
Effective GUI
Test Automation:

Developing an Automated
GUI Testing Tool

Kanglin Li
Mengqi Wu

SYBEX®

San Francisco • London

Effective GUI
Test Automation:

Developing an Automated

GUI Testing Tool

Kanglin Li and Mengqi Wu

4351FM.fm Page i Tuesday, September 28, 2004 9:14 PM

Associate Publisher: Joel Fugazzotto
Acquisitions and Developmental Editor: Tom Cirtin
Production Editor: Erica Yee
Technical Editor: Acey J. Bunch
Copyeditor: Judy Flynn
Compositor: Laurie Stewart, Happenstance Type-O-Rama
Graphic Illustrator: Jeff Wilson, Happenstance Type-O-Rama
Proofreaders: Laurie O’Connell, Amy Rassmussen, Nancy Riddiough
Indexer: Ted Laux
Cover Designer: Ingalls + Associates
Cover Illustrator/Photographer: Rob Atkins, Image Bank

Copyright © 2005 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. The author(s) created reusable
code in this publication expressly for reuse by readers. Sybex grants readers limited permission to reuse the code found in this publication or
its accompanying CD-ROM so long as the author(s) are attributed in any application containing the reusable code and the code itself is never
distributed, posted online by electronic transmission, sold, or commercially exploited as a stand-alone product. Aside from this specific excep-
tion concerning reusable code, no part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2004108202

ISBN: 0-7821-4351-2

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software whenever pos-
sible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The author and the publisher
make no representation or warranties of any kind with regard to the completeness or accuracy of the contents herein and accept no liability
of any kind including but not limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind
caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4351FM.fm Page ii Tuesday, September 28, 2004 9:14 PM

SOFTWARE LICENSE AGREEMENT:
TERMS AND CONDITIONS

The media and/or any online materials accompanying this book that
are available now or in the future contain programs and/or text files
(the “Software”) to be used in connection with the book. SYBEX
hereby grants to you a license to use the Software, subject to the
terms that follow. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless other-
wise indicated and is protected by copyright to SYBEX or other
copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a single-user license to use the Software for
your personal, noncommercial use only. You may not reproduce,
sell, distribute, publish, circulate, or commercially exploit the Soft-
ware, or any portion thereof, without the written consent of SYBEX
and the specific copyright owner(s) of any component software
included on this media.

In the event that the Software or components include specific license
requirements or end-user agreements, statements of condition,
disclaimers, limitations or warranties (“End-User License”), those
End-User Licenses supersede the terms and conditions herein as to
that particular Software component. Your purchase, acceptance, or
use of the Software will constitute your acceptance of such End-User
Licenses.

By purchase, use or acceptance of the Software you further agree to
comply with all export laws and regulations of the United States as
such laws and regulations may exist from time to time.

Reusable Code in This Book

The author(s) created reusable code in this publication expressly for
reuse by readers. Sybex grants readers limited permission to reuse
the code found in this publication, its accompanying CD-ROM or
available for download from our website so long as the author(s) are
attributed in any application containing the reusable code and the
code itself is never distributed, posted online by electronic trans-
mission, sold, or commercially exploited as a stand-alone product.

Software Support

Components of the supplemental Software and any offers associated
with them may be supported by the specific Owner(s) of that mate-
rial, but they are not supported by SYBEX. Information regarding
any available support may be obtained from the Owner(s) using the
information provided in the appropriate read.me files or listed else-
where on the media.

Should the manufacturer(s) or other Owner(s) cease to offer sup-
port or decline to honor any offer, SYBEX bears no responsibility.
This notice concerning support for the Software is provided for
your information only. SYBEX is not the agent or principal of the
Owner(s), and SYBEX is in no way responsible for providing any
support for the Software, nor is it liable or responsible for any sup-
port provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical defects
for a period of ninety (90) days after purchase. The Software is
not available from SYBEX in any other form or media than that
enclosed herein or posted to www.sybex.com. If you discover a
defect in the media during this warranty period, you may obtain a
replacement of identical format at no charge by sending the defec-
tive media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web:

http://www.sybex.com

After the 90-day period, you can obtain replacement media of iden-
tical format by sending us the defective disk, proof of purchase, and
a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or
implied, with respect to the Software or its contents, quality, per-
formance, merchantability, or fitness for a particular purpose. In no
event will SYBEX, its distributors, or dealers be liable to you or any
other party for direct, indirect, special, incidental, consequential, or
other damages arising out of the use of or inability to use the Soft-
ware or its contents even if advised of the possibility of such damage.
In the event that the Software includes an online update feature,
SYBEX further disclaims any obligation to provide this feature for
any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states.
Therefore, the above exclusion may not apply to you. This warranty
provides you with specific legal rights; there may be other rights
that you may have that vary from state to state. The pricing of the
book with the Software by SYBEX reflects the allocation of risk and
limitations on liability contained in this agreement of Terms and
Conditions.

Shareware Distribution

This Software may contain various programs that are distributed as
shareware. Copyright laws apply to both shareware and ordinary
commercial software, and the copyright Owner(s) retains all rights. If
you try a shareware program and continue using it, you are expected
to register it. Individual programs differ on details of trial periods,
registration, and payment. Please observe the requirements stated in
appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-protected
or encrypted. However, in all cases, reselling or redistributing these
files without authorization is expressly forbidden except as specifi-
cally provided for by the Owner(s) therein.

4351FM.fm Page iii Tuesday, September 28, 2004 9:14 PM

To Li Xuanhua and Tang Xunwei

And
In memory of Luo Youai, Luo Xulin,

and Li Congyang

4351FM.fm Page iv Tuesday, September 28, 2004 9:14 PM

Acknowledgments

T

o the folks at Sybex, especially Tom Cirtin who made this book available, Acey J. Bunch
for his technical expertise, and Erica Yee and Judy Flynn for their contributions to this

book. I want to thank Rodnay Zaks, the president of Sybex, who signed the contract. I also
extend my thanks to the other people in the Sybex team.

I still need to thank other people, especially the readers who have provided me with their
comments and suggestions about my previous works. During the process of writing this
book, the test monkey in Chapter 3 frequently reminded me of my early days as a schoolboy.
My friends and I spent most of my childhood summer nights listening to the stories of the
monkey king told by the old folks in our village. What I learned from both the old folks and
my friends makes it possible for me to write this book today.

When I was a small boy, my uncle OuYang Minghong carried me in a bamboo basket to
visit my grandma. My uncles Zuomei and Zuodian carried me on their backs or in a wheel-
barrow to watch movies and catch fish. Since I was five, my aunt Youai led me to the school
and taught me to count with my fingers.

I didn’t learn how to swim and fell into a pool when I was eight or nine. Meiqing risked
his life and saved me from the water with the help of my uncle Zuohuang, Guicheng, and
another whose name I don’t know. Meiqing has always been my big brother. Then I learned
how to swim at 20 and swam across the Xiangjiang River on a summer day and the Leishui
River on a cold fall afternoon. Thank you all for teaching me about water, including Zeng
Xilong, Li Wenbing, Kuang Chuanglun, Bai Maoye, Chen Xiaohu, Zeng Yigui, He Hechu,
Wen Xiaoping, Long Yongcheng, and Xie Hengbing.

Tang Duzhang, Li Zuojin, Li Zuojun, Luo Xixing, Chen Xinhua, and Kuang Chuangren
and I spent our best years in the middle school. At that time we learned food was valuable.
Together, we discovered that boys were shy and girls were caring. Thanks to all of the former
classmates who form the memory of my childhood.

—Kanglin Li
Leiyang, China

2004

4351FM.fm Page v Tuesday, September 28, 2004 9:14 PM

Contents at a Glance

Introduction xiv

Chapter 1:

GUI Testing: An Overview

1

Chapter 2:

Available GUI Testing Tools vs. the Proposed Tool

19

Chapter 3:

C# Win32 API Programming and Test Monkeys

37

Chapter 4:

Developing a GUI Test Library

99

Chapter 5:

.NET Programming and GUI Testing

137

Chapter 6:

Testing a Windows Form in General

175

Chapter 7:

Architecture and Implementation of the Automatic GUI Test Tool

209

Chapter 8:

Methods of GUI Test Verification

269

Chapter 9:

Testing Label and Cosmetic GUI Controls

319

Chapter 10:

Testing a TextBox Control with Input from a Keyboard

333

Chapter 11:

Testing RadioButton and CheckBox Controls

353

Chapter 12:

Menu Clicking for GUI Test Automation

367

Chapter 13:

User-Defined and COM-Based Controls

389

Chapter 14:

Testing Issues for Non .NET Applications

411

Selected Bibliography 429

Index 431

4351FM.fm Page vi Tuesday, September 28, 2004 9:14 PM

Contents

Introduction xiv

Chapter 1 GUI Testing: An Overview 1

Unique Features of GUI Testing 4
Developing an Automated GUI Testing Tool 5

Expectation of Automated Testing 6
Automated Test Teams 8

How to Automate GUI Testing 10
GUI Testing and Script Languages 12

Using C# for Automation 14
Test Scripts 16

Summary 17

Chapter 2 Available GUI Testing Tools vs. the Proposed Tool 19

Current GUI Testing Infrastructures 20
Capture/Playback Is Not Automatic 20
Test Monkeys 22
Intelligent Automation 24

Automatic GUI Testing Tools in the Marketplace 24
CompuWare TestPartner 25
IBM Rational Test Tools 25
Mercury Interactive Tools 26
Segue’s SilkTest 27
Open Source GUI Test Tools 27

Advantages and Disadvantages of the Commercial Testing Tools 28
Computer-Assisted GUI Testing 28
The Common Features of Capture/Playback 29
Editing the Recorded Test Script 30
Implementing Testability Hooks 30
Reusability for Regression Testing 31

4351FM.fm Page vii Tuesday, September 28, 2004 9:14 PM

viii

Contents

The Proposed GUI Testing Approach 31
Active GUI Test Approach 31
Generating Testing Data First 32
Data-Driven Test Scripts 33

Summary 34

Chapter 3 C# Win32 API Programming and Test Monkeys 37

Understanding the Custom DLLs 38
C# API Programming 40

PInvoke Basics 40
The

Marshal

 Class and the

DllImport

 Attribute 41
Data Type Presentation 42
A Simple C# API Example 43

C# API Text Viewer 48
A Base Class 49
An API Utility Class 53

ConstantViewer

 Class

 57
DllImportViewer

 Class

 60
StructViewer

 Class

 68

GUI of the C# API Text Viewer 75
Starting with a Test Monkey 85

A Dumb Test Monkey 85
A Smarter Monkey 92

Summary 97

Chapter 4 Developing a GUI Test Library 99

GUI Test and the Custom

User32.dll

 100
Exploring the

User32.dll

 102

Dumpbin.exe 102

Dependency Walker 104
Building a Dynamic Linking Library for GUI Testing 105

The Spy++ Tool 106
Functions from the

User32.dll

 for GUI Testing 107
Expanding the Testing Capabilities 118
A GUI Test Application 131

Summary 135

4351FM.fm Page viii Tuesday, September 28, 2004 9:14 PM

ix

Contents

Chapter 5 .NET Programming and GUI Testing 137

XML Programming 138
Writing XML Files 139
Reading XML Files 142

XPathNavigator

 Class

 144
XmlDocument

 Class

 146

Object Serialization 150
Binary Serialization 150
SOAP Serialization 156
XML Serialization 159

.NET

System.Collections

 Namespace 161

Type

 Class

 162

.NET

System.Reflection

 Namespace 164
Late Binding 167
.NET

System.Threading

 Namespace 170
Summary 173

Chapter 6 Testing a Windows Form in General 175

Overview of Software Architecture 176
Presentation Layer 179
Business Layer 179
Data Layer 180

GUI Components on the Presentation Layer 180
Buttons 180
ComboBoxes 181
DialogBoxes 182
Labels 182
Menus 183
TextBoxes 184
Other Controls 184

Expanding the GUI Test Library 185
Methods for XML Accessibility and XML Serialization 187
Methods for Late Binding 189
Two Helper Classes 191

Building a General Basis of a GUI Test Script 193
Starting the Test Script Project 193

4351FM.fm Page ix Tuesday, September 28, 2004 9:14 PM

x

Contents

Implementing the Command Buttons 194
Coding the Timer Controls to Trigger GUI Events 197
Visualizing the GUI Event Outcomes 201

A Semi-Automatic Way of Verifying the Test Script 203
Summary 207

Chapter 7 Architecture and Implementation of the Automatic GUI Test Tool 209

Meeting Current and Future GUI Test Requirements 210
The General Architecture of the Improved GUI Testing Tool 212
Starting the AutomatedGUITest Project 213

The Startup Form of the AutomatedGUITest Tool 213
An Interface to Specify the Form of the Application under Test 215
The Implementation of a

GUISurveyClass

 218
Adding an Interface for Testing Data Confirmation 222
Developing a General-Purpose GUI Test Script 228

Putting Together the

AutomatedGUITest

 Tool 240
Starting the Application under Test 242
Conducting a GUI Survey 245
Specifying Data for the GUI Test 247
Running the Test 252

Conducting the First Automatic GUI Testing 261
Summary 267

Chapter 8 Methods of GUI Test Verification 269

Verification Requirements 270
Front-end Actions and Back-end Business Functions 271
Verifying Changes of an Application under Test 272
Verifications Based on the Users’ Interest 273

Automated Verifications 274
Simple Object Verification 275
Specific Object Verification 276
Lump Sum Verification 276
Best Practice Verification 276

Enhancing the AutomatedGUITest Tool 277
Updating the

GUITestDataCollector

 Interface 277
Building a GUI Test Verification Class 287
Updating the AutomatedGUITest Startup Form 301

4351FM.fm Page x Tuesday, September 28, 2004 9:14 PM

xi

Contents

Updating the

GUITestScript

 Class 305
Adding the XML Document Viewer for Result Presentation 310
Conducting a Fully Automated GUI Test 312

Summary 318

Chapter 9 Testing Label and Cosmetic GUI Controls 319

How to Test Label and Other Cosmetic Controls 320
Upgrading the AutomatedGUITest Tool 321

Adding a Method to the

GUITestVerification

 Class 323
Expanding the Testing Capability of the

GUITestScript

 Class 323
Updating the

GUITestActions

class 326
Testing Cosmetic GUI Properties 328

Collecting Testing Data 328
Editing and Rerunning the Data Store 329

Summary 331

Chapter 10 Testing a TextBox Control with Input from a Keyboard 333

The

SendKeys

 Class of the .NET Framework 334
Code for Special Keys Using the

SendKeys

 Class 334
Methods of the

SendKeys

 Class 336
An Example to Connect to Your FTP Server 337

Updating the Tool for Testing TextBox Controls 339
Adding a Field to the

GUIInfo

 Structure 340
Modifying the Control Handling Methods in the

 GUITestActions

 Class 341
Revising the Late Binding Method in the

AutomatedGUITest

.

GUITestScript

 Class 342
Adding a TextBox to the GUITestDataCollector Form 344
Adding a Step to Send Keystrokes to a GUI Component 346

Testing the C# API Text Viewer with the Updated Capabilities 350
Summary 351

Chapter 11 Testing RadioButton and CheckBox Controls 353

Characteristics of RadioButton and CheckBox Controls 354
Updating the AutomatedGUITest Project 355

Overloading a Method in the

GUITestUtility

 Class 355

4351FM.fm Page xi Tuesday, September 28, 2004 9:14 PM

xii

Contents

Adding Code to the

TestExpectation

 Class 357
Enhancing the Testing Scope of the

GUITestScript

 Class 358
Testing RadionButton Controls 364
Summary 365

Chapter 12 Menu Clicking for GUI Test Automation 367

Characteristics of Menu Testing 368
Window Handle and Menu Handle 369
Menu and Submenu 369
Class Name of Menu Windows 371

Updating the

GUITestAction

 Class with API Programming 371
Marshaling a Few More Win32 Functions 372
Adding Methods to Identify Menu Items 373
Navigating a Menu Click Pathway 375
Performing a Click on a Menu Item 377
Updating the

GUITestActionLib.xml

 Document 380
Enabling Menu Survey Capability 381
Enabling the AutomatedGUITest Tool for Menu Survey 382

Invoking the Menu Survey Method 382
Handling a Possible Error 383

Updating the

GUITestScript

 Class 384
A Menu Testing Example 386
Summary 388

Chapter 13 User-Defined and COM-Based Controls 389

Basics of User-Defined GUI Controls 390
Custom .NET GUI Controls 391
ActiveX Component from Microsoft Visual Studio 6 393

Needed Components for Testing User-Defined Controls 395
Preparing a Testing Bench for Customized GUI Controls 395
A New Method for the

GUITestUtility

 Class 396
Invoking the Test Bench from the AutomatedGUITest Tool 396
Handling Exceptions in the

GUITestScript

 Class 398
Two More Examples 404

Testing a Customized .NET GUI Control 404
Testing an ActiveX GUI Control 406

Summary 410

4351FM.fm Page xii Tuesday, September 28, 2004 9:14 PM

xiii

Contents

Chapter 14 Testing Issues for Non .NET Applications 411

Adding a Method to Start Traditional Applications 413
An Overview of the

System.Diagnostics

 Namespace 413
Updating the

GUITestUtility

 Class 414
Making the AutomatedGUITest Tool Probe the GUI Interface 416

Adding a PictureBox Control as a GUI Probe 416
Coding the Three Events for the GUI Probe 418
Invoking a Non .NET Application for GUI Survey 421

Updating the

GUITestScript

 Class 422
Putting the New Methods into Action 424
Summary 426

Selected Bibliography 429

Index 431

4351FM.fm Page xiii Tuesday, September 28, 2004 9:14 PM

Introduction

T

here are many books about software testing management. When they discuss software test
automation, they introduce third-party testing tools. I have used many of the commercial

software testing tools. Their developers declare that they have the capability to conduct various
types of software tests and meet the requirements of an organization. But they have limitations.
For example, many of GUI testing tools require users to record a series of mouse clicks and
keystrokes. Others require users to write test scripts in a specified script language. Further-
more, the test scripts produced by these tools and methods need to be edited and debugged
before they can be executed to perform the desired tests.

This book presents ideas for automating graphical user interface (GUI) testing. The sample
code in this book forms a foundation for a fully automated GUI testing tool. Using this tool,
users don’t need to record, edit, and debug test scripts. Testers can spend their time creating
testing cases and executing the testing.

Who This Book Is For

Software engineers have long relied on the tools and infrastructures supplied by the current
software testing tool vendors. Some engineers tell successful stories. But more engineers
experience frustration. The tools are not automated enough, the tests are not efficient, the
tests are not driven by data, and the test script generation and data composition methods
need to be improved. One solution to software test automation is to develop testing tools
instead of purchasing commercial tools based on the current inadequate infrastructure

This book is written for people who are involved in software engineering and want to auto-
mate the software testing process for their organizations. With the methods introduced in this
book, software engineers should gain a good understanding of the limited automation provided
by the available testing tools and how to improve the current test infrastructure and conduct
a fully automated software test.

This book is for software engineers who want more effective ways to perform software tests.
The automated testing tool introduced in this book can serve as an independent software test
tool as well as an adjunct to the commercial tools.

To get the most out of this book, you should be a moderately experienced software devel-
oper and a test engineer in the process of conducting software tests for your organization.
The explanations and examples in this book can be easily understood and followed by any

4351Intro.fm Page xiv Tuesday, September 28, 2004 9:12 PM

xv

Introduction

intermediate- to advanced-level programmer interested in expanding their knowledge in
both software development and software testing.

This book’s content includes programming techniques with examples in C#. Then it gradually
progresses to the development of a fully automated GUI testing tool. Although the sample code
is in C# using the Microsoft Windows platform, the tool has been evolved from a Visual Basic 6
project. I have also used these methods and developed a Java testing tool for a test project.

This book is also for the managers of organizations where software is developed and used.
As economists have reported, software failures result in substantial economic loss to the
United States each year. Approximately half of the losses occur within the software manu-
facturing industry. If you are a senior managerial administrator of a software organization,
you are most likely interested in an improved software testing method. The other half of the
losses is out of the pockets of the software end users. If your business or institution consists
of software end users, you probably maintain teams to support the software purchased from
the contract vendors. Being aware of testing methods will assist you with efficient software
application in your organization.

How This Book Is Organized

To present ideas well, the first two chapters in this book are an introduction to software testing,
the available testing tools, and the expectations of software testers. Chapters 3 through 6 focus
on Win32 API programming and .NET fundamentals needed for the development of the GUI
test library. Chapters 7 through 14 are devoted to designing and implementing the Automated-
GUITest tool until full automation is achieved. The following list includes a short description
of each chapter.

Chapter 1, “GUI Testing: An Overview,” describes the management of software GUI testing
and the techniques built into .NET that can make it possible to test software dynamically.

Chapter 2, “Available GUI Testing Tools vs. the Proposed Tool,” presents a brief review of
some of the automated GUI testing tools on the market and the main points of the testing
methods proposed in this book. The available tools have been proved by studies to be inade-
quate. The purpose of this chapter is to demonstrate the necessity of an new and improved test
method, of adding more testing capabilities to a testing tool, and of creating a fully automated
test for new and complex software projects.

Chapter 3, “C# Win32 API Programming and Test Monkeys,” deals with how to marshal
the Win32 API functions to be used as C# code for developing the tool. It also includes the
code for you to develop a C# API Text Viewer to take the place of the old API Text Viewer for
Visual Basic 6 programmers. The newly developed C# API Text Viewer will be used in three
ways. First, it will generate C# code to marshal the Win32 functions needed for developing a

4351Intro.fm Page xv Tuesday, September 28, 2004 9:12 PM

xvi

Introduction

fully automated GUI testing tool. Second, it will serve as an application under test for the GUI
testing tool as the testing tool is developed throughout the book. Third, the C# API Text
Viewer will test the tool with different degrees of automation as the book progresses. In the end
of this chapter, the C# API Text Viewer is used to present you with a test monkey.

Chapter 4, “Developing a GUI Test Library,” guides you through the development of a GUI
test library with functions for finding GUI objects from an interface and manipulating the
mouse actions.

Chapter 5, “.NET Programming and GUI Testing,” introduces.NET technologies—including
reflection, late binding, serialization, and XML programming—with regard to data store, data
presentation, and GUI testing.

Chapter 6, “Testing a Windows Form in General,” describes how a GUI test script is created
manually. This handcrafted test script forms the base on which a fully automated GUI test will
be built.

Chapter 7, “Architecture and Implementation of the Automatic GUI Test Tool,” lays out
the architecture for a automated GUI testing tool and helps you build the first evolution of the
proposed AutomatedGUITest tool.

Chapter 8, “Methods of GUI Test Verification,” explains how to effectively verify the test
results and add code to the AutomatedGUITest project for automatic verification.

Chapter 9, “Testing Label and Cosmetic GUI Controls,” describes the processes of testing
Label and other cosmetic GUI controls.

Chapter 10, “Testing a TextBox Control with Input from a Keyboard,” discusses the

SendKeys

 class of .NET Framework and updates the AutomatedGUITest for testing TextBox
controls.

Chapter 11, “Testing RadioButton and CheckBox Controls,” shows you how the RadioButton
and CheckBox controls are used in software applications and discusses ways to test them.

Chapter 12, “Menu Clicking for GUI Test Automation,” introduces more Win32 API
functions for discovering menu items and testing them.

Chapter 13, “User-Defined and COM-Based Controls,” introduces methods for developing
custom GUI controls in the Microsoft Visual Studio .NET IDE and Microsoft Visual Studio
6 IDE and updates the AutomatedGUITest tool for testing such controls.

Chapter 14, “Testing Issues for Non .NET Applications,” presents the methods for testing
an unmanaged application. This chapter tests

Notepad.exe

 as an example after new code is
added to the tool project.

4351Intro.fm Page xvi Tuesday, September 28, 2004 9:12 PM

xvii

Introduction

About the Examples

The examples start with the programming precepts of C# and Win32 API functions. The goal
is to use the predefined methods of a programming language to complete an AutomatedGUI-
Test tool project and avoid reinventing the wheel. There are four kinds of sample code in the
chapters:

●

Sample code for developing a C# API Text Viewer

●

Simple examples to demonstrate using C# and Win32 API functions

●

Example projects to be tested by the AutomatedGUITest tool

●

Sample code of the AutomatedGUITest tool project

The code examples in the first category most often appear in Chapters 3 through Chapter 6.
Thereafter, Chapters 7 through 14 are totally dedicated to automating the test project. The
sample code in these chapters is in the third category. There are only three examples of the sec-
ond category, simulating real assemblies under test. They are implemented in Chapters 3 and
12 and submitted to testing throughout the book.

Besides the C# API Text Viewer, the code in Chapter 3 also develops a test monkey. Chapter 5
develops an XML document viewer that will be used to present the test results for the Automated-
GUITest tool.

In Chapter 4 and thereafter, some code is added to the GUI test library and AutomatedGUI-
Test project in each chapter. At the end of each chapter, the sample code can be compiled to
produce an executable assembly. The testing tool achieves different degrees of automation
until a fully automated test tool is developed by the end of the book.

Where to Find the Source Code

The sample and project code for each chapter can be downloaded from

www.sybex.com

 by per-
forming a search using this book’s title, the author’s name, or the ISBN (4351). This saves you
from having to type in the code. It also includes a complete compiled version of the project,
which allows you to put the AutomatedGUITest into immediate practice for your software
project.

To execute the

AutomatedGUITest.exe

 file, you can copy the files from the

Chapter14\

AutomatedGUITest\bin\Debug

 folder of the downloaded sample code to a computer system.
The minimum requirements for a computer system are as follows:

●

Windows 95/98/2000/NT/XP

●

Preinstalled .NET Framework

●

20MB of free hard disk space

4351Intro.fm Page xvii Tuesday, September 28, 2004 9:12 PM

xviii

Introduction

If you are still using earlier versions of the Microsoft Visual Studio .NET integrated devel-
opment environment (IDE) at this point (older than Microsoft Visual Studio .NET 2003
IDE), you will not able to open the sample projects directly. The problem is that the C# project
files with the extension

.csproj

 are incompatible with earlier versions of the Microsoft Visual
Studio .NET IDE. To use the code, you can follow the procedures in each chapter to create
new projects and include the code files with extensions of

.cs

 downloaded into your projects.

Although the sample code in this book is developed under the Microsoft Visual Studio .NET
2003 IDE, there are other open-source .NET IDEs available through free download:

Eclipsing .NET

IBM released the Eclipse .NET to the open-source community. This
product works on Windows 95/98/NT/2000/XP. You can download the components for
the Eclipse .NET from

www.eclipse.org

. After downloading the

eclipse-SDK-2.1.1-win32

.zip

 file, install it with the combination of the Microsoft .NET SDK, which is also a free
download from

msdn.microsoft.com/netframework/technologyinfo/howtoget/default.aspx

.
Then get the open-source C# plug-in through the Eclipse .NET IDE. An article at

www.sys-con

.com/webservices/articleprint.cfm?id=360

 introduces the downloading and installation in
detail.

#develop

Short for SharpDevelop, this is another open-source IDE for C# and VB.NET
on Microsoft’s .NET platform. You can download #develop from

www.icsharpcode.net/

OpenSource/SD/Default.aspx

.

DotGNU Portable .NET

This open-source tool includes a C# compiler, an assem-
bler, and a runtime engineer. The initial platform was GNU/Linux. It also works on Win-
dows, Solaris, NetBSD, FreeBSD, and MacOS X. You can download this product from

www.southern-storm.com.au/portable_net.html

.

4351Intro.fm Page xviii Tuesday, September 28, 2004 9:12 PM

Chapter 1

GUI Testing: An Overview

4351Book.fm Page 1 Tuesday, September 28, 2004 11:21 AM

2

Chapter 1 • GUI Testing: An Overview

T

he saturation of software in industry, educational institutions, and other enterprises and
organizations is a fact of modern life almost too obvious to mention. Nearly all of the busi-

nesses in the United States and in most parts of the world depend upon the software industry
for product development, production, marketing, support, and services. Reducing the cost of
software development and improving software quality are important for the software industry.
Organizations are looking for better ways to conduct software testing before they release their
products.

Innovations in the field of software testing have improved the techniques of writing test
scripts, generating test cases, and introducing test automation for unit testing, white box
testing, black box testing, and other types of testing. Software testing has evolved over the
years to incorporate tools for test automation. Mercury Interactive, Rational Software of
IBM, and Segue are a few of the main tool vendors. The purpose of these tools is to speed
up the software development life cycle, to find as many bugs as possible before releasing the
products, to reduce the cost of software development by automating effective regression test-
ing, and to increase application reliability. The apparent goal of the software testing tools is
to generate test scripts that simulate users operating the application under development.
Usually test engineers are trained by the tool manufacturers to write test scripts by hand or
to use a capture/playback procedure to record test scripts. Both writing and recording test
scripts is labor intensive and error prone. The potential of the available tools to reduce the
manual, repetitive, labor-intensive effort required to test software is severely limited.

Recently, organizations have purchased the commercial testing tools but the test engineers
can’t use them because of their inadequate test infrastructure. Often these tools don’t have the
capabilities to handle the complexity of advanced software projects, aren’t capable of keeping
up with technology advancements, and aren’t diverse enough to recognize the varieties of
third-party components in today’s software development business. Needless to say, profitable
organizations have trade secrets the commercial testing tools are not aware of. Because of these
inadequacies, the United States loses $59.5 billion each year due to the bugs in the software not
detected by the current testing means (Tassey 2003). Test engineers and experts are working
to develop more effective testing tools for their organizations. Thus, they can improve the cur-
rent test infrastructure with regard to the following:

●

Enhanced integration and interoperability testing

●

Increased efficiency of testing case generation

●

Improved test code generation with full automation

●

A rigorous method for determining when a product is good enough to release

●

Available performance metrics and testing measuring procedures

It is estimated that an improved testing infrastructure should try to reduce the current soft-
ware bugs by one-third, which can save the United States $22.2 billion. Each year, in order

4351Book.fm Page 2 Tuesday, September 28, 2004 11:21 AM

3

to achieve such a software testing infrastructure, researchers have published their findings.
For example, in my previous book,

Effective Software Test Automation: Developing an Automated
Software Testing Tool

 (Sybex 2004), I discussed the methods to develop a testing tool that can
be adapted to various software programming languages and platforms. The outcome of the
book was a fully automated testing tool. It automated the entire process of software testing—
from data generation and test script generation to bug presentation—and broke a number of
bottlenecks of the current testing tools in the following ways:

●

By actively looking for components to test instead of recording test scenarios by capture/playback.

This approach can enable the test script to conduct a thorough testing of an application. It
is reported that testing cases are more effective in finding bugs after the test script is devel-
oped. Thus, testers don’t spend time writing test scripts; instead, they spend their time
studying and creating multiple testing cases.

●

By effectively generating one script to test all the members (constructors, properties, and methods) of
a DLL or an EXE, including members inherited from base classes.

 This test script prepares a real
and complete object that can be reused for integration testing and regression testing.
Therefore, the number of test scripts for one software project can be reduced, making the
management of test scripts easy.

●

By effectively reusing the previously built test scripts of lower-level modules for testing higher-level
modules with a bottom-up approach.

 This helps you avoid stubbing and using mock objects to
conduct integration testing.

●

By automatically writing test scripts in a language used by the developers.

 The testers don’t have
to learn a new script language. The developers can understand the test scripts. This
enhances the collaboration between testers and developers.

●

By innovatively integrating automated script generation with a Unified Modeling Language
(UML).

 The project can generate test scripts early when a detailed design is available. The
test script can be executed for regression testing and reused for integration testing through-
out the development life cycle. Because the test can be conducted nightly in an unattended
mode, it guarantees that all the newly developed code will be tested at least once at any
stage.

●

By automatically compiling and executing the generated test scripts without editing or debugging.

If the design of the software architecture is modified in middle of the development process,
a new test script can be automatically generated immediately with accuracy.

However, due to the uniqueness of the graphical user interface (GUI) components in software
products, techniques and programming methods for developing an effective automated GUI
testing tool required a separate book. We will use the same philosophy used for automating the
non-GUI testing in the preceding book and develop a fully automated GUI testing tool; that is,
the users feed the GUI testing tool with an application and get the defect (bug) reports.

4351Book.fm Page 3 Tuesday, September 28, 2004 11:21 AM

4

Chapter 1 • GUI Testing: An Overview

Unique Features of GUI Testing

Early software applications were command-line driven. Users remembered and typed in a
command and the system performed some actions. A more effective application could display
possible commands on the screen and then prompt the user for the next command. Nowadays,
the software industry is in the windowing system era. Virtually all applications are operated
through graphical user interfaces (GUIs). GUI components are often referred to as windows,
icons, menus, and pointers. Users drag a mouse, click buttons, and apply various combinations
of keystrokes. The applications are triggered to perform desired actions by the mouse events
and keystroke events. Thus, GUIs have made the software friendlier to users.

Software verification and validation through testing is a major building block of the quality
assurance process. GUI tests are vital because they are performed from the view of the end
users of the application. Because the functionality of the application is invoked through the
graphical user interface, GUI tests can cover the entire application,

To automatically test software before the GUI era, testers relied on test scripts with a col-
lection of line commands. The executions of the programs were independent from the screen
status. Testing GUI components is different and more difficult because it requires a script to
reassign the input stream, to click buttons, to move the pointer, and to press keys. Then the
scripts need to have mechanisms to record the responses and changes of the dynamic states of
the software. Comparing the responses and changes with the expected baselines, the scripts are
able to reports bugs.

There are some specialist tools available to test GUI-based applications. They often come
with a variety of features. Testers expect that these features will enable them to conduct GUI
testing with regard to platform differentiation, recognition of GUI components, test script
automation, synchronization, result verification, and easy management. The currently avail-
able tools are very much influenced by platforms. For example, the 32-bit Microsoft Windows
operating system (Win32) is currently the dominant platform for development. Testing tools
developed for Win32 can not be used with other platforms, such as the Unix, Linux, and Mac-
intosh operating systems.

The broadly accepted method today of generating GUI test scripts relies on the capture/
playback technique. With this technique, testers are required to perform labor-intensive
interaction with the GUI via mouse events and keystrokes. The script records these events
and later plays them back in the form of an automated test. Test scripts produced by this
method are often hard-coded. When different inputs are needed to conduct the test, the test
script needs to be re-created. Regression testing using these test scripts is also impractical
when the GUI components are under development. It is often hard to generate all the possible
test cases for all of the GUI components and conduct a thorough test. Human interaction with

4351Book.fm Page 4 Tuesday, September 28, 2004 11:21 AM

5

Developing an Automated GUI Testing Tool

the GUI often results in mistakes. Thus, the capture/playback procedure records the redun-
dant and wrong clicks and keystrokes.

Based on the current testing technologies, GUI test automation invariably requires manual
script writing, editing, and debugging. On one hand, tool vendors keep on informing testers of
the powerful functions their tools are capable of. On the other hand, testers must face a great
number of technical challenges getting a tool to work with the application under test (AUT).
It is well known that GUI components are modified and redefined throughout the develop-
ment process. The generated test scripts are unable to keep up with design changes.

Compared with non-GUI software testing, a GUI test infrastructure based on the current
testing tools is also expensive with regard to purchasing the tools and the efforts that must be
made to maintain the tests. Very often, only a part of the GUI components are tested automat-
ically. The other part still requires manual tests. In the following sections, I’ll address the inad-
equacy of GUI testing by discussing an approach for improving the current test infrastructure.

Developing an Automated GUI Testing Tool

The raw GUI test scripts recorded by the capture/playback technique perform the apparent
mouse and key actions if they don’t fail to execute. But even when the execution succeeds, the
captured results don’t verify whether the invocation of the business functions (often, non-GUI
modules) caused by the GUI events is correct. Complicated graphic output must be tested.
The GUI test scripts don’t test the input variation to the GUI components. Without manual
editing and debugging, these test scripts are not able to test whether the GUI components are
created and drawn as desired.

The purpose of this book is to show how to use more effective programming methods to
develop a GUI testing tool. This tool will help you avoid the drawbacks and pitfalls of the cur-
rent testing methods. The generated test script should be able to capture the event actions and
changes performed on the GUI component being tested and the invocation of the related non-
GUI components caused by the GUI events. It will also verify the position and the appearance
of the GUI components and test the input to the GUI components. The result of the event
actions and invocations will be converted from GUI to readable text formats. Then the test
result reports will be used by the developers to fix the detected bugs.

To achieve an improved test infrastructure, this book will discuss ways to develop GUI test-
ing tools that can generate flawless test scripts. These scripts will have functions to test various
aspects of the GUI components. They will not become obsolete due to changes of the GUI
components. If more GUI controls are added or reduced, a new test can be regenerated by
feeding the modified application to the tool.

4351Book.fm Page 5 Tuesday, September 28, 2004 11:21 AM

6

Chapter 1 • GUI Testing: An Overview

In this book, I’ll also discuss methods for developing testing tools that require minimum
training. The current testing tools have complicated user interfaces and users must be trained
to use them. Almost every GUI testing tool has a script language for writing test scripts. Devel-
opers are often isolated from software testing automation by the language differences. In this
book you’ll learn how to develop a tool to write test scripts in the same language that is used
by the developers in an organization. Thus, the testing tool, the application under test, and the
automatically generated test scripts are all developed in one language. The test projects
become more readable and maintainable and bring testers and developers together.

I’ll also discuss methods for generating testing cases so the combination of the testing cases
and scripts will be more effective in finding bugs. None of the tools on the market that rely on
the capture/playback or reverse-engineering technique is able to locate a GUI component and
write a relevant test script for it automatically. Thus, we need a method to conduct an auto-
matic and exhaustive survey of the GUI components and write test scripts and test data with
respect to different testing issues of the components.

Finally, using these methods to develop a testing tool will save time and money, deliver accurate
products, and make the job interesting for the organization.

Expectation of Automated Testing

Automated tests help to greatly reduce the time and the cost spent on software testing through-
out the entire development life cycle. Furthermore, automation ensures that tests are per-
formed regularly and consistently, resulting in early error detection that leads to enhanced
quality and shorter time to market.

Current testing techniques are not able to automate the GUI testing process before an exe-
cutable test script is created. The tester is often required to use a capture/playback method
to record scripts. The recording process is in fact a labor-intensive interaction between the
tester and the GUI. If there is a bug the process fails to record and one bug is detected during
testing, the tester must repeat and continue the script recording process until the bug is fixed.
Thus, bugs are detected one by one throughout manual script recording. When the recorded
script is ready to be executed, the possibility of finding bugs by replaying it is limited.

Testers expect the testing tools to actively find GUI components, generate the respective
testing data, and use the generated data to drive the test script generation and execution. There
is not a tool that is capable of conducting an active survey for the existing GUI components of
an application. Although vendors often claim their tool is capable of data-driven script gener-
ation, testers often need to start a wizard and enter testing data. This wizard-driven data gen-
eration is also labor intensive and error prone. The first execution of this data is not effective
in detecting bugs. To find bugs, one test script should be able to test against many test data
sheets. Testers expect a fully automated method to generate multiple copies of testing data.

4351Book.fm Page 6 Tuesday, September 28, 2004 11:21 AM

7

Developing an Automated GUI Testing Tool

Commercially available testing tools are very much platform dependent. They often have
their own testing environment. A recorded test script usually runs in the environment in which
it has been recorded. Tools also are accompanied by tool-dependent script languages. Thus,
software testing is often limited by the tester’s system. If developers and other personnel need
to be involved in testing, more tool licenses need to be purchased from the tool vendors. This
limits the test script portability.

Researchers and tool developers are making an effort to achieve a fully automated testing tool
that will recognize the GUI components and generate testing data and test scripts in sequence.
It should also be capable of being executed for regression testing unattended. Based on the facts
reported in

The Economic Impacts of Inadequate Infrastructure for Software Testing

 (Tassey 2003),
the current approaches to testing need to be revised or improved, and some even need to be dis-
carded. We will therefore heed the experts’ advice to develop a testing tool. A new tool capable
of locating bugs more effectively will have the following features:

●

The test script language will be the same one used to develop the application under test.

 Users
won’t be required to manually click mouse buttons, press keys, and record test scripts.
Thus, testing can be run on the tester’s systems as well as on the developer’s systems. The
capability of executing the test on user’s systems will be helpful for the alpha and beta
version release of the application.

●

Management of software testing will become easy.

 Because the tool will actively search for GUI
components and write test scripts, a maximized test will be achieved and the redundancy of
test script generation will be reduced. One test script will be capable of testing against an
optimal number of testing cases.

●

The developed tool will have an open architecture that makes it flexible and easily modified for
extended testing functionality.

 Upgrading of the tool can be accomplished within the resource
limits of an organization. Thus the tool will always be compatible with the advancement of
technologies and the complexity of the software projects. It will also be able to recognize
third-party GUI components, custom controls, and generic objects for test data and script
generation.

●

Regression testing will be fully automated.

 Test execution has always been a boring, mechan-
ical, repetitive, dreary aspect of testing. With this tool, the regression testing process can
be conducted nightly and daily without human attention.

●

Test results will be reported and stored in a widely accepted format (e.g., a popular spreadsheet
program, an XML document, or an HTML format).

 When a bug is found, the report will
pinpoint the problem in the source code. Users don’t need to be trained in order to
understand and use the report to fix defects. In addition, an Internet bug tracing system
can be enabled.

4351Book.fm Page 7 Tuesday, September 28, 2004 11:21 AM

8

Chapter 1 • GUI Testing: An Overview

Automated Test Teams

We all agree that with a properly automated testing process, more testing cases can be conducted
and more bugs can be found within a short period of time. Charles Schwab & Co., a major U.S.
stockbroker, reported that, based on the current testing means, a typical system test required
52 hours of effort manually but only 3 hours after automation. Automated Data Processing
(ADP) reports that its elapsed time for testing has been reduced 60% through automation. Stud-
ies indicate that the number of defects discovered by tool users increase by 10% to 50%. Many
organizations today rely on automated testing tools for the high quality of their products.

On the other hand, a survey in 250 organizations found that only 35% of testers were still using
automated tools one year after the tool installation due to the reported testing inadequacy. To
avoid turning back to the tedious and time-consuming manual testing method, many organiza-
tions train their staff to develop more effective automated tests. Figure 1.1 shows an organiza-
tional chart for a test team. An effective test team must involve senior administrators interested in
quality products and a high degree of test automation. Developers should be willing to share and
convey knowledge with regard to testing issues. Tool developers develop more effective testing
tools based on the experience of manual testers and tool users. Alpha testers work independently
but share test scripts (automated or manual) with other testers.

F I G U R E 1 . 1

The organizational
chart of a test team
with the components
of senior administra-
tors, supportive devel-
opers, testers, and
alpha testers

Tool developers

Senior administrators

Testers

Manual testers

Tool users

Independent
alpha testersDevelopers

4351Book.fm Page 8 Tuesday, September 28, 2004 11:21 AM

9

Developing an Automated GUI Testing Tool

An automated testing process is the result of the evolution and maturity of manual testing
efforts. During the tool development life cycle, manual testers continuously make contributions
of automation strategies and testing techniques. Thus, before the test of a new component can be
automated, manual testing should be conducted and verified. Then the optimal testing method
can be implemented and integrated into the automated tool. As the testing methods are accumu-
lated, the tool will become useful for future projects instead of just the current project.

Members of a conventional automated test team are tool users. A new automated test team
would ideally include tool developers, tool users, and manual testers. Manual testers analyze
project risks, identify project requirements, develop the documentation to design the overall
testing scenarios, and specify the test data requirements to achieve the needed test coverage. The
manual test engineers also prioritize testing jobs to be integrated into the automated testing tool.

The management strategy for developing a testing tool should resemble the management
strategy used in the development of other applications. First, the team will select a develop-
ment model and environment. The project described in this book will be implemented in the
same language as the application under test. This will enhance the collaboration between the
testers and the developers. Thus, testers will have the knowledge they need to test the appli-
cation and make effective testing cases, and developers will make suggestions for improving the
tool development and test script generation. The developers can use the tool to complete the
unit and integration testing at code time.

Next, requirements need to be collected based on experiences that other testers, developers,
and all kinds of end users have had with manual testing. The tool project specification is a
cooperative effort between managers of all levels, product learning personnel, testers, and
developers. An object-oriented design document is also important for the success of the tool’s
reusable architecture. This document will not only be used to complete the current imple-
mentation, future upgrading will also be based on it. The tool developers should have broad
knowledge of software engineering and software testing and automation and programming
skills. When it is implemented, the code will need to be tested. Bugs should be found and fixed
so that they will not be introduced into the applications under test. Finally, the automated
testing team needs to create training materials for the end users. The team can recruit the
developers, engineers, and other personnel to test the application. Within a short period of
time, maximum testing will be conducted. As many bugs as possible will be detected and fixed,
thus assuring high-quality code.

The automated test team benefits the current project as well as future projects because the
tool will be maintained. Unlike commercial testing tools, this tool will always keep up with cur-
rent technology advancements, adapt to project complexity, and be able to test the creative and
innovative aspects of an application.

4351Book.fm Page 9 Tuesday, September 28, 2004 11:21 AM

10

Chapter 1 • GUI Testing: An Overview

How to Automate GUI Testing

The degree of automation for the tool depends on the testing requirements collected for an
organization. With the knowledge of what GUI components to search for, the automated test
team can implement drivers to create test scripts in various situations that correspond to the
testing scenarios of the manual testing. A team with skillful manual testers can develop a tool
with a higher degree of automation. In that case, the tool development will require more
investment, but because the technologies of the software industry change quickly, developing
a highly automated tool quickly pays off by increasing productivity and quality.

The starting point of testing an application’s GUI is to locate the GUI components. Currently
available tools depend on mouse events and keyboard actions from users. A fully automated test-
ing tool should recognize these GUIs programmatically. We need to enable the tool to move
the pointer automatically to conduct a GUI component survey. If a GUI component is detected
at the movement of the pointer, the tool will identify it by its unique properties, check its status,
generate testing data, and write code to activate the GUI and catch the consequences. These
consequences could be visible (external GUI level) or invisible (internal non-GUI modules) and
are stored in the test results.

A GUI component can be recognized by its name, its position in hierarchy, its component
class, the title of its parent window, and the programmer-assigned tag or ID. During each session
of running an application, the GUI components are located with unique pairs of coordinates on
the screen. However, GUI positions are often under modification by programmers, platforms,
and screen resolution. A GUI test script should avoid hard-coding the position for tracking the
GUI components. The component name is also not useful for writing test scripts. When we
write a test script for testing a GUI component, we often find that programmers assign one name
to several GUI components. In other cases, the component names are assigned automatically by
the integrated development environment (IDE).

Usually, the programmer-assigned properties (label text, button captions, window titles, etc.)
are unique and can be effectively used to identify a GUI component. We can develop our
automated test tool to use the combination of the title of the parent window, the name of the
component class, the caption, and other custom properties to locate the GUI components
using test scripts.

After the survey and the identification of the GUI components, test scripts should be created.
Current testing tools don’t have the capability to generate test scripts automatically. When a
tool has a capture/playback or a reverse-engineering processor to generate test scripts, the ven-
dor claims it is a powerful testing tool. Testers in some teams don’t trust the test scripts
recorded by the capture/playback or reverse-engineering procedure, so they write test scripts
from scratch. Because the test script can invoke the application, vendors claim this testing
method is automatic. Thus, the testers are often found spending most of their time writing test

4351Book.fm Page 10 Tuesday, September 28, 2004 11:21 AM

11

How to Automate GUI Testing

scripts or playing with the capture/playback tool to edit and debug the generated test scripts.
They don’t have enough time to manually create testing data, which is time consuming and
requires creativity.

However, more and more testers disagree that the capture/playback tools are automated test-
ing tools. We need to develop our own testing tools with full automation. My book

Effective
Software Test Automation: Developing an Automated Software Testing Tool

 discussed technologies
such as reflection, late binding, CodeDom and testing data generation. The result of the book
was the creation of a fully automated testing tool for non-GUI components. This book will use
an active GUI survey approach to collect GUI test data, and the collected data will drive the
test. In order to conduct an automatic GUI survey, this book will also discuss some Win32
applications programming interface (API) techniques. During the GUI survey, some API-
implemented functions will simulate a person manipulating the mouse and the keyboard.
Reflection techniques can be used to dismantle the component under examination. Late bind-
ing can invoke related members of the GUI event. The generation of test data and scripts
becomes fast. Furthermore, the survey and script generation will be done automatically with-
out the human tester’s attention. Testers will spend most of their time composing effective
testing cases. The automatically generated test script will test the component against multiple
copies of testing cases and thus maximize the bug finding process.

Based on the preceding discussion, current automated test teams have a lot of manual testing
responsibilities because the commercially available automated testing tools are inadequate in
data and script generation and the recorded raw scripts lack the capability to verify test results.
In addition to a full test automation, the developed tool will have the following advantages:

Less intrusive

An intrusive tool requires developers to implement testability hooks in the
application. These hooks are not desired by end users. Using an intrusive tool and using extra
coding in the application could cause problems in the future. GUI testing methods without
capture/playback require less human interaction with the application, making the tool less
intrusive.

Platform and language independent

Although the sample code in this book will be writ-
ten in one language within the Windows operating system, the method can be extended to
any other environments and coded in different languages. There is also no need to purchase
additional hardware to handle the testing overhead.

Flexibility for upgrading

Software testing is influenced by continuous evolution and
addition of new technology, including advances in computer science, new testing technol-
ogies, and new development methods from outside sources. In addition, organizations con-
tinuously strive to create profitable new techniques and products. When a technology is
implemented in an organization, the testing tool will able to test the new features. If the
tool lacks the capability to test new features, developers can upgrade the tool.

4351Book.fm Page 11 Tuesday, September 28, 2004 11:21 AM

