it would seem, are too ambiguous, such as ‘I am half-seated’, or nonsensical,
such as ‘7 is divisible by lightbulbs’. But if only sentences that are completely
objective, precise, and unambiguous are true or false, then ‘Strawberries are red’
can be neither true nor false: Which strawberries? What hue of red? Measured by
what instrument or person? And then we couldn’t analyze the following:

If strawberries are red, then some colorblind people cannot see
strawberries among their leaves
Strawberries are red
Therefore:
Some colorblind people cannot see strawberries among their leaves

Surely this is an example of acceptable reasoning, reasoning that is important
for us to formalize, for this is how we actually reason. And yet, I suspect, any
attempt to make the sentences in (1) fully precise will fail. At best we can redefine
terms, using others that may be less vague. But always we have to rely on our
common understanding. What we need in order to justify our example as acceptable
reasoning is that we may treat ‘Strawberries are red’ and the other two sentences in
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the example as if they have truth-values, not that they are completely precise. All
declarative sentences, except perhaps those in highly technical work such as mathe-
matics, are in some way imprecise. This imprecision is an essential component of
communication, for no two persons can have exactly the same thoughts or percep-
tions and hence must understand every linguistic act somewhat differently.

It is sufficient for our purposes in logic to ask whether we can agree that a
particular sentence, or class of sentences as in a formal language, is declarative and
whether it is appropriate for us to hypothesize a truth-value for it. If we cannot agree
that a certain sentence such as ‘“The King of France is bald’ has a truth-value, then
we cannot reason together using it. This does not mean that we adopt different logics
or that logic is psychological; it only means that we differ on certain cases. The
assumption that we agree that a sentence has a truth-value, that the imprecision of
the sentence is inessential, is always there, even if not explicit.

But then is truth agreement? The word ‘agreement’ may be too strong, and
‘convention’ even worse. Almost all our conventions, agreements, assumptions are
implicit, tacit. They needn’t be conscious or voluntary. Many of them may be due
to physiological, psychological, or perhaps metaphysical reasons: for the most part
we shall never know. Agreements are manifested in lack of disagreement and in that
we communicate. To be able to see we have made, or been forced into, or simply
have an agreement is to be challenged on it. In Chapter XI we’ll consider further the
notion of agreement and how it relates to an explanation of the objectivity of logic.

My goal in this series of books is to find, or perhaps devise agreements upon
which to found logic, agreements sufficiently fundamental and universal to account
for not just one logic, but many, perhaps all logics. The agreement with which I
begin summarizes our discussion to this point.

Propositions A proposition is a written or uttered sentence that is declarative and
that we agree to view as being either true or false, but not both.

Again, our agreements need not be explicit. For example, if I say ‘Cats are
nasty’ and you disagree with me, then I know that you consider that sentence to be a
proposition, even if we haven’t explicitly said that. From now on I will often say a
proposition has a truth-value, since we’ve agreed to view it as if it does, though we
need not agree on which truth-value it has.

But how can I say that this definition is fundamental when many logics have
been based on very different conceptions of propositions?

2. Other views of propositions

Consider one such view: what is true or false is not the sentence, but the “meaning”
or “thought” expressed by the sentence. Thus ‘Ralph is a dog’ is not a proposition;
it expresses one, the very same one expressed by ‘Ralph is a domestic canine’.
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Platonists take this one step further. A platonist, as I shall use the term, is
someone who believes that there are abstract objects not perceptible to our senses
that exist independently of us. Such objects can be perceived by us only through
our intellect. The independence and timeless existence of such objects account for
objectivity in logic and mathematics. In particular, propositions are abstract objects,
and a proposition is true or is false, though not both, independently of our even
knowing of its existence. Thus the following, if uttered at the same time and place,
all express or stand for the same abstract proposition:

It is raining
Pada deszcz
Il pleut

It is argued that the word ‘true’ can only be properly applied to things that cannot
be seen, heard, or touched. Sentences are understood to “express” or “represent”
or “participate in” such propositions.

Those who take abstract propositions as the basis of logic argue that we cannot
answer precisely the questions: What is a sentence? What constitutes a use of a
sentence? When has one been used assertively or even put forward for discussion?
These questions, they say, can and should be avoided by taking things inflexible,
rigid, timeless as propositions. But then we have the no less difficult questions:
How do we use logic? What is the relation of these formal theories of mathematical
symbols to our arguments, discussions, and search for truth? How can we tell if this
utterance is an instance of that abstract proposition? It’s not that taking utterances of
sentences as propositions raises questions that can be avoided. For example, were
we to confine logic to the study of abstract propositions, argument (1) would be
defective: the sentences there could not be taken to express propositions because
of their lack of precision.

Williamson, 1968 compares several other views, too, of what kind of thing a
proposition is from a viewpoint similar to mine. Most notably, Gottlob Frege has
taken the thought of a sentence to be what is true or false. I find it difficult to under-
stand how two people can have the same thought, which is in any case not a material
thing, so I will direct you to Frege, 1918, for his explanation. In the chapters that
follow I will consider arguments that there are not two truth-values, but many, or that
it makes no sense to classify a proposition as true or false, only as assertible or not
assertible. See also my essay ‘Truth and Reasoning’ in Epstein, 2012B.

But in the end the platonist, as well as the person who thinks a proposition
is the meaning of a sentence or a thought, reason in language, using declarative
sentences that they call ‘representatives’ or ‘expressions’ of propositions. Can
we not reason together by concentrating on these sentences?

For me to reason with one who understands propositions differently it is not
necessary that I believe in abstract propositions or thoughts or meanings. It is
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enough that we agree that certain sentences are—or from his viewpoint represent—
propositions. Whether such a sentence expresses a true proposition or a false propo-
sition is as doubtful to him as whether, from my view, it is true or is false. From my
perspective, the platonist conception of logic is an idealization and abstraction from
experience; from his perspective I mistake the effect for the cause, the world of
becoming for the reality of abstract objects. But we can and do reason together using
sentences, and to that extent my definition of ‘proposition’ can serve him, though he
might prefer another word for it. Then in constructing a particular logic we can take
other views of propositions into account as added weight to the significance of the
word ‘proposition’.

C. Words and Propositions as Types

Suppose now that we are having a discussion. An implicit assumption that underlies
our talk is that words will continue to be used in the same way, or, if you prefer, that
the meanings and references of the words we use won’t vary. This assumption is so
embedded in our use of language that it’s hard to think of a word except as a type,
that is, as a representative of inscriptions that look the same and utterances that sound
the same. I do not know how to make precise what we mean by ‘look the same’ or
‘sound the same’. But we know well enough in writing and conversation what it
means for two inscriptions or utterances to be equiform. And so we can make the
following agreement.

Words are Types  We will assume that throughout any particular discussion equiform
words will have the same properties of interest to logic. We therefore identify them
and treat them as the same word. Briefly, a word is a type.

This assumption, while useful, rules out many sentences we can and do
normally reason with quite well. For example:

Rose rose and picked a rose

If we subscribe to the assumption that words are types, we shall have to distin-
guish the three equiform inscriptions in this sentence. We can use some device such
as ‘Rose; rose, and picked a rose;’ or ‘Rose,me T0S€yerp and picked a rose g,

Further, if we accept this agreement, we must also avoid words such as ‘I,
‘my’, ‘now’, or ‘this’, whose meaning or reference depends on the circumstances of
their use. Such words, called indexicals, play an important role in reasoning, yet
our demand that words be types requires that they be replaced by words we can
treat as uniform in meaning or reference throughout a discussion, such as
‘Richard L. Epstein’, ‘Richard L. Epstein’s’, ‘March 9th, 1991’ and so on.
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Now suppose I write down a sentence that we take to be a proposition:
Socrates was Athenian
Later I want to use that sentence in an argument, say:

If Socrates was Athenian, then Socrates was Greek
Socrates was Athenian
Therefore, . . .

But we have two distinct sentences, since sentences are inscriptions. How are we to
proceed?

Since words are types, we can argue that these two equiform sentences should
both be true or both false. It doesn’t matter to us where they’re placed on the paper,
or who said them, or when they were uttered. Their properties for logic depend only
on what words (and punctuation) appear in them in what order. Any property that
differentiates them isn’t of concern to reasoning.

We couldn’t make this argument were we to allow indexicals in our reasoning.
If first I say ‘I am over 6 feet tall’, and then you say ‘I am over 6 feet tall’, we would
not be justified in assuming that these two utterances have the same properties of
concern to logic. Yet formalized versions of self-referential sentences such as ‘a is
false’, where the letter ‘a’ names the last quoted sentence, can introduce a form of
indexicality that leads us to classify equiform sentences differently (see, for example,
Epstein, 1992 or Chapter 22 of Epstein, 2006). Avoiding such problem sentences
for now, let us make the following assumption to simplify our work.

Propositions are Types  In the course of any discussion in which we use logic we will
consider a sentence to be a proposition only if any other sentence or phrase that is
composed of the same words in the same order can be assumed to have the same
properties of concern to logic during that discussion. We therefore identify equiform
sentences or phrases and treat them as the same sentence. Briefly, a proposition is

a type.

It is important to identify both sentences and phrases, for in argument (1) above
we want to identify the phrase ‘strawberries are red’ in the first sentence with the
second sentence.

The device I just used of putting single quotation marks around a word or
phrase is a way of naming that word or phrase, or any linguistic unit. We need some
such convention because confusion can arise if it’s not clear whether a word or phrase
is being used as a word or phrase, as when I say ‘The Taj Mahal has eleven letters’,
where I don’t mean the building has eleven letters, but that the phrase does. When
we use this device we’ll say that we have mentioned the word or phrase that is in
quotation marks, and the entire inscription including the quotes is a quotation name
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of the word or phrase. Otherwise, we simply use the word or phrase, as we
normally do. We are justified in using quotation names because we have agreed to
view words and propositions as types. Mentioning a linguistic unit can also be done
by italicizing or putting the phrase in display format.

I use these devices for mentioning linguistic units with some reluctance, for
there is not always a clear distinction between using a word and mentioning it. More-
over, when we write ‘and’ do we mean a string of symbols or the word with all its
aspects? If we mean the word, then when we write ‘Ralph is a dog’ do we mean
those words in that order, or do we mean the proposition? The linguistic unit
intended must be inferred from the context, and sometimes it’s not even clear to
the user of the convention.

I will also use single quotation marks for quoting direct speech.

The device of enclosing a word or phrase in double quotation marks is equiva-
lent to a wink or a nod in conversation, a nudge in the ribs indicating that I'm not to
be taken literally, or that I don’t really subscribe to what I'm saying. Double quotes
are called scare quotes, and they allow me to get away with “murder”.

Propositions in English

It will be hard for us to agree that a particular sentence is a proposition if we are
speaking different languages. Therefore, throughout this book I will deal only with
propositions in English or some formalized version of English.

Some argue that since modern logic is done by people speaking many different
languages, it should not be considered so closely connected to one language as I
draw it in this volume. Abstract or mathematical notions such as function and object
suffice. But if logic does not grow out of reasoning as we do it in our daily lives,
how are we to use it? And how are we to justify the methods of reasoning our logic
endorses? I start with what we have—reasoning in English —and look for abstrac-
tions and idealizations that I hope can serve speakers of many different languages.

1. Give an example of formal modeling that is prescriptive in a discipline other than
logic. Give another example that is descriptive.

2. a. Which of the following are declarative sentences?
Ralph is a dog
I am 2 meters tall
Is any politician not corrupt?
Power corrupts
Feed Ralph



