Learn Blockchain
by Building One

A Concise Path to Understanding
Cryptocurrencies

Daniel van Flymen

ApPress’

Learn Blockchain
by Building One

A Concise Path to
Understanding
Cryptocurrencies

Daniel van Flymen

Apress’

Learn Blockchain by Building One: A Concise Path to Understanding
Cryptocurrencies

Daniel van Flymen
New York, NY, USA

ISBN-13 (pbk): 978-1-4842-5170-6 ISBN-13 (electronic): 978-1-4842-5171-3
https://doi.org/10.1007/978-1-4842-5171-3

Copyright © 2020 by Daniel van Flymen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: Rita Fernando

Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5170-6. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5171-3

Dedicated to Joshua, who finishes what he starts.

Table of Contents

About the AUthorcccmvemmrsmmmm s ——————— xi
About the Technical REVIEWETccusseesssssnsssssnsssssnsssssnsssssnsssssanssssnnss xiii
Acknowledgments........cccccumssssmmesmmmmmmmssssssssssssneessssssssssssssnssesssssssnnnnns XV
Introduction........cccucmmiemmsmmmenmnmmms s —————— xvii
Chapter 1: Getting Ready for Application Developmentcccunriuns 1
INSEAIliING PYENON ... s 2
Windows inStallationccceveinnsninesese s 2
MACOS iNStAllALON. ... ———————— 3
Linux inStallation ... 3

How Python programs FUN ... sss s ssssessessesnes 4
Managing project dependencies.........cocvvririnnnsnnnien s 5
INSEAIlING POBIIY....ce e 5
Creating a Python project with POEtry........ccccovevvcnniesnccerr e 8
Installing dependenCies.........ccvvererrrrerierierienen s se e enens 9
Activating the VIrUAIENVc..coevrveriere e s see e s e sne s 10
Example: Getting the BitCOIN PriCe........cucvvrierirrerreriereresrersese e sessessesresessessesaens 12
SUMMANY..c.eeitiir st s s s s b e e p e e e aenrn 13

TABLE OF CONTENTS

Chapter 2: A Way to Identify Everything.......cccucccmmmssmnmnnsssssssnsssssnnnnes 15
ProjeCt SELUD ..o 15
HaSh fUNCHONS ... e 17

Example 1: Hashing in PYython ... 17
Example 2: Hashing imagesccccvvrernennenmnesesssessssesesssessssesesessssssessnns 20
2T 10 To TS 22
1 =TT] o]) R 23
Example 3: Sending untamperable emailscccoevevrierievnnersenseresessensenes 23
How preventing spam led to proofs of Work..........ccccocevvnvneninnnsnieniesnsensennens 26
SUMMANY.....eiieeresere e s e e e ne s 28

Chapter 3: BlocKChains.........cccumrmsssnnnnmmssssnnnmsssssssnssssssssnssssssssssssssnnnnss 29
What does a bloCK 100K KE?cccereeerneninnsernse s sessenens 29
Immutability and the importance of hashescccevivrvrvnnrncn 30
A basic blockchain in PYython ... 31

Representing a blockchain using a classccocoeevvinrnenssnsnienesessenennn, 31
Complete blockchain.py COUE........cccvvrriinrrre s 36

Chapter 4: Proof of Workccccvnnnmmmmmmmmnmnmmnsssssssssssssnmssssssssssssssssnns 39
Interacting with the blockchain class using iPython..........c.ccccovevnienneserensenenns 39
Introduction to proof 0f WOrKcccovvvnininnn e 40

A trivial example of Proof of WOrKcccveevvvrinennsensenese s sesessesensens 42
An analogy: JigSaw PUZZIES........ccccvrerereriersensensesses e ssessessse s sessssssesaesaesns 43
Implementing Proof 0f WOrKcccccvvereririnse s s 46
MONEtary SUPPIY ..o 53

TABLE OF CONTENTS

Chapter 5: NetWorking......ccuusseeesesssssnnnssssssssnssssssnsssssssnssssssssnnnssssssnnnnss 55
A brief moment of appreciation for the Internet ... 55
Concurrency in PYENON ..o 57
A rapid introduction t0 @SYNCI0cecverrererrrrerererere e s 59
Building a chat server from the ground Upcccccvvrernennesesnsesnseses e 61

Completing the Chat SEIVET ..o e 64
ProtOCOISceiiiiirciree e s 79
Groundwork for building a bIOCKCH@IN.........cccevvrevierevrrerrerere s sessenees 80

GOSSIP aurererrsirerre s s e e R e e E e R s 81

Chapter 6: Cryptography 101cccvvmmimmmssmmsssmmssmsss s s s e 83
Sending messages With integrity........c.cocrvrrnnnnenrnsssese e 84
Symmetric Cryptography.........ccccvnesnesnsssse s 85

CABSAIS CIPNET ...euveerereeriesersere e ses s s s s s sae e s s re e e e ene e 85
Public key cryptographycccoeovvininnenirsensie e s s 86
An Example in PYthoN ..o s s see e s 87
Digital SIgNALUIEScovcircire e enea 90

L= 7= Lo SRR 92
Wallets on the BIOCKCHAIN.........cccveeereeeernesrresers s 94

Chapter 7: Creating a Transactional Nodeccciusssnennnssssnnnssssssnnans 95

Transactions and Work SUMMArYcccvevnininiennnensessesese s sessessesseens 96
A departure from Bitcoin’s UTX0 MOdElcccvvererrrrenrerierenensersesessssensensens 96
The role of @ MINET ... e 96
How we’ll be implementing transactionscccccevvnininnsnsnnnesnsenennn, 97

Creating a project for our full NOE...........cccoveeerrerereer s 98
Installing dependencCies.........ovvernrereresernsesense s 98
Creating the file StrUCTUIE.......c.covvvrvrir s 101

vii

TABLE OF CONTENTS

STrUCTUNNG OUF NOGE ... cvererrecerrere et sae e e e naeenens 102
Delegating responsibilitiesc..ccccvvnininnsnsn e 102
The SErVer MOCUIEcocveeereecrecrere e e e e 105
The blockchain MOAUIE.........covccerrerererer e 111
The connections MOUUIE...........cccvverrrenerese s 115
The Peers MOUUIEccceverircr e 118
LT TST Vo 13 R 125
Using Marshmallow to validate our mesSsages..........ccccvverrererversenseerersennes 128
Implementing and validating typesc..ccccvvnrirnnnnnn e 130
Defining the messages (and their sSchema)............cccovvernrerresernscnennenens 133
Bringing it all t0gether ... 139
Finding your external IP address.........cccuuvernrerrnesessnesnsesssesesesesessessssenens 139

Chapter 8: Comparisons to Real-World Decentralized Networks143

Why blockchain engineering is hard...........ccovveninininnnininse e 143
The shortcomings of FUNCOINcovcrcr s ————- 147
The NetWOrKiNg laYer.........coverereeerererrrcre e 148
Data PersiSteNCe.........ccvirivninirrr s —————— 156
Alternative consensus: Proof 0f StaKe.........c.cccvevernresnnesenssesssessse s sessesesseens 157
SMArt CONTACESccveririiccrr e —————— 158
What does a smart contract 100K [KE?..........cccurrienmnennnsnssesesssessssesenens 160

Appendix A: Bitcoin: A Peer-to-Peer Electronic Cash

System by Satoshi Nakamoto...........cccinnsmmmmmmssssnnnmmssssssnmsssssnsnnsssnnns 167
ADSITACT.......cereeerreeses s ne e 167
INEFOAUCTION.....cviececcere e 168
TraANSACTIONS ... 169
TIMESTAMP SEIVEL ... cccerereerrererrere s sa e se s e saesa e e s e naennes 170

viii

TABLE OF CONTENTS

Proof-0f-WOrKccorinrniirie s 171
0 o G 172
INCENTIVE ... 173
Reclaiming DiSK SPACEccccvrererrererererereserrsseseseses e sessesesse e sesssessssessenes 174
Simplified Payment Verificationcocccovveinisninscnncsnsse e 175
Combining and Splitting ValUEcccevvvrieriennsrsene s e 176
o 117 R 176
(0 111 =0 R 177
0] T 1 181
RETBIBINCES ..ot 182
INA@X..ueeeiiienrsssnnssssnnsssssnsssssnsssssnsssssnsssssnnssssnnnnssnnnnssnnnnssnnsnssnnnnssnnnnnnns 183

ix

About the Author

Daniel van Flymen is currently a Director of
Engineering at Candid in New York City. As a
seasoned Python veteran, he’s a regular code
contributor to popular open source projects
and is a guest on the Software Engineering

\ Daily podcast, having been on popular
ﬂm episodes such as Understanding Bitcoin
! 7 Transactions and Blockchain Engineering. He

frequently writes on Medium.com and has a

number of popular articles, such as “Learn Blockchains by Building One”
and “Learn Blockchains Using Spreadsheets”—he is passionate about
increasing Bitcoin adoption because he believes it’s the future.

About the Technical Reviewer

Federico Ulfo is a polyhedric software
engineer and entrepreneur experienced in
building high-scale API and ETL. He founded
the Lightning Network NYC and the Learning
Bitcoin meetups. His interests span from
cryptocurrencies to economics, philosophy,
gardening, and many more topics. You can
reach out to him at ulfo.it.

xiii

Acknowledgments

This book is dedicated to my brother Joshua who always finishes what
he starts. A major thanks to

— My friend and fellow Bitcoin educator, Justin Moon,
for helping me clarify concepts, test code, and
provide sound advice when needed.

My friend Federico Ulfo, not just for the arduous
task of reviewing and double-checking my work
each week but also for trekking with me to countless
Bitcoin and Lightning events and conferences over

the last few years.

— Rita Fernando and Shivangi Ramachandran from
Apress for believing in me and making this book a
reality.

Introduction

Another book on blockchains? Why?

Understanding blockchains isn’t easy. Or at least wasn’t for me: when
Bitcoin first made the news cycle, I tried to learn how it worked and
discovered that there were too few resources addressed to programmers
(like myself). There was always the Bitcoin reference wiki (https://
en.bitcoin.it), butin those days, it wasn’t as clearly organized as today,
and although I read Satoshi’s whitepaper, I didn’t really understand it at
first—at least not how the cryptographic parts worked.

I meandered through YouTube, completed porous tutorials, and
felt the frustration of examples that didn’t communicate the concepts
clearly. So, I decided to try and build a blockchain myself, and document
all the things I learnt along the way. In so doing, I discovered why
cryptocurrencies are so hard to explain and understand; it’s because you
first need to define the ingredients of digital money:

o How does the money get created? (Mining)

e How does Alice send money to Bob? (Digitally signed
transactions)

e Who keeps track of all these transactions and the
generated money? (Everyone, via a distributed ledger)

These high-level points rely on distinct units of knowledge that must
be understood before they can be combined into a set of commonly
agreed-upon rules that everyone follows. And the best way to understand
these disparate concepts is piece by piece—by practically using them to
build your own cryptocurrency. So, I wrote this book for people who feel

xvii

https://en.bitcoin.it
https://en.bitcoin.it

INTRODUCTION

the same frustration that I did, and overcome it by dealing with the subject
matter at a code level—that’s what really gets it to stick. If you follow
through, and do the same, I'm certain that at the end of this book, you’ll
have a solid grasp of how they work.

Setting yourself up for success
GitHub repository

The finalized code is located at https://github.com/dvf/blockchain-book.
But try do the coding yourself—the code is structured in such a way

that methods are stubbed out at a high level with the details being filled
incrementally. This code is kept updated, and so it’s handy as a north star.

Take the time to set up your development
environment

Use a good IDE (integrated development environment) like Microsoft
VSCode or JetBrains PyCharm. They are both free and fantastic at spotting
errors in your code before you do. And it’s well worth the time to set your
IDE up before you begin. Spend your time worrying about blockchains and
not about syntax errors in your code.

Know where to get answers

Browse and ask questions on the GitHub repository’s Issues page. The
repository has a large community following, so you're likely to meet others
with similar problems. And if you encounter errors or bugs, I implore you
to open an Issue.

xviii

https://github.com/dvf/blockchain-book

INTRODUCTION

Don’t speak Python?

That’s OK. Python is known for its legibility; it’s a very easy language to
transcribe. I have seen other programmers (C#, JavaScript, and Rust) do

the examples in the book on the fly.

Xix

CHAPTER 1

Getting Ready
for Application
Development

For the unfamiliar, Python is one of the most popular languages. It’s
extensively used everywhere—from academia and the sciences to large-
scale web applications, like Instagram. Part of its popularity is due to the
plethora of libraries, packages, and extensions available for free online as
well as ease of reading due to its resemblance to pseudocode.

In this chapter we’ll make sure your computer is properly set up for
application development and that Python is properly installed. Then, I'll show
you how to create a pragmatic Python project and how to install dependencies.

Python Versions

Python comes in two flavors: version 2 and version 3. Version 2 is no
longer supported by the Python Software Foundation, but it still ships
preinstalled on most operating systems because it’s used by plenty
of internal tools. Another complication is that different operating
systems install Python in different places in the file system. These
factors make setting up a development environment tricky.

© Daniel van Flymen 2020 1
D. van Flymen, Learn Blockchain by Building One,
https://doi.org/10.1007/978-1-4842-5171-3_1

https://doi.org/10.1007/978-1-4842-5171-3_1#DOI

CHAPTER 1 GETTING READY FOR APPLICATION DEVELOPMENT

We'll try navigating these obstacles by installing and using tools which
help us manage Python installations.

Note As a convention, throughout this book, we’ll prefix a terminal
command using the $ symbol. The output will be shown as plaintext.

Installing Python
Windows installation

Python.org contains downloadable binaries for Windows. Head over
to www. python.org/downloads/windows/ and download the binary for
Python 3.8.

Once downloaded, install Python 3.8, making sure to choose the
options to

o Uninstall previous versions of Python.
o Install the pip (the Python package manager).

e Add Python to the PATH (allowing you to execute
Python on the command line).

After installation, to confirm you've done everything correctly, open up
your command line and check Python’s version:

C:\Users\dan> python --version
3.8.3

http://www.python.org/downloads/windows/

CHAPTER 1 GETTING READY FOR APPLICATION DEVELOPMENT

macO0S installation

Although macOS ships with a version of Python for internal purposes, we
don’t want to modify it when we develop, so we’'ll be installing a fresh
version of Python using Homebrew—a tool used to help manage and
install third party packages on macOS.

First, we’ll need to make sure Apple’s Command Line tools are
installed, in your terminal:

$ xcode-select --install

You'll need to install Homebrew, a package installer for macOS. To
install it, follow the instructions on https://brew.sh/, and ensure that
Homebrew is correctly installed.

After you've installed Homebrew, let’s install the latest version of
Python:

$ brew install python

Once the installation completes, verify that Python has been installed
correctly:

$ python --version

Python 3.8.3

Linux installation

If you're using a Debian-based version of Linux, you can install Python 3.8
using apt (or any other package manager):

$ sudo apt-get update
$ sudo apt-get install python3.8

https://brew.sh/

CHAPTER 1 GETTING READY FOR APPLICATION DEVELOPMENT

Once the installation completes, verify that Python has been installed
correctly:

$ python --version
Python 3.8.3

If you're not using a Debian-based Linux distribution, you can compile
Python from the source: www. python.org/downloads/source/

How Python programs run

When you install Python, you're actually installing an interpreter—a
program that translates written Python code to instructions that your
computer understands and executes. The interpreter you've installed is
called CPython, a popular interpreter written in the C language.

You run a Python program by feeding it to the Python interpreter in
your terminal:

$ python my program.py

This converts your code to “computer instructions” and executes them.

How Does Your 0S Know Where the Python Interpreter Is?

Your OS has a system-wide variable called PATH, containing a list

of file paths to traverse when looking for programs. You can check
what it’s set to by running echo $PATH in your terminal. The Python
interpreter resides in /usr/local/bin/. This is verified by calling
which python.

http://www.python.org/downloads/source/

CHAPTER 1 GETTING READY FOR APPLICATION DEVELOPMENT

Managing project dependencies

Every project you build is likely to use external libraries. These
dependencies may be database access libraries or tools needed to parse
documents or websites, but the important thing is that they're included in
your project.

Managing project dependencies can be a tricky task, since different
dependencies have different requirements—some dependencies require
specific versions of Python, others may depend on sibling dependencies.
Modern Python projects use package managers to cope with the arduous
tasks of downloading, installing, and keeping up-to-date dependencies. In
summary, it makes your life easier to use a package manager.

Poetry is one out of a handful of dependency managers for Python.
There are other, more popular ones, like Pipenv. But after using both
extensively, I've found that Poetry has a cleaner interface and is more
pragmatic in its goals.

Installing Poetry

The recommended way of installing Poetry is to run the following in your
terminal:

$ curl -sSL https://raw.githubusercontent.com/sdispater/poetry/
master/get-poetry.py |
python

If you run into any problems, please refer to the official documentation
and installation instructions on the Poetry website: https://poetry.
eustace.io/docs/

https://poetry.eustace.io/docs/
https://poetry.eustace.io/docs/

