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    At the time of writing, most veterinary professionals, whether they 
be surgeons, nurses or students, would probably agree that their 
knowledge of magnetic resonance imaging (MRI) physics borders 
on non - existent. Indeed, many may be fi lled with a deep dread at 
the very thought of the subject. On the other hand most will have 
a working knowledge of radiography at least suffi cient to know that 
a radiograph represents a record of the different densities of body 
tissues through which the x - ray beam has passed. In this chapter 
the nature of magnetic resonance (MR) will be examined and the 
measurement parameters involved in constructing a MR image will 
be discussed. 

 It is worth beginning by recapping briefl y on some radiation 
physics. In conventional radiography and computed tomography 
(CT), image contrast, or greyscale, is dependent on density or, 
more specifi cally, electron density of tissues in the patient. The 
more electrons an atom has in its shell the more it will attenuate 
the x - ray beam. Dense tissues, such as cortical bone, will appear 
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I as white in the image whilst air, being least dense, appears black. 
Since electron density is the only measurement parameter, radio-
graphic and CT appearances are consistent, predictable and, 
therefore, reproducible. In MRI, however, there are a number of 
measurement parameters which affect signal intensity and, sub-
sequently, image contrast. This means that the operator can 
manipulate image contrast to the extent of turning the appearance 
of water, for example, from black to white. This may appear con-
fusing until the principles are understood. In fact, it is the ability 
to manipulate contrast in this way that gives MRI its superior soft 
tissue differentiation. 

 Later, consideration will be given to how the operator can alter 
scan parameters in order to produce these changes in image 
contrast but fi rst of all we should explore the hydrogen proton, 
how MRI uses radiofrequency (RF) energy to produce resonance 
and what happens as the proton relaxes when the RF pulse is 
turned off.  

  The  h ydrogen  p roton 

 There are several atoms that possess the ability to resonate and 
can be used to produce images. In fact any atom with an odd 
mass number such as carbon (13), sodium (23) and phosphorous 
(31) would be suitable, but in clinical use only hydrogen, with a 
mass number of one, is used. This is because a single hydrogen 
atom produces a relatively large magnetic moment and resonates 
very well; it is said to have a high  gyromagnetic ratio  ( γ ) and it 
is abundant within the body. 

 Hydrogen is the simplest of atoms, having a nucleus composed 
of a single proton (no neutrons) and has no orbiting electrons; 
hence it is often referred to simply as a proton. 

 The proton carries a positive electrical charge and spins on its 
own axis. This moving electrical charge, according to the laws of 
electromagnetic induction, creates a corresponding magnetic fi eld 
around the proton so that it behaves like a tiny bar magnet having 
north and south poles (Figure  1.1 ). Such magnetic fi elds are 
described in physics as magnetic moments. Each magnetic 
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moment possesses the properties of size and direction. Where 
two or more magnetic moments exist together, their size and 
direction (or vectors) can be combined to give their net magnetisa-
tion. Thus if two magnetic moments exist both having the same 
size and direction their net magnetisation will be double that of 
each individual. Conversely if they have the same size but oppo-
site direction the two will cancel each other out and their net 
magnetisation will be zero. In the normal course of events the 
body ’ s many billions of microscopic magnetic moments are com-
pletely randomly orientated (Figure  1.2 ) and cancel each other out 
such that their macroscopic or net magnetic fi eld is zero.   

     Figure 1.1     The hydrogen proton.  

     Figure 1.2     In the normal state of affairs magnetic moments are ran-
domly orientated and cancel each other out.  
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I   The  e ffects of an  e xternal  m agnetic  fi  eld  B  0  

 When an animal is placed into the MRI scanner, the external 
magnetic fi eld (referred to as B 0 ) causes the protons to abandon 
their random orientation and  ‘ line up ’  with the main magnetic fi eld. 
Current knowledge of magnets and magnetic fi elds would suggest 
that the tiny magnetic fi elds of each proton would adopt an orien-
tation parallel to the main fi eld B 0  with their north and south poles 
matching those of the main magnet. However the laws of quantum 
mechanics dictate that certain protons have suffi cient thermal 
energy at room temperature to adopt an opposing, anti - parallel 
state. Indeed the two populations are almost identical. Moreover 
the protons are continually oscillating between the two states but 
at any given point in time, the ratio of anti - parallel to parallel 
states is one million to one million and six at a B 0  fi eld strength 
of 1 Tesla (1   T). This excess population of six in one million means 
that our patient ’ s total hydrogen content has a  net magnetisation 
vector  (NMV) in the parallel direction (Figure  1.3 ). With only six in 
two million protons contributing to the image it seems doubtful 
that the process will work at all. However, at 1.5   T 0.01   ml of water 
contains around 3 million billion such excess protons, so things 
begin to seem feasible.   

 Since the energy level required to achieve the anti - parallel state 
increases with the fi eld strength of B 0 , and the patient ’ s thermal 
energy remains fairly constant, it follows that the magnitude of 
the NMV increases with the fi eld strength of the MRI system we 

     Figure 1.3     The infl uence of an external magnetic fi eld is to align protons 
in the parallel and anti - parallel states.  
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that contributes the useful MRI signal. Hence systems with high 
fi eld strength magnets generate more signal from the same 
volume of tissue than lower fi eld systems. 

 A second infl uence of B 0  is to cause spinning protons to  precess . 
Just as a child ’ s spinning top begins to wobble under the infl uence 
of gravity, so protons are made to wobble or precess by B 0 . The 
exact frequency of this precession is given by the Larmor 
equation:

   ω γ0 0= B  

where  ω  0  can be referred to as the Larmor, precessional or 
resonant frequency and  γ  is the gyromagnetic ratio referred to 
earlier in this chapter and is a constant unique to each atom. 
Since  γ  is constant for hydrogen, it can be seen from this equation 
that precessional frequency is directly linked to fi eld strength B 0  
thus: 

   •      The precessional frequency of hydrogen at 1.0   T is 42.57   MHz.  
   •      Therefore its precessional frequency at 0.5   T will be 

21.285   MHz.    

 The exact equation does not have to be remembered, but this is 
an important relationship to grasp as it will help the understanding 
of a number of other concepts which follow. 

 The major effect of this precessional motion is to introduce a 
transverse component to the magnetic fi eld of each proton since 
each is now spinning at a slight tilt to B 0  (Figure  1.4 ). Because 
the north/south poles of each proton are pointing in random direc-
tions at any one time (Figure  1.5 ), they still cancel each other out 
in the transverse plane so that the NMV is still in the parallel or 
longitudinal direction.    

  The  e ffects of an  RF   p ulse at the Larmor 
 f requency:  r esonance 

 If a pulse of radiofrequency (RF) energy is now applied to protons 
in the system it can cause the hydrogen spins to react to it pro-
vided two important conditions are fulfi lled. These are that the RF 
pulse must be applied at right angles to B 0  and that it must be 
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at the Larmor frequency; any other frequency at this fi eld strength 
will have no effect on hydrogen. 

 This reaction to the RF pulse is  resonance  and, essentially, two 
things happen. One is that the RF pulse imparts suffi cient energy 
to allow more protons to adopt the anti - parallel state The six 

     Figure 1.4     Precession.  

     Figure 1.5     Out of phase in the transverse plane.  
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excess protons discussed earlier provide an illustration of what 
happens if enough RF energy is transmitted to allow three of these 
to fl ip into the anti -  parallel position. They will then cancel out the 
other three in the parallel state and the NMV in the longitudinal 
plane will now be zero. The other effect, which takes place in the 
transverse plane, is to bring all our hydrogen spins into phase 
with each other. Now, instead of all the spins cancelling each 
other out, each microscopic magnetic fi eld is in unison with its 
neighbours; they are said to be  ‘ in phase ’  (Figure  1.6 ).   

 Consequently their individual magnetic fi elds all add together 
so that the NMV is now at a maximum in the transverse plane. 
The NMV has shifted through 90 °  from longitudinal to transverse. 
If the RF transmission is terminated at this point it is said to be 
a  90 °  RF pulse  (Figure  1.7 ). Note that the angle through which 

     Figure 1.6     In phase in the transverse plane.  

     Figure 1.7     Net magnetisation passes through 90 °  from longitudinal to 
transverse planes.  


