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Introduction

Another book on blockchains? Why?

Understanding blockchains isn’t easy. Or at least wasn’t for me: when
Bitcoin first made the news cycle, I tried to learn how it worked and
discovered that there were too few resources addressed to programmers
(like myself). There was always the Bitcoin reference wiki (https://
en.bitcoin.it), butin those days, it wasn’t as clearly organized as today,
and although I read Satoshi’s whitepaper, I didn’t really understand it at
first—at least not how the cryptographic parts worked.

I meandered through YouTube, completed porous tutorials, and
felt the frustration of examples that didn’t communicate the concepts
clearly. So, I decided to try and build a blockchain myself, and document
all the things I learnt along the way. In so doing, I discovered why
cryptocurrencies are so hard to explain and understand; it’s because you
first need to define the ingredients of digital money:

o How does the money get created? (Mining)

e How does Alice send money to Bob? (Digitally signed
transactions)

e Who keeps track of all these transactions and the
generated money? (Everyone, via a distributed ledger)

These high-level points rely on distinct units of knowledge that must
be understood before they can be combined into a set of commonly
agreed-upon rules that everyone follows. And the best way to understand
these disparate concepts is piece by piece—by practically using them to
build your own cryptocurrency. So, I wrote this book for people who feel

xvii
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INTRODUCTION

the same frustration that I did, and overcome it by dealing with the subject
matter at a code level—that’s what really gets it to stick. If you follow
through, and do the same, I'm certain that at the end of this book, you’ll
have a solid grasp of how they work.

Setting yourself up for success
GitHub repository

The finalized code is located at https://github.com/dvf/blockchain-book.
But try do the coding yourself—the code is structured in such a way

that methods are stubbed out at a high level with the details being filled
incrementally. This code is kept updated, and so it’s handy as a north star.

Take the time to set up your development
environment

Use a good IDE (integrated development environment) like Microsoft
VSCode or JetBrains PyCharm. They are both free and fantastic at spotting
errors in your code before you do. And it’s well worth the time to set your
IDE up before you begin. Spend your time worrying about blockchains and
not about syntax errors in your code.

Know where to get answers

Browse and ask questions on the GitHub repository’s Issues page. The
repository has a large community following, so you're likely to meet others
with similar problems. And if you encounter errors or bugs, I implore you
to open an Issue.
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INTRODUCTION

Don’t speak Python?

That’s OK. Python is known for its legibility; it’s a very easy language to
transcribe. I have seen other programmers (C#, JavaScript, and Rust) do

the examples in the book on the fly.
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CHAPTER 1

Getting Ready
for Application
Development

For the unfamiliar, Python is one of the most popular languages. It’s
extensively used everywhere—from academia and the sciences to large-
scale web applications, like Instagram. Part of its popularity is due to the
plethora of libraries, packages, and extensions available for free online as
well as ease of reading due to its resemblance to pseudocode.

In this chapter we’ll make sure your computer is properly set up for
application development and that Python is properly installed. Then, I'll show
you how to create a pragmatic Python project and how to install dependencies.

Python Versions

Python comes in two flavors: version 2 and version 3. Version 2 is no
longer supported by the Python Software Foundation, but it still ships
preinstalled on most operating systems because it’s used by plenty
of internal tools. Another complication is that different operating
systems install Python in different places in the file system. These
factors make setting up a development environment tricky.

© Daniel van Flymen 2020 1
D. van Flymen, Learn Blockchain by Building One,
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CHAPTER 1  GETTING READY FOR APPLICATION DEVELOPMENT

We'll try navigating these obstacles by installing and using tools which
help us manage Python installations.

Note As a convention, throughout this book, we’ll prefix a terminal
command using the $ symbol. The output will be shown as plaintext.

Installing Python
Windows installation

Python.org contains downloadable binaries for Windows. Head over
to www. python.org/downloads/windows/ and download the binary for
Python 3.8.

Once downloaded, install Python 3.8, making sure to choose the
options to

o Uninstall previous versions of Python.
o Install the pip (the Python package manager).

e Add Python to the PATH (allowing you to execute
Python on the command line).

After installation, to confirm you've done everything correctly, open up
your command line and check Python’s version:

C:\Users\dan> python --version
3.8.3
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macO0S installation

Although macOS ships with a version of Python for internal purposes, we
don’t want to modify it when we develop, so we’'ll be installing a fresh
version of Python using Homebrew—a tool used to help manage and
install third party packages on macOS.

First, we’ll need to make sure Apple’s Command Line tools are
installed, in your terminal:

$ xcode-select --install

You'll need to install Homebrew, a package installer for macOS. To
install it, follow the instructions on https://brew.sh/, and ensure that
Homebrew is correctly installed.

After you've installed Homebrew, let’s install the latest version of
Python:

$ brew install python

Once the installation completes, verify that Python has been installed
correctly:

$ python --version

Python 3.8.3

Linux installation

If you're using a Debian-based version of Linux, you can install Python 3.8
using apt (or any other package manager):

$ sudo apt-get update
$ sudo apt-get install python3.8


https://brew.sh/
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Once the installation completes, verify that Python has been installed
correctly:

$ python --version
Python 3.8.3

If you're not using a Debian-based Linux distribution, you can compile
Python from the source: www. python.org/downloads/source/

How Python programs run

When you install Python, you're actually installing an interpreter—a
program that translates written Python code to instructions that your
computer understands and executes. The interpreter you've installed is
called CPython, a popular interpreter written in the C language.

You run a Python program by feeding it to the Python interpreter in
your terminal:

$ python my program.py

This converts your code to “computer instructions” and executes them.

How Does Your 0S Know Where the Python Interpreter Is?

Your OS has a system-wide variable called PATH, containing a list

of file paths to traverse when looking for programs. You can check
what it’s set to by running echo $PATH in your terminal. The Python
interpreter resides in /usr/local/bin/. This is verified by calling
which python.
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CHAPTER 1 GETTING READY FOR APPLICATION DEVELOPMENT

Managing project dependencies

Every project you build is likely to use external libraries. These
dependencies may be database access libraries or tools needed to parse
documents or websites, but the important thing is that they're included in
your project.

Managing project dependencies can be a tricky task, since different
dependencies have different requirements—some dependencies require
specific versions of Python, others may depend on sibling dependencies.
Modern Python projects use package managers to cope with the arduous
tasks of downloading, installing, and keeping up-to-date dependencies. In
summary, it makes your life easier to use a package manager.

Poetry is one out of a handful of dependency managers for Python.
There are other, more popular ones, like Pipenv. But after using both
extensively, I've found that Poetry has a cleaner interface and is more
pragmatic in its goals.

Installing Poetry

The recommended way of installing Poetry is to run the following in your
terminal:

$ curl -sSL https://raw.githubusercontent.com/sdispater/poetry/
master/get-poetry.py |
python

If you run into any problems, please refer to the official documentation
and installation instructions on the Poetry website: https://poetry.
eustace.io/docs/
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