Audel[®] Pumps and Hydraulics

All New 6th Edition

Audel[®] Pumps and Hydraulics

All New 6th Edition

Rex Miller Mark Richard Miller Harry Stewart

Vice President and Executive Group Publisher: Richard Swadley Vice President and Publisher: Joseph B. Wikert Executive Editor: Carol A. Long Editorial Manager: Kathryn A. Malm Development Editor: Kevin Shafer Production Editor: Vincent Kunkemueller Text Design & Composition: TechBooks

Copyright @ 2004 by Wiley Publishing, Inc., Indianapolis, Indiana. All rights reserved. Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website is listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Audel, and The Books That Work are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Control Number:

eISBN: 0-7645-7911-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Acknowled	gments	xiii
About the A	Authors	XV
Introduction		xvii
PART I	INTRODUCTION TO BASIC PRINCIPLES OF PUMPS AND HYDRAULICS	
Chapter 1	Basic Fluid Principles	3
	Physics	3
	Matter	3
	Body	4
	Energy	5
	Heat	7
	Pressure	14
	Barometer	21
	Gravity	22
	Force	26
	Motion	28
	Friction	34
	Work and Power	36
	Basic Machines	38
	Lever	40
	Wheel and Axle	41
	Pulley	42
	Inclined Plane	43
	Screw	44
	Wedge	45
	Water	46
	Properties of Water with Respect to	_
	Pump Design	53
	Pressure at Different Depths	54
	Compressibility of Water	54

	Air	57
	Humidity	57
	Weight of Air	60
	Summary	61
	Review Questions	62
Chapter 2	Principles of Hydraulics	65
	Basic Principles	65
	Hydrostatics	69
	Static Head	70
	Static Lift	70
	Displacement	72
	Buoyancy	73
	Hydrostatic Paradox	76
	Hydrostatic Balance	76
	Hydrodynamics	77
	Dynamic Head	77
	Dynamic Lift	78
	Total Column	84
	Friction of Water in Pipes	84
	Flow of Water	89
	Measurement of Water Flow	89
	Siphon	96
	Flow through Orifices	97
	Specific Gravity	102
	Summary	106
	Review Questions	109
PART II	PUMPS	
Chapter 3	Centrifugal Pumps	113
	Basic Principles	113
	Pumps Having Straight Vanes	114
	Pump Having Curved Vanes	114
	The Volute	115
	Curvature of the Impeller Vanes	117
	Basic Classification	117

Single-Stage Pump	118
Multistage Pump	119
Impellers	120
Balancing	123
Construction of Pumps	127
Casing or Housing	127
Impeller	127
Stuffing-Box Assembly	129
Bearings and Housings	129
Shaft Assembly	131
Drive	131
Installation	133
Location	133
Foundation	135
Leveling	135
Grouting	137
Inlet Piping	137
Discharge Piping	138
Pumps Handling High-Temperature	
Liquids	138
Operation	139
Priming	140
Starting the Pump	143
Stopping the Pump	145
Abnormal Operating Conditions	146
Troubleshooting	146
Reduced Capacity or Pressure and	
Failure to Deliver Water	147
Loses Water after Starting	147
Pump Overloads Driver	147
Pump Vibrates	148
Pointers on Pump Operation	148
Maintenance and Repair	149
Lateral End Clearances	149
Parts Renewals	149
Pointers on Assembly	150

	Corrosion-Resisting Centrifugal Pumps	152
	Typical Application — Plating	152
	Corrosion-Resisting Pump Installation	155
	Maintenance	157
	Corrosion-Resisting Pump	
	Troubleshooting	158
	Pump-End Assembly and Disassembly	158
	Good Safety Practices	161
	Impeller Design Considerations	162
	Velocity of Impeller	163
	Total Hydraulic Load or Lift	164
	Velocity Head	164
	Summary	173
	Review Questions	174
Chapter 4	Rotary Pumps	177
-	Principles of Operation	177
	Gear-Type Pumps	177
	Vane-Type Pumps	180
	Piston-Type Pumps	187
	Construction	188
	Gear-Type Pumps	190
	Vane-Type Pumps	199
	Piston-Type Pumps	200
	Installation and Operation	204
	Alignment	204
	Drives for Rotary Gear Pumps	208
	Power for Driving Pumps	208
	Piping	209
	Direction of Rotation	210
	Starting and Operating the Pump	212
	Practical Installation	212
	Types of Gear Pumps	213
	Pressure Relief Valve	215
	Rotary Pump Troubleshooting	216
	No Liquid Delivered	216
	Insufficient Liquid Delivered	217

	Pump Delivers for a Short Period, Then	
	Quits	217
	Rapid Wear	217
	Pump Requires Too Much Power	218
	Noisy Operation	218
	Calculations	218
	Correct Size of Pump	219
	Friction of Water in Pipes	219
	Friction Loss in Rubber Hose	219
	Dynamic Column or Total Load	221
	Dynamic Lift	221
	Dynamic Head	222
	Horsepower Required	224
	Summary	225
	Review Questions	228
Chapter 5	Reciprocating Pumps	229
	Principles of Operation	229
	Lift Pumps	230
	Force Pumps	231
	Self-Priming or Siphon Pumps	239
	Construction	240
	Calculations	243
	Lift	243
	Size of Discharge Pipe	248
	Head	248
	Displacement	250
	Piston Speed	251
	Slip	252
	Capacity	253
	Efficiency	254
	Summary	260
	Review Questions	262
Chapter 6	Special-Service Pumps	265
	Service Pumps	265
	Chemical and Process Pumps	270

	Pumps for Medical Use	273
	Pumps for Handling of Sewage	274
	Other Special-Service Pumps	275
	Magma Pumps	276
	Sump Pumps	276
	Irrigation Pumps	281
	Diaphragm-Type Pumps	282
	Open-Diaphragm Pump	284
	Advantages of Diaphragm Pumps	284
	Shallow-Well and Deep-Well	
	Pumps	287
	Rubber Impeller Pumps	296
	Principles of Operation	297
	Marine Applications	297
	Tubing Pumps	298
	Basic Principle of Operation	299
	Lubricating the Tubing	301
	Variable Speed	301
	Types Available	301
	Air Driven Pump	311
	Multi-Tube Pumps	311
	Chemical Pumping	312
	Summary	312
	Review Questions	313
PART III	HYDRAULICS	
Chapter 7	Hvdraulic Accumulators	317
I	Basic Construction and Operation	317
	Types of Accumulators	318
	Weight-Loaded	319
	Spring-Loaded Accumulators	324
	Air- or Gas-Type Accumulators	324
	Shock Absorbers or Alleviators	331
	Air and Vacuum Chambers	334
	Air Chambers	334
	Vacuum Chambers	335

	Accumulator Circuits	338
	Summary	342
	Review Questions	344
Chapter 8	Power Transmission	345
	Hydraulic Drives	345
	Basic Operating Principles	346
	Tangential Acceleration	348
	Tangential Deceleration	351
	Types of Hydraulic Drives	352
	Fluid Drive	352
	Hydraulic Drive	356
	Twin-Disk Hydraulic Drive	357
	Hydraulic Torque Converter	358
	Hydrostatic Transmission Systems	359
	Hydraulic Adjustable-Speed Drive	367
	Farm Tractor Applications	368
	Pumps for Robots	371
	CCS Systems	378
	Summary	381
	Review Questions	382
Chapter 9	Hydraulic Power Tools	383
	Hydraulic Circuits	383
	Hydraulic Motors	385
	Types of Hydraulic Motors	389
	Hydraulically Controlled Circuits	394
	Combination Pump and Control Valve Unit	394
	Remote Directional Control Valves	395
	Operation of a Cylinder on a Machine Tool	398
	Circuit Elements	398
	Operation of the Hydraulic Circuit	402
	Summary	403
	Review Questions	403
Chapter 10	Hydraulic Cylinders	405
	Nonrotating Cylinders	405
	Names of Parts	407

	Force Developed in Nonrotating	
	Cylinders	415
	Installation	418
	Eccentric Loads	421
	Causes of Failure	422
	Repair and Maintenance	423
	Rotating Cylinders	424
	Names of Parts	424
	Installation	428
	Failure	430
	Repair and Maintenance	430
	Summary	432
	Review Questions	432
Chapter 11	Control Valves	435
	Pressure Controls	437
	Pressure Relief	437
	Sequence	438
	Pressure Reducing	439
	Counterbalance and Unloading	440
	Operating Signals	441
	Flow Controls	441
	Needle	444
	Noncompensating	444
	Compensating	445
	Directional Controls	447
	Summary	450
	Review Questions	451
Chapter 12	Hydraulic Control Valve Operators	453
	Pressure-Control Valve Operators	453
	Flow-Control Valve Operators	454
	Directional Control Valve Operators	456
	Manual Operators	456
	Solenoid Operators	460
	Mechanical Operators	463
	Pilot Operators	465

	Summary	468
	Review Questions	469
PART IV	FLUIDS, LINES, AND FITTINGS	
Chapter 13	Hydraulic Fluids	473
	Petroleum-Base Fluids	473
	Synthetic-Base Fluids	473
	Quality Requirements	474
	Maintenance	475
	Change of Fluids in a Hydraulic System	476
	Selection of a Hydraulic Fluid	477
	Specific Weight	477
	Viscosity	478
	Saybolt Universal Viscosimeter	478
	Viscosity Problems	480
	Viscosity Index	480
	Lubricating Value	481
	Pour Point	481
	Oxidation and Contamination	481
	Hydraulic Filters	482
	Mobile-type Hydraulic Filter Units	485
	Summary	488
	Review Questions	488
Chapter 14	Fluid Lines and Fittings	491
	Rigid Pipe	491
	Semi-Rigid (Tubing)	492
	Manufacturing Process	495
	Other Types	497
	Installation of Tubing	498
	Flexible Piping (Hose)	499
	Manifolds	505
	Summary	507
	Review Questions	507
Appendix A	Pump Resources	509

Appendix B	Oils and Fluids	511
Appendix C	Latest Pumps Available	513
Index		531

No book can be written without the aid of many people. It takes a great number of individuals to put together the information available about any particular technical field into a book. The field of pumps and hydraulics is no exception. Many firms have contributed information, illustrations, and analysis of the book.

The authors would like to thank every person involved for his or her contributions. Following are some of the firms that supplied technical information and illustrations.

Abex Corp., Denison Division ABS The Aldrich Pump Company, Standard Pump Div. Becker Pumps Brown and Sharpe Mfg. Co. Buffalo Forge Company Buffalo Pumps Caterpillar Tractor Co. Commercial Shearing Inc. **Continental Hydraulics** Deming Division, Crane Co. Double A Products Co. Gold Pumps Gould Pumps Hydreco, Div. of General Signal Imperial-Eastern Corp. Logansport Machine Co., Inc. Lynair, Inc. Marvel Engineering Co. Mobile Aerial Towers, Inc. Oilgear Company Parker-Hannifin Corp. Pathon Manufacturing Company, Div. of Parker-Hannifin Corp. Pleuger Submersible Pumps, Inc. Rexnard, Inc., Hydraulic Component Div. Roper Pump Compan Schrader Div., Scovil Mfg. Co. Sherwood

Snap-Tite, Inc. Sperry Vickers, Division of Sperry Rand Corp. Sunstrand Hydro-Transmission, Div. of Sundstrand Corp. Superior Hydraulics, Div. of Superior Pipe Specialties TAT Engineering Viking Pump Division The Weatherhead Co. **Rex Miller** was a Professor of Industrial Technology at The State University of New York, College at Buffalo for more than 35 years. He has taught at the technical school, high school, and college level for more than 40 years. He is the author or co-author of more than 100 textbooks ranging from electronics through carpentry and sheet metal work. He has contributed more than 50 magazine articles over the years to technical publications. He is also the author of seven civil war regimental histories.

Mark Richard Miller finished his BS in New York and moved on to Ball State University, where he earned a master's degree, then went to work in San Antonio. He taught high school and finished his doctorate in College Station, Texas. He took a position at Texas A&M University in Kingsville, Texas, where he now teaches in the Industrial Technology Department as a Professor and Department Chairman. He has co-authored 11 books and contributed many articles to technical magazines. His hobbies include refinishing a 1970 Plymouth Super Bird and a 1971 Road-runner.

Harry L. Stewart was a professional engineer and is the author of numerous books for the trades covering pumps, hydraulics, pneumatics, and fluid power.

The purpose of this book is to provide a better understanding of the fundamentals and operating principles of pumps, pump controls, and hydraulics. A thorough knowledge of pumps has become more important, due to the large number of applications of pump equipment in industry.

The applied principles and practical features of pumps and hydraulics are discussed in detail. Various installations, operations, and maintenance procedures are also covered. The information contained will be of help to engineering students, junior engineers and designers, installation and maintenance technicians, shop mechanics, and others who are interested in technical education and selfadvancement.

The correct servicing methods are of the utmost importance to the service technician, since time and money can be lost when repeated repairs are required. With the aid of this book, you should be able to install and service pumps for nearly any application.

The authors would like to thank those manufacturers that provided illustrations, technical information, and constructive criticism. Special thanks to TAT Engineering and Sherwood Pumps.

Part I

Introduction to Basic Principles of Pumps and Hydraulics

Chapter I Basic Fluid Principles

Pumps are devices that expend energy to raise, transport, or compress fluids. The earliest pumps were made for raising water. These are known today as *Persian* and *Roman waterwheels* and the more sophisticated *Archimedes screw*.

Mining operations of the Middle Ages led to development of the *suction* or *piston pump*. There are many types of suction pumps. They were described by Georgius Agricola in his *De re Metallica* written in 1556 A.D. A suction pump works by atmospheric pressure. That means when the piston is raised, it creates a partial vacuum. The outside atmospheric pressure then forces water into the cylinder. From there, it is permitted to escape by way of an outlet valve. Atmospheric pressure alone can force water to a maximum height of about 34 feet (10 meters). So, the force pump was developed to drain deeper mines. The downward stroke of the force pump forces water out through a side valve. The height raised depends on the force applied to the piston.

Fluid is employed in a closed system as a medium to cause motion, either linear or rotary. Because of improvements in seals, materials, and machining techniques, the use of fluids to control motions has greatly increased in the recent past.

Fluid can be either in a liquid or gaseous state. Air, oil, water, oxygen, and nitrogen are examples of fluids. They can all be pumped by today's highly improved devices.

Physics

A branch of science that deals with matter and energy and their interactions in the field of mechanics, electricity, nuclear phenomena, and others is called *physics*. Some of the basic principles of fluids must be studied before subsequent chapters in this book can be understood properly.

Matter

Matter can be defined as anything that occupies space, and all matter has inertia. Inertia is that property of matter by which it will remain at rest or in uniform motion in the same straight line or direction unless acted upon by some external force. *Matter* is any substance that can be weighed or measured. Matter may exist in one of three states:

- Solid (coal, iron, ice)
- Liquid (oil, alcohol, water)
- Gas (air, hydrogen, helium)

Water is the familiar example of a substance that exists in each of the three states of matter (see Figure 1-1) as ice (solid), water (liquid), and steam (gas).

Figure I-I The three states of matter: solid, liquid, and gas. Note that the change of state from a solid to a liquid is called fusion, and the change of state from liquid to a gas is called vaporization.

Body

A body is a mass of matter that has a definite quantity. For example, a mass of iron 3 inches \times 3 inches \times 3 inches has a definite quantity of 27 cubic inches. It also has a definite weight. This weight can be determined by placing the body on a scale (either a lever or platform scale or a spring scale). If an accurate weight is required, a lever or platform scale should be employed. Since weight depends on gravity, and since gravity decreases with elevation, the reading on a spring scale varies, as shown in Figure 1-2.

(A) At sea level.

(B) At higher elevation.

Figure I-2 Variation in readings of a spring scale for different elevations.

Energy

Energy is the capacity for doing work and overcoming resistance. Two types of energy are *potential* and *kinetic* (see Figure 1-3).

Potential energy is the energy that a body has because of its relative position. For example, if a ball of steel is suspended by a chain, the position of the ball is such that if the chain is cut, work can be done by the ball.

Kinetic energy is energy that a body has when it is moving with some velocity. An example would be a steel ball rolling down an incline. Energy is expressed in the same units as work (foot-pounds).

As shown in Figure 1-3, water stored in an elevated reservoir or tank represents potential energy, because it may be used to do work as it is liberated to a lower elevation.

Conservation of Energy

It is a principle of physics that energy can be transmitted from one body to another (or transformed) in its manifestations, but energy may be neither created nor destroyed. Energy may be dissipated.

Figure I-3 Potential energy and kinetic energy.

That is, it may be converted into a form from which it cannot be recovered (the heat that escapes with the exhaust from a locomotive, for example, or the condensed water from a steamship). However, the total amount of energy in the universe remains constant, but variable in form.

Joule's Experiment

This experiment is a classic illustration (see Figure 1-4) of the conservation of energy principle. In 1843, Dr. Joule of Manchester, England, performed his classic experiment that demonstrated to the world the mechanical equivalent of heat. It was discovered that the work performed by the descending weight (*W* in Figure 1-4) was not lost, but appeared as heat in the water—the agitation of the paddles having increased the water temperature by an amount that can be measured by a thermometer. According to Joule's experiment, when 772 foot-pounds of work energy had been expended on the 1 pound of water, the temperature of the water had increased 1°F.

Figure I-4 Joule's experiment revealed the mechanical equivalent of heat.

This is known as *Joule's equivalent*: That is, 1 unit of heat equals 772 foot-pounds (ft-lb) of work. (It is generally accepted today that ft-lb. be changed to lb.ft. in the meantime or transistion period you will find it as ft-lb. or lb.ft.)

Experiments by Prof. Rowland (1880) and others provide higher values. A value of 778 ft-lb is generally accepted, but 777.5 ft-lb is probably more nearly correct, the value 777.52 ft-lb being used by Marks and Davis in their steam tables. The value 778 ft-lb is sufficiently accurate for most calculations.

Heat

Heat is a form of energy that is known by its effects. The effect of heat is produced by the accelerated vibration of molecules. Theoretically, all molecular vibration stops at -273° C (known as absolute zero), and there is no heat formed. The two types of heat are *sensible* heat and *latent* heat.

Sensible Heat

The effect of this form of heat is indicated by the sense of touch or feeling (see Figure 1-5).

Sensible heat is measured by a thermometer. A thermometer is an instrument used to measure the temperature of gases, solids, and liquids. The three most common types of thermometers are *liquidin-glass*, *electrical*, and *deformation*.

The liquid-in-glass generally employs mercury as the liquid unless the temperature should drop below the freezing point of mercury,

in which case alcohol is used. The liquid-in-glass is relatively inexpensive, easy to read, reliable, and requires no maintenance. The thermometer consists of a glass tube with a small uniform bore that has a bulb at the bottom and a sealed end at the top. The bulb and part of the tube are filled with liquid. As the temperature rises, the liquid in the bulb and tube expand and the liquid rises in the tube. When the liquid in the thermometer reaches the same temperature as the temperature outside of the thermometer, the liquid ceases to rise.

In 1714, Gabriel Daniel Fahrenheit built a mercury thermometer of the type now commonly in use.

Electrical thermometers are of the more sophisticated type. A *thermocouple* is a good example. This thermometer measures temperatures by measuring the small voltage that exists at the junction of two dissimilar metals. Electrical thermometers are made that can measure temperatures up to 1500°C.

Deformation thermometers use the principle that liquids increase in volume and solids increase in length as temperatures rise. The *Bourdon tube thermometer* is a deformation thermometer.

Extremely high temperatures are measured by a *pyrometer*. One type of pyrometer matches the color (such as that of the inside of a furnace) against known temperatures of red-hot wires.

Figure 1-5 The radiator is an example of sensible heat.

Figure 1-6 shows the Fahrenheit, Celsius, and Reaumur thermometer scales. Figure 1-7 illustrates the basic principle of a thermocouple pyrometer.

Figure 1-6 Three types of thermometer scales.

Latent Heat

This form of heat is the quantity of heat that becomes concealed or hidden inside a body while producing some change in the body other than an increase in temperature.

When water at atmospheric pressure is heated to 212°F, a further increase in temperature does not occur, even though the supply of heat is continued. Instead of an increase in temperature, vaporization occurs, and a considerable quantity of heat must be added to the liquid to transform it into steam. The total heat consists of *internal* and *external* latent heats. Thus, in water at 212°F and at

Figure 1-7 Basic principle of a thermocouple pyrometer. A thermocouple is used to measure high temperatures. In principle, when heat is applied to the junction of two dissimilar metals, a current of electricity begins to flow in proportion to the amount of heat applied. This current is brought to a meter and translated in terms of heat.

atmospheric pressure, considerable heat is required to cause the water to begin boiling (internal latent heat). The additional heat that is required to boil the water is called *external latent heat*. Figure 1-8 shows a familiar example of both internal and external latent heat.

Figure 1-8 Domestic setting for illustrating internal (left) and external (right) latent heat.

Unit of Heat

The *heat unit* is the amount of heat required to raise the temperature of 1 pound of water 1°F at the maximum density of the water. The *British thermal unit* (abbreviated Btu) is the standard for heat measure. A unit of heat (Btu) is equal to 252 calories, which is the