Light Engineering für die Praxis

Christian Daniel

Laserstrahlabtragen von kubischem Bornitrid zur Endbearbeitung von Zerspanwerkzeugen

Herausgegeben von Claus Emmelmann

Light Engineering für die Praxis

Reihe herausgegeben von

Claus Emmelmann, Hamburg, Deutschland

Technologie- und Wissenstransfer für die photonische Industrie ist der Inhalt dieser Buchreihe. Der Herausgeber leitet das Institut für Laser- und Anlagensystemtechnik an der Technischen Universität Hamburg sowie die Fraunhofer-Einrichtung für Additive Produktionstechnologien IAPT. Die Inhalte eröffnen den Lesern in der Forschung und in Unternehmen die Möglichkeit, innovative Produkte und Prozesse zu erkennen und so ihre Wettbewerbsfähigkeit nachhaltig zu stärken. Die Kenntnisse dienen der Weiterbildung von Ingenieuren und Multiplikatoren für die Produktentwicklung sowie die Produktions- und Lasertechnik, sie beinhalten die Entwicklung lasergestützter Produktionstechnologien und der Qualitätssicherung von Laserprozessen und Anlagen sowie Anleitungen für Beratungs- und Ausbildungsdienstleistungen für die Industrie.

Weitere Bände in der Reihe http://www.springer.com/series/13397

Christian Daniel

Laserstrahlabtragen von kubischem Bornitrid zur Endbearbeitung von Zerspanwerkzeugen

Christian Daniel Technische Universität Hamburg Hamburg, Deutschland

 ISSN 2522-8447
 ISSN 2522-8455
 (electronic)

 Light Engineering für die Praxis
 ISBN 978-3-662-59272-4
 ISBN 978-3-662-59273-1
 (eBook)

 https://doi.org/10.1007/978-3-662-59273-1
 ISBN 978-3-662-59273-1
 ISBN 978-3-662-59273-1
 ISBN 978-3-662-59273-1

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Laser- und Anlagensystemtechnik (iLAS) der Technischen Universität Hamburg (TUHH) sowie bei der LZN Laser Zentrum Nord GmbH (LZN).

Meinem Erstbetreuer Herrn Prof. Dr.-Ing. Claus Emmelmann, Leiter des iLAS und des LZN, danke ich an dieser Stelle herzlich dafür, dass er mir die Möglichkeit gegeben hat das vorliegende Thema zu bearbeiten. Seine Unterstützung und die gewährten Freiräume haben maßgeblich zum Abschluss der vorliegenden Arbeit beigetragen.

Herrn Prof. Dr.-Ing. Wolfgang Hintze, Leiter der Produktionstechnik des Instituts für Produktionsmanagement und -technik, danke ich für die Übernahme des Koreferats und die aufmerksame Durchsicht der Arbeit. Weiterer Dank gilt Herrn Prof. Dr.-Ing. habil. Bodo Fiedler, Leiter des Instituts für Kunststoffe und Verbundwerkstoffe, für die Übernahme des Vorsitzes des Prüfungsausschusses.

Ganz besonders bedanke ich mich bei Frau Prof. Dr.-Ing. Maren Petersen, Leiterin des Fachgebiets Berufliche Fachrichtung Metalltechnik der Universität Bremen und Abteilungsleiterin des Instituts Technik und Bildung (ITB). Durch ihr Feedback und zahlreiche Diskussionen hat sie erheblich zum Gelingen dieser Arbeit beigetragen und auch in turbulenten Phasen immer Zeit für Unterstützung gefunden.

Ich danke zudem den Mitarbeiterinnen und Mitarbeitern des iLAS sowie des LZN für die angenehme und kollegiale Arbeitsatmosphäre. Für den intensiven fachlichen und persönlichen Austausch sind hier besonders hervorzuheben Herr Dr.-Ing. Dirk Herzog, Herr Dr.-Ing. Marten Canisius, Herr Dr.-Ing. Jannis Kranz, Frau Dipl.-Ing. oec. Sina Hallmann, Frau Dr.-Ing. Vanessa Seyda, Herr Dr.-Ing. Christoph Klahn, Herr Dr.-Ing. Eric Wycisk und Herr Dipl.-Ing. Sebastian Schmied. Ein sehr großes Dankeschön geht zudem an Herrn Marco Koslowski und Herrn Marco Haß für die intensive Unterstützung bei allen technischen Belangen. Sie ermöglichten durch ihren unermüdlichen Einsatz das Gelingen zahlreicher Versuche. Ein großer Dank gilt darüber hinaus den Studenten, die diese Arbeit unterstützt haben. Bei den Partnern der MAS GmbH sowie EWAG AG bedanke ich mich für die produktive und angenehme Zusammenarbeit in den gemeinsamen Projekten.

Abschließend danke ich besonders meiner Frau, meinen Kindern und meiner Familie für die jahrelange Unterstützung und Ermöglichung zur Fertigstellung dieser Arbeit. Ohne ihren Rückhalt hätte die Arbeit nicht in dieser Form entstehen können. Ich danke ihr für die geduldige Begleitung der strapazierenden Ausarbeitung in der Endphase.

Zusammenfassung

Zur Schonung von Umwelt und Ressourcen sind CO₂-Emissionen und weitere Treibhausgase aus Energietechnik, industriellen Prozessen und dem Verkehr zu verringern, indem Energie und Treibstoff eingespart werden. Hierzu werden Leichtbauwerkstoffe mit hoher spezifischer Festigkeit wie Stähle hoher Festigkeit und Härte im Automobilbau und in der Energietechnik verwendet. Anfallende Zerspanaufgaben werden in erster Linie durch Werkzeuge mit geometrisch bestimmter Schneide aus polykristallinem kubischem Bornitrid (PCBN) gelöst. Bei der Fertigung von PCBN-Zerspanwerkzeugen eröffnet das Laserstrahlabtragen mit kurzen und ultrakurzen Pulsen neue Potentiale im Vergleich zum konventionellen Schleifprozess. Ein systematisches Vorgehen zur Entwicklung von Laserstrahlabtragprozessen hochharter Werkstoffe, das auf verschiedene Werkstoffe und Anwendungen zielgerichtet anpassbar ist, wurde bisher jedoch noch nicht hergeleitet. Ziel dieser Arbeit ist daher die Erstellung eines methodischen Vorgehens zur effizienten sowie flexiblen Entwicklung von Laserstrahlabtragprozessen mit kurzen und ultrakurzen Pulsen. Dieses wird am Beispiel der Prozessentwicklung zur laserbasierten Fertigung von Zerspanwerkzeugen aus PCBN mit geometrisch bestimmter Schneide zum Drehen oder Fräsen validiert. Die Anwendung des entwickelten Prozesses führt zum abschließenden exemplarischen Einsatz der Werkzeuge bei der Hartzerspanung.

In Kapitel 2 werden die laserbasierte Fertigung von Zerspanwerkzeugen, das Laserstrahlabtragen zur Bearbeitung hochharter Werkstoffe sowie Grundlagen zur Identifizierung einer Prozessführung beim Laserstrahlabtragen vorgestellt. Auf dieser Basis wird in Kapitel 3 die Problemstellung abgeleitet sowie die Struktur der vorliegenden Arbeit entwickelt. Das in Kapitel 4 entwickelte methodische Vorgehen zur Prozessentwicklung wird in Kapitel 5 validiert und setzt sich aus folgenden Schritten zusammen. Bei der Definition von Zielkriterien zur laufenden Überprüfung der Erfüllung der Anforderungen, wird für die exemplarisch durchgeführte Prozessentwicklung zur Laserbearbeitung von PCBN-Werkzeugen auf die Erzielung hoher Oualität fokussiert. Im ersten Schritt des methodischen Vorgehens wird dann die Bearbeitungsaufgabenstellung definiert und auf Basis der Zielkriterien eine PCBN-Sorte mit 90 % CBN-Anteil und keramischem Binder festgelegt. Anschließend erfolgt eine systematische Auswahl des optischen und mechanischen Aufbaus unter Integration einer ps-Strahlquelle mit einer Pulsdauer von $t_p = 10$ ps, einer Wellenlänge von $\lambda = 1.064$ nm sowie einer Fokussieroptik mit Brennweite F = 163 mm. Im dritten Schritt wird im Rahmen der Untersuchung der Prozessführung der Einfluss der Fokuslage, der Pulsenergieverteilung sowie der Flächenenergieverteilung auf das Bearbeitungsergebnis charakterisiert. Durch systematisches Vorgehen wird ein Arbeitspunkt zum Schruppen und zur Endbearbeitung für den Fertigungsprozess von PCBN-Werkzeugen bestimmt und im optisch dominierten Ablationsbereich maximale Abtragraten von $Q_A = 10 \text{ mm}^3/\text{min}$ sowie minimale Oberflächenrauheiten von $S_A = 0.52 \,\mu m$ erzielt. Weiterhin wird auf Basis einer Modellbildung eine Prozesseinstellung für Belichtungsmuster zur Fertigung von Schneidkanten geringer Welligkeit abgeleitet. Abschließend wird in Kapitel 5 die Übertragbarkeit des methodischen Vorgehens zur Entwicklung von Laserstrahlabtragprozessen auf andere Anwendungsfälle anhand mehrerer PCBN-Sorten sowie Hartmetall validiert. Der CBN-Gehalt lässt sich als wichtigster Einflussfaktor auf die Abtragrate und Oberflächenrauheit identifizieren und es erfolgt eine Untersuchung des Einflusses des Schraffurwinkels auf die Oberflächenrauheit. Durch Anpassung des Schraffurwinkels kann bei Hartmetall eine Reduzierung der Oberflächenrauheit um ca. Faktor 3,5 erreicht werden. Mit der Durchführung der Prozessentwicklung zur Laserbearbeitung von PCBN-Werkzeugen in Kapitel 5 wird das methodische Vorgehen aus Kapitel 4 validiert und die technische Machbarkeit der Herstellung von PCBN-Werkzeugen durch einen Abtragprozess mit Pikosekundenlasern aufgezeigt sowie zudem ein Prozessverständnis zum Laserstrahlabtragen von PCBN erlangt. Abschließend werden in Kapitel 6 mittels des abgeleiteten Laserstrahlabtragprozesses erstellte PCNB-Werkzeuge im Zerspaneinsatz erprobt und konventionelle, lasergefertigte und oberflächenstrukturierte Werkzeuge einander gegenüber gestellt. Anhand der Ergebnisse der Zerspanversuche lässt sich die Eignung der laserbearbeiteten Werkzeuge mit sowie ohne funktionale Struktur zum Einsatz in der Hartzerspanung feststellen.

Inhaltsverzeichnis

Abb	ildungs	verzeich	nis	xi
Tabe	ellenve	rzeichnis		xv
Abk	ürzung	sverzeicł	mis	xvii
1	Einlei	tung		1
2	Stand der Technik			3
	2.1	Zerspar	werkzeuge	3
	2.2	Lasersti	rahlabtragen	11
	2.3	Prozess	führung	20
3	Proble	emstellur	ng und Lösungsweg	25
4	Methodisches Vorgehen			29
	4.1	Ableitu	ng von Zielkriterien	30
	4.2	Prozess	relevante Einflussgrößen	32
	4.3	Method beim La	ische Vorgehensweise zur Prozessentwicklung aserstrahlabtragen	33
	4.4	Flexibil	ität des methodischen Vorgehens	36
	4.5	Versuch	ns- und Analysetechnik	37
5	Prozessentwicklung zum Laserstrahlabtragen			43
	5.1	Bearbei	tungsaufgabenstellung und Werkstoff	43
	5.2	Optisch	er und mechanischer Aufbau	44
		5.2.1	Bewertung und Auswahl von Strahlquellen	44
		5.2.2	Räumliche und informationstechnische Verknüpfung von physikalischen Anlagenkomponenten	48
		5.2.3	Brennweite	49
	5.3	Prozess	führung	53
		5.3.1	Fokuslage	53
		5.3.2	Pulsenergieverteilung und Flächenenergieverteilung	59
		5.3.3	Belichtungsstrategie	67

	5.4	Prozessfenster	82
5.5	5.5	Übertragung der Prozessentwicklung auf veränderte Bearbeitungsaufgabenstellungen	83
		5.5.1 Gegenüberstellung verschiedener CBN-Sorten	84
		5.5.2 Prozessführung für Hartmetall	
		5.5.3 Verbesserung des erzielbaren Rauheitsniveaus durch Einsatz des Schraffurwinkels	90
6	Erste	ellung und Einsatz laserbearbeiteter Zerspanwerkzeuge	103
	6.1	Laserbasierte Erstellung von Zerspanwerkzeugen	104
	6.2	Einsatz in der industriellen Zerspananwendung	
7	Zusa	mmenfassung und Ausblick	115
8	Literatur		119

Abbildungsverzeichnis

2.1	a) Kubische und hexagonale Kristallstruktur des Bornitrids b) Zerspanwerkzeug aus PCBN	3
2.2	Prinzip der Laserbearbeitung von Zerspanwerkzeugen, nach [21]	7
2.3	Strahlkaustik in Abhängigkeit der Brennweite, nach [94, 96]	12
2.4	Definition der Fokuslage	13
3.1	Struktur der Untersuchungen und Kapitelaufbau	26
4.1	Ansatz des methodischen Vorgehens zur Laserprozessentwicklung	29
4.2	Einflussgrößen auf den Prozess des Laserstrahlabtragens von PCBN	32
4.3	Detaillierter Ablauf des methodischen Vorgehens zur Laserprozess- entwicklung	34
4.4	Parametereinfluss auf Pulsfluenz und Flächenenergiedichte	36
4.5	Vermessung der Strahlkaustik	39
4.6	Schematische Darstellung des maximalen Abstands zwischen zwei Pulsen s _{p.max}	42
5.1	Optischer und mechanischer Versuchsaufbau	49
5.2	Einfluss der Brennweite auf Fokusdurchmesser und Rayleighlänge	50
5.3	Einfluss der Brennweite auf die geometrische Auflösung	51
5.4	Intensitätsprofil im Gau β strahl bei Brennweite $F = 100 \text{ mm}$ und $F = 163 \text{ mm}$	n52
5.5	Gegenüberstellung von Strahldurchmesser d_f und Wirkdurchmesser d_w bei Defokussierung	54
5.6	Abtragrate und Rauheit über Fokuslage	55
5.7	<i>REM-Aufnahme und Oberflächentopografie bei Fokuslage z = -1,55</i>	56
5.8	<i>REM-Aufnahme und Oberflächentopografie bei Fokuslage $z = 1, 1$ und $z = -1, 2$</i>	57
5.9	Abtragtiefen bei Defokussierung	58
5.10	Abtragrate über Energiedichte für variierte Leistung und Pulsfrequenz	60
5.11	Abtrageffizienz über Energiedichte für variierte Leistung und Frequenz	61
5.12	Abtrageffizienz über Energiedichte mit zusätzlich kleinen Laserleistungen zur Bestimmung der maximalen Abtrageffizienz	62
5.13	Abtragrate über Pulsfluenz zur Bestimmung des Abtragregimes	62

5.14	Ramanspektroskopie der unbearbeiteten Referenzfläche und der laserbearbeiteten Oberfläche	.63
5.15	Abgetragene Schichttiefe über Pulsabstand für variierte Spurabstände	.64
5.16	Abgetragene Schichttiefe über das Produkt aus Spur- und Pulsabstand	.64
5.17	Abtragrate über Flächenenergiedichte für variierte Spur- und Pulsabstände sowie variierte Laserleistung	.65
5.18	Maximale Oberflächenrauheit S_z und mittlere arithmetische Oberflächen- rauheit S_a über Flächenenergiedichte für alle untersuchten Parameter- kombinationen	.66
5.19	Negativbeispiel: hohe Kantenwelligkeit an einer Werkzeugschneide (links) und ungünstige Ausprägungsform der Trennfuge (rechts)	.68
5.20	Schematische Darstellung a) der Grundform des spiralförmigen Belichtungs- musters b) des Belichtungsmusters mit Überlagerung des Achsvorschubs; c) exemplarische Darstellung des Belichtungsmusters mit Überlagerung eines überzeichnet hohen Achsvorschubs in der Simulation	.69
5.21	Ablaufschema der Simulation	.70
5.22	Definition der Koordinaten in der Modellbildung der Abtraggeometrie	.71
5.23	Erstellung und Diskretisierung der Pulsabtraggeometrie	.72
5.24	Grafische Repräsentation einer Ergebnismatrix	.73
5.25	Profil der Kantenwelligkeit abgeleitet aus der Ergebnismatrix	.74
5.26	Typische Ausprägungsformen der Trennfuge	.74
5.27	Kantenwelligkeit und Abtragrate in Abhängigkeit der Vernetzungsdichte	.75
5.28	Abtragtiefe in Abhängigkeit der Vernetzungsdichte	.75
5.29	Modellberechnungszeit in Abhängigkeit der Elementanzahl	.76
5.30	Querschnittsprofil der Trennfuge im Vergleich zwischen Experiment (oben) und Berechnung (unten)	.77
5.31	Gegenüberstellung von Berechnungsergebnis und Experiment	.78
5.32	Berechnungsergebnisse der Kantenwelligkeit und Abtragrate bei Variation von Scangeschwindigkeit, Werkstückgeschwindigkeit und Außendurchmesser des spiralförmigen Belichtungsfelds	.80
5.33	Berechnungsergebnisse der Ausprägungsformen der Trennfuge bei Variation von Scangeschwindigkeit, Werkstückgeschwindigkeit und Außendurchmesser des spiralförmigen Belichtungsfelds	.81
5.34	Berechnungsergebnisse der mittleren Abtragtiefe bei Variation von Werkstückgeschwindigkeit und Außendurchmesser des spiralförmigen Belichtungsfelds	.81

5.35	Abtragrate in Abhängigkeit des CBN-Gehalts	85
5.36	Oberflächenrauheit in Abhängigkeit des CBN-Gehalts	85
5.37	Abtragschwelle in Abhängigkeit des CBN-Gehalts	85
5.38	Abtragrate in Abhängigkeit des Binder-Typs	86
5.39	Oberflächenrauheit in Abhängigkeit des Binder-Typs	86
5.40	Abtragrate über Energiedichte für variierte Leistung und Pulsfrequenz	88
5.41	Oberflächenrauheit über Flächenenergiedichte; Werkstoff: HM KXF	89
5.42	Abtrageffizienz über Energiedichte; Werkstoff: HM KXF	89
5.43	Wärmeeinfluss beim Abtrag von HM im Bereich $F_A > 250 \text{ J/cm}^2$	90
5.44	Systematisches Vorgehen zur Untersuchung der Entstehungsmechanismen von Oberflächenrauheit	92
5.45	Oberflächenrauheit in Abhängigkeit des Schraffurwinkels	93
5.46	Charakteristische Größen einer Zwei-Vektoren Schnittfläche	95
5.47	Schnittflächendiagonale in Abhängigkeit des Schraffurwinkels	95
5.48	Mikroskopaufnahme eines Mehrfach-Schnittbereichs (links) und Abtragtiefe im Schnittbereich in Abhängigkeit der Anzahl geschnittener Laservektoren (rechts;	97
5.49	Auftreten von Mehrfach-Schnittbereichen in Abhängigkeit des Schraffurwinkels und des Spurabstands	97
5.50	Schematische Darstellung der Bewegungsrichtung des Laserfokus innerhalb der abgetragenen Spur	98
5.51	Regelmäßiges periodisches Oberflächenprofil als 3D-Topographie und REM-Aufnahme;	98
5.52	Zyklusdurchlaufzahl und Überfahrtenzahl in Abhängigkeit des Schraffurwinkels	99
5.53	Entwicklungsstadien der Oberflächenrauheit	100
5.54	Zuordnung der Mechanismus der Rauheitsentstehung zu Schraffurwinkeln	101
6.1	Werkzeuggeometrie für den Einsatz im Zerspanversuch	103
6.2	Untersuchte Werkzeugvarianten	104
6.3	Laserbearbeitung der Freifläche: Generierung von Bahndaten (links), Spannsituation des Werkzeugrohkörpers (rechts)	105
6.4	Ableitung von Bearbeitungsdaten zur Strukturierung a) Positionierung von Bearbeitungsvektoren b) Segmentierung und Referenzpunkte	106
6.5	Ergebnisse der Laserbearbeitung der Werkzeuge WKZ II und WKZ III	107

6.6	Versuchsaufbau zur Zerspanung (links), PCBN-Zerspanwerkzeug mit integriertem Thermoelement (rechts)	
6.7	Ergebnisse des Zerspanversuchs der Werkzeuge WKZ I - III	111
6.8	Temperaturverlauf im Zerspanversuch	112
6.9	Auftretende Spanformen im Zerspanversuch	112
6.10	Verschleißbilder der Werkzeuge WKZ I - III	113

Tabellenverzeichnis

2.1	Eigenschaften von PCBN in Abhängigkeit von CBN-Gehalt, Korngröße und Binder-Typ	5
4.1	Aufstellung des Portfolios an PCBN-Sorten [43–46]	38
5.1	Punktematrix	45
5.2	Eigenschaftenmatrix	45
5.3	Paarvergleich	46
5.4	Bewertungsmatrix	46
5.5	Spezifikationen der verwendeten ps-Laserstrahlquelle	47
5.6	Festgelegte Parameter aus dem Entwicklungsschritt "optischer und mechanischer Aufbau"	53
5.7	Abtragraten und Oberflächenrauheiten charakteristischer Fokusebenen	56
5.8	Feste und variable Versuchsparameter	59
5.9	Prozessfenster Schruppbearbeitung	83
5.10	Prozessfenster Endbearbeitung	83
5.11	Werkstoffeigenschaften des Hartmetalls K10-K40 [163]	87
5.12	Prozesseinstellung zum Laserstrahlabtragen von Hartmetall KXF	90
5.13	Feste Parameter im Rahmen der Untersuchung des Schraffurwinkels	92
5.14	Untersuchte Schraffurwinkel für Zwei-Vektoren Schnittflächen	94
6.1	Vermessung der Werkzeuge WKZ I bis WKZ III	108
6.2	Zerspanparameter des Drehprozesses	110
6.3	Werkzeugverschleiß und Werkstückrauheit nach der Zerspanung	114