Dr. Dobbs Jolt Award Finalist 2014 Adam Shostack

threat
modeling

designing for Security







Threat Modeling

Designing for Security

Adam Shostack

WILEY



Threat Modeling: Designing for Security

Published by

John Wiley & Sons, Inc.

10475 Crosspoint
BoulevardIndianapolis, IN 46256
www.wiley.com

Copyright © 2014 by Adam Shostack

Published by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-80999-0
ISBN: 978-1-118-82269-2 (ebk)
ISBN: 978-1-118-81005-7 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or onlineat http: //www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may
be created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at ht tp: / /booksupport .wiley . com. For more information about Wiley products,
visit www . wiley.com.

Library of Congress Control Number: 2013954095

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.


http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

For all those striving to deliver more secure systems



Credits

Executive Editor
Carol Long

Project Editors
Victoria Swider
Tom Dinse

Technical Editor
Chris Wysopal

Production Editor
Christine Mugnolo

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Technical Proofreader
Russ McRee

Proofreader
Nancy Carrasco

Indexer
Robert Swanson

Cover Image
Courtesy of Microsoft

Cover Designer
Wiley



About the Author

Adam Shostack is currently a program manager at Microsoft.
His security roles there have included security development
processes, usable security, and attack modeling. His attack-
modeling work led to security updates for Autorun being
delivered to hundreds of millions of computers. He shipped
the SDL Threat Modeling Tool and the Elevation of Privilege
threat modeling game. While doing security development
process work, he delivered threat modeling training across
Microsoft and its partners and customers.

Prior to Microsoft, he has been an executive at a number of successful
information security and privacy startups. He helped found the CVE, the
Privacy Enhancing Technologies Symposium and the International Financial
Cryptography Association. He has been a consultant to banks, hospitals and
startups and established software companies. For the first several years of his
career, he was a systems manager for a medical research lab. Shostack is a
prolific author, blogger, and public speaker. With Andrew Stewart, he co-authored
The New School of Information Security (Addison-Wesley, 2008).




Vi

About the Technical Editor

Chris Wysopal, Veracode’s CTO and Co-Founder, is responsible for the company’s
software security analysis capabilities. In 2008 he was named one of InfoWorld’s
Top 25 CTO’s and one of the 100 most influential people in IT by eWeek. One of
the original vulnerability researchers and a member of LOpht Heavy Industries,
he has testified on Capitol Hill in the US on the subjects of government computer
security and how vulnerabilities are discovered in software. He is an author of
LOphtCrack and netcat for Windows. He is the lead author of The Art of Software
Security Testing (Addison-Wesley, 2006).



Acknowledgments

First and foremost, I'd like to thank countless engineers at Microsoft and else-
where who have given me feedback about their experiences threat modeling. I
wouldn’t have had the opportunity to have so many open and direct conversa-
tions without the support of Eric Bidstrup and Steve Lipner, who on my first
day at Microsoft told me to go “wallow in the problem for a while.” I don’t
think either expected “a while” to be quite so long. Nearly eight years later with
countless deliverables along the way, this book is my most complete answer to
the question they asked me: “How can we get better threat models?”

Ellen Cram Kowalczyk helped me make the book a reality in the Microsoft
context, gave great feedback on both details and aspects that were missing, and
also provided a lot of the history of threat modeling from the first security pushes
through the formation of the SDL, and she was a great manager and mentor.
Ellen and Steve Lipner were also invaluable in helping me obtain permission
to use Microsoft documents.

The Elevation of Privilege game that opens this book owes much to Jacqueline
Beauchere, who saw promise in an ugly prototype called “Threat Spades,” and
invested in making it beautiful and widely available.

The SDL Threat Modeling Tool might not exist if Chris Peterson hadn’t given
me a chance to build a threat modeling tool for the Windows team to use. Ivan
Medvedev, Patrick McCuller, Meng Li, and Larry Osterman built the first version
of that tool. I'd like to thank the many engineers in Windows, and later across
Microsoft, who provided bug reports and suggestions for improvements in the
beta days, and acknowledge all those who just flamed at us, reminding us of the
importance of getting threat modeling right. Without that tool, my experience
and breadth in threat modeling would be far poorer.

Larry Osterman, Douglas Maclver, Eric Douglas, Michael Howard, and Bob
Fruth gave me hours of their time and experience in understanding threat

vii



viii

Acknowledgments

modeling at Microsoft. Window Snyder’s perspective as I started the Microsoft
job has been invaluable over the years. Knowing when you're done . . . well,
this book is nearly done.

Rob Reeder was a great guide to the field of usable security, and Chapter 15
would look very different if not for our years of collaboration. I can’t discuss
usable security without thanking Lorrie Cranor for her help on that topic; but
also for the chance to keynote the Symposium on Usable Privacy and Security,
which led me to think about usable engineering advice, a perspective that is
now suffused throughout this book.

Andy Steingrubl, Don Ankney, and Russ McRee all taught me important
lessons related to operational threat modeling, and how the trade-offs change
as you change context. Guys, thank you for beating on me—those lessons now
permeate many chapters. Alec Yasinac, Harold Pardue, and Jeff Landry were
generous with their time discussing their attack tree experience, and Chapters
4 and 17 are better for those conversations. Joseph Lorenzo Hall was also a gem
in helping with attack trees. Wendy Nather argued strongly that assets and
attackers are great ways to make threats real, and thus help overcome resistance
to fixing them. Rob Sama checked the Acme financials example from a CPA’s
perspective, correcting many of my errors. Dave Awksmith graciously allowed
me to include his threat personas as a complete appendix. Jason Nehrboss gave
me some of the best feedback I've ever received on very early chapters.

I'd also like to acknowledge Jacob Appelbaum, Crispin Cowan, Dana Epp (for
years of help, on both the book and tools), Jeremi Gosney, Yoshi Kohno, David
LeBlanc, Marsh Ray, Nick Mathewson, Tamara McBride, Russ McRee, Talhah
Mir, David Mortman, Alec Muffet, Ben Rothke, Andrew Stewart, and Bryan
Sullivan for helpful feedback on drafts and/or ideas that made it into the book
in a wide variety of ways.

Of course, none of those acknowledged in this section are responsible for the
errors which doubtless crept in or remain.

Writing this book “by myself” (an odd phrase given everyone I'm acknowl-
edging) makes me miss working with Andrew Stewart, my partner in writing
on The New School of Information Security. Especially since people sometimes
attribute that book to me, I want to be public about how much I missed his
collaboration in this project.

This book wouldn’t be in the form it is were it not for Bruce Schneier’s will-
ingness to make an introduction to Carol Long, and Carol’s willingness to pick
up the book. It wasn't always easy to read the feedback and suggested changes
from my excellent project editor, Victoria Swider, but this thing is better where I
did. Tom Dinse stepped in as the project ended and masterfully took control of a
very large number of open tasks, bringing them to resolution on a tight schedule.

Lastly, and most importantly, thank you to Terri, for all your help, support,
and love, and for putting up with “it’s almost done” for a very, very long time.

—Adam Shostack



Introduction
Partl
Chapter 1

Chapter 2

Getting Started

Dive In and Threat Model!
Learning to Threat Model
What Are You Building?
What Can Go Wrong?
Addressing Each Threat
Checking Your Work
Threat Modeling on Your Own
Checklists for Diving In and Threat Modeling
Summary

Strategies for Threat Modeling
“What'’s Your Threat Model?”
Brainstorming Your Threats
Brainstorming Variants
Literature Review
Perspective on Brainstorming
Structured Approaches to Threat Modeling
Focusing on Assets
Focusing on Attackers
Focusing on Software
Models of Software
Types of Diagrams
Trust Boundaries
What to Include in a Diagram
Complex Diagrams
Labels in Diagrams

Contents

xXi

—

N O W

12
24

27
28

29
30
31
32
33
34
34
36
40
41
43
44
50
52
52
53



X

Contents

Partll
Chapter 3

Chapter 4

Color in Diagrams

Entry Points

Validating Diagrams
Summary

Finding Threats

STRIDE
Understanding STRIDE and Why It’s Useful
Spoofing Threats
Spoofing a Process or File on the Same Machine
Spoofing a Machine
Spoofing a Person
Tampering Threats
Tampering with a File
Tampering with Memory
Tampering with a Network
Repudiation Threats
Attacking the Logs
Repudiating an Action
Information Disclosure Threats
Information Disclosure from a Process
Information Disclosure from a Data Store
Information Disclosure from a Data Flow
Denial-of-Service Threats
Elevation of Privilege Threats
Elevate Privileges by Corrupting a Process
Elevate Privileges through Authorization Failures
Extended Example: STRIDE Threats against Acme-DB
STRIDE Variants
STRIDE-per-Element
STRIDE-per-Interaction
DESIST
Exit Criteria
Summary

Attack Trees
Working with Attack Trees
Using Attack Trees to Find Threats
Creating New Attack Trees
Representing a Tree
Human-Viewable Representations
Structured Representations
Example Attack Tree
Real Attack Trees
Fraud Attack Tree
Election Operations Assessment Threat Trees
Mind Maps

53
53
54
56

59

61
62
64
65
66
66
67
68
68
68
68
69
70
70
71
71
72
72
73
74
74
74
78
78
80
85
85
85

87
87
88
88
91
91
94
94
96
96
96
98



Contents

Chapter 5

Chapter 6

Part Il
Chapter 7

Perspective on Attack Trees
Summary

Attack Libraries
Properties of Attack Libraries
Libraries and Checklists
Libraries and Literature Reviews
CAPEC
Exit Criteria
Perspective on CAPEC
OWASP Top Ten
Summary

Privacy Tools

Solove’s Taxonomy of Privacy

Privacy Considerations for

Internet Protocols

Privacy Impact Assessments (PLA)

The Nymity Slider and the Privacy Ratchet

Contextual Integrity
Contextual Integrity Decision Heuristic
Augmented Contextual Integrity Heuristic
Perspective on Contextual Integrity

LINDDUN

Summary

Managing and Addressing Threats

Processing and Managing Threats
Starting the Threat Modeling Project
When to Threat Model
What to Start and (Plan to) End With
Where to Start
Digging Deeper into Mitigations
The Order of Mitigation
Playing Chess
Prioritizing
Running from the Bear
Tracking with Tables and Lists
Tracking Threats
Making Assumptions
External Security Notes
Scenario-Specific Elements of
Threat Modeling
Customer/Vendor Trust Boundary
New Technologies
Threat Modeling an API
Summary

98
100

101
101
103
103
104
106
106
108
108

111
112

114
114
115
117
118
119
119
120
121

123

125
126
126
128
128
130
131
131
132
132
133
133
135
136

138
139
139
141
143



Xii

Contents

Chapter 8

Chapter9

Chapter 10

Defensive Tactics and Technologies

Tactics and Technologies for Mitigating Threats

Authentication: Mitigating Spoofing
Integrity: Mitigating Tampering
Non-Repudiation: Mitigating Repudiation

Confidentiality: Mitigating Information Disclosure

Availability: Mitigating Denial of Service

Authorization: Mitigating Elevation of Privilege

Tactic and Technology Traps
Addressing Threats with Patterns

Standard Deployments

Addressing CAPEC Threats
Mitigating Privacy Threats

Minimization

Cryptography

Compliance and Policy
Summary

Trade-Offs When Addressing Threats
Classic Strategies for Risk Management
Avoiding Risks
Addressing Risks
Accepting Risks
Transferring Risks
Ignoring Risks
Selecting Mitigations for Risk Management
Changing the Design
Applying Standard Mitigation Technologies
Designing a Custom Mitigation
Fuzzing Is Not a Mitigation
Threat-Specific Prioritization Approaches
Simple Approaches
Threat-Ranking with a Bug Bar
Cost Estimation Approaches
Mitigation via Risk Acceptance
Mitigation via Business Acceptance
Mitigation via User Acceptance
Arms Races in Mitigation Strategies
Summary

Validating That Threats Are Addressed
Testing Threat Mitigations

Test Process Integration

How to Test a Mitigation

Penetration Testing

145
145
146
148
150
153
155
157
159
159
160
160
160
160
161
164
164

167
168
168
168
169
169
169
170
170
174
176
177
178
178
180
181
184
184
185
185
186

189
190
190
191
191



Contents

xiii

Chapter 11

Part IV
Chapter 12

Checking Code You Acquire
Constructing a Software Model
Using the Software Model

QA’ing Threat Modeling
Model/Reality Conformance
Task and Process Completion
Bug Checking

Process Aspects of Addressing Threats
Threat Modeling Empowers Testing;

Testing Empowers Threat Modeling
Validation/Transformation
Document Assumptions as You Go

Tables and Lists

Summary

Threat Modeling Tools
Generally Useful Tools

Whiteboards

Office Suites

Bug-Tracking Systems
Open-Source Tools

TRIKE

SeaMonster

Elevation of Privilege
Commercial Tools

ThreatModeler

Corporate Threat Modeller

SecurlTree

Little-JIL

Microsoft’s SDL Threat Modeling Tool
Tools That Don’t Exist Yet
Summary

Threat Modeling in Technologies and Tricky Areas

Requirements Cookbook
Why a “Cookbook”?
The Interplay of Requirements, Threats,
and Mitigations
Business Requirements
Outshining the Competition
Industry Requirements
Scenario-Driven Requirements
Prevent/Detect/Respond as a Frame
for Requirements
Prevention
Detection

192
193
194
195
195
196
196
197

197
197
198
198
202

203
204
204
204
204
206
206
206
206
208
208
208
209
209
209
213
213

215

217
218

219
220
220
220
221

221
221
225



Xiv

Contents

Chapter 13

Response

People/Process/Technology as a Frame
for Requirements

People

Process

Technology
Development Requirements vs. Acquisition Requirements
Compliance-Driven Requirements

Cloud Security Alliance

NIST Publication 200

PCI-DSS
Privacy Requirements

Fair Information Practices

Privacy by Design

The Seven Laws of Identity

Microsoft Privacy Standards for Development
The STRIDE Requirements

Authentication

Integrity

Non-Repudiation

Confidentiality

Availability

Authorization
Non-Requirements

Operational Non-Requirements

Warnings and Prompts

Microsoft’s “10 Immutable Laws”
Summary

Web and Cloud Threats
Web Threats
Website Threats
Web Browser and Plugin Threats
Cloud Tenant Threats
Insider Threats
Co-Tenant Threats
Threats to Compliance
Legal Threats
Threats to Forensic Response
Miscellaneous Threats
Cloud Provider Threats
Threats Directly from Tenants
Threats Caused by Tenant Behavior
Mobile Threats
Summary

225

227
227
228
228
228
229
229
230
231
231
232
232
233
234
234
235
236
237
238
238
239
240
240
241
241
242

243
243
244
244
246
246
247
247
248
248
248
249
249
250
250
251



Contents

Chapter 14 Accounts and Identity

Chapter 15

Account Life Cycles
Account Creation
Account Maintenance
Account Termination
Account Life-Cycle Checklist
Authentication
Login
Login Failures
Threats to “What You Have”
Threats to “What You Are”
Threats to “What You Know”
Authentication Checklist
Account Recovery
Time and Account Recovery
E-mail for Account Recovery

Knowledge-Based Authentication

Social Authentication
Attacker-Driven Analysis of
Account Recovery

Multi-Channel Authentication

Account Recovery Checklist
Names, IDs, and SSNs

Names

Identity Documents

Social Security Numbers and Other

National Identity Numbers
Identity Theft
Names, IDs, and SSNs Checklist
Summary

Human Factors and Usability
Models of People

Applying Behaviorist Models of People
Cognitive Science Models of People

Heuristic Models of People
Models of Software Scenarios
Modeling the Software

Diagramming for Modeling the Software
Modeling Electronic Social Engineering Attacks

Threat Elicitation Techniques
Brainstorming

The Ceremony Approach to Threat Modeling

Ceremony Analysis Heuristics

Integrating Usability into the Four-Stage Framework

253
254
254
257
258
258
259
260
262
263
264
267
271
271
272
273
274
278

280
281
281
282
282
285

286
289
290
290

293
294
295
297
302
304
304
307
309
311
311
311
312
315



Xvi

Contents

Chapter 16

PartV
Chapter 17

Tools and Techniques for Addressing
Human Factors
Myths That Inhibit Human Factors Work
Design Patterns for Good Decisions
Design Patterns for a Kind Learning
Environment
User Interface Tools and Techniques
Configuration
Explicit Warnings
Patterns That Grab Attention
Testing for Human Factors
Benign and Malicious Scenarios
Ecological Validity
Perspective on Usability and Ceremonies
Summary

Threats to Cryptosystems
Cryptographic Primitives

Basic Primitives

Privacy Primitives

Modern Cryptographic Primitives
Classic Threat Actors
Attacks against Cryptosystems
Building with Crypto

Making Choices

Preparing for Upgrades

Key Management

Authenticating before Decrypting
Things to Remember about Crypto

Use a Cryptosystem Designed by Professionals
Use Cryptographic Code Built and Tested by Professionals

Cryptography Is Not Magic Security Dust
Assume It Will All Become Public
You Still Need to Manage Keys

Secret Systems: Kerckhoffs and His Principles

Summary

Taking It to the Next Level

Bringing Threat Modeling to Your Organization

How To Introduce Threat Modeling
Convincing Individual Contributors
Convincing Management

Who Does What?

Threat Modeling and Project Management

316
317
317

320
322
322
323
325
327
328
328
329
331

333
334
334
339
339
341
342
346
346
346
346
348
348
348
348
349
349
349
349
351

353

355
356
357
358
359
359



Contents

xvii

Chapter 18

Chapter 19

Prerequisites

Deliverables

Individual Roles and Responsibilities
Group Interaction

Diversity in Threat Modeling Teams

Threat Modeling within a Development Life Cycle

Development Process Issues

Organizational Issues

Customizing a Process for Your Organization
Overcoming Objections to Threat Modeling

Resource Objections

Value Objections

Objections to the Plan
Summary

Experimental Approaches
Looking in the Seams
Operational Threat Models
FlipIT
Kill Chains
The “Broad Street” Taxonomy
Adversarial Machine Learning
Threat Modeling a Business
Threats to Threat Modeling Approaches
Dangerous Deliverables
Enumerate All Assumptions
Dangerous Approaches
How to Experiment
Define a Problem
Find Aspects to Measure and Measure Them
Study Your Results
Summary

Architecting for Success
Understanding Flow

Flow and Threat Modeling

Stymieing People

Beware of Cognitive Load

Avoid Creator Blindness

Assets and Attackers
Knowing the Participants
Boundary Objects
The Best Is the Enemy of the Good
Closing Perspectives

“The Threat Model Has Changed”

360
360
362
363
367
367
368
373
378
379
379
380
381
383

385
386
387
388
388
392
398
399
400
400
400
402
404
404
404
405
405

407
407
409
411
411
412
412
413
414
415
416
417



xviii Contents

On Artistry 418
Summary 419
Now Threat Model 420
Appendix A Helpful Tools 421
Common Answers to “What’s Your Threat Model?” 421
Network Attackers 421
Physical Attackers 422
Attacks against People 423
Supply Chain Attackers 423
Privacy Attackers 424
Non-Sentient “Attackers” 424
The Internet Threat Model 424
Assets 425
Computers as Assets 425
People as Assets 426
Processes as Assets 426
Intangible Assets 427
Stepping-Stone Assets 427
Appendix B Threat Trees 429
STRIDE Threat Trees 430
Spoofing an External Entity (Client/ Person/Account) 432
Spoofing a Process 438
Spoofing of a Data Flow 439
Tampering with a Process 442
Tampering with a Data Flow 444
Tampering with a Data Store 446
Repudiation against a Process (or by an External Entity) 450
Repudiation, Data Store 452
Information Disclosure from a Process 454
Information Disclosure from a Data Flow 456
Information Disclosure from a Data Store 459
Denial of Service against a Process 462
Denial of Service against a Data Flow 463
Denial of Service against a Data Store 466
Elevation of Privilege against a Process 468
Other Threat Trees 470
Running Code 471
Attack via a “Social” Program 474
Attack with Tricky Filenames 476
Appendix C Attacker Lists 477
Attacker Lists 478
Barnard'’s List 478
Verizon’s Lists 478
OWASP 478

Intel TARA 479



Contents

Xix

Appendix D

Appendix E

Glossary
Bibliography

Index

Personas and Archetypes
Aucsmith’s Attacker Personas
Background and Definitions
Personas
David “NeOphyate” Bradley — Vandal
JoLynn “NightLily” Dobney — Trespasser
Sean “Keech” Purcell — Defacer
Bryan “CrossFyre” Walton — Author
Lorrin Smith-Bates — Insider
Douglas Hite — Thief
My. Smith — Terrorist
M. Jones — Spy

Elevation of Privilege: The Cards
Spoofing

Tampering

Repudiation

Information Disclosure

Denial of Service

Elevation of Privilege (EoP)

Case Studies

The Acme Database
Security Requirements
Software Model
Threats and Mitigations

Acme’s Operational Network
Security Requirements
Operational Network
Threats to the Network

Phones and One-Time Token Authenticators

The Scenario
The Threats
Possible Redesigns

Sample for You to Model
Background
The iNTegrity Data Flow Diagrams
Exercises

480
481
481
484
484
486
488
490
492
494
496
498

501
501
503
504
506
507
508

511
512
512
512
513
519
519
520
521
525
526
527
528
528
529
530
531

533

543

567






Introduction

All models are wrong, some models are useful.
— George Box

This book describes the useful models you can employ to address or mitigate
these potential threats. People who build software, systems, or things with
software need to address the many predictable threats their systems can face.

Threat modeling is a fancy name for something we all do instinctively. If I
asked you to threat model your house, you might start by thinking about the
precious things within it: your family, heirlooms, photos, or perhaps your collec-
tion of signed movie posters. You might start thinking about the ways someone
might break in, such as unlocked doors or open windows. And you might start
thinking about the sorts of people who might break in, including neighborhood
kids, professional burglars, drug addicts, perhaps a stalker, or someone trying
to steal your Picasso original.

Each of these examples has an analog in the software world, but for now,
the important thing is not how you guard against each threat, but that you're
able to relate to this way of thinking. If you were asked to help assess a friend’s
house, you could probably help, but you might lack confidence in how complete
your analysis is. If you were asked to secure an office complex, you might have
a still harder time, and securing a military base or a prison seems even more
difficult. In those cases, your instincts are insufficient, and you'd need tools to
help tackle the questions. This book will give you the tools to think about threat
modeling technology in structured and effective ways.

In this introduction, you'll learn about what threat modeling is and why indi-
viduals, teams, and organizations threat model. Those reasons include finding
security issues early, improving your understanding of security requirements,
and being able to engineer and deliver better products. This introduction has

XXi



Introduction

five main sections describing what the book is about, including a definition of
threat modeling and reasons it’s important; who should read this book; how to
use it, and what you can expect to gain from the various parts, and new lessons
in threat modeling.

What Is Threat Modeling?

Everyone threat models. Many people do it out of frustration in line at the airport,
sneaking out of the house or into a bar. At the airport, you might idly consider how
to sneak something through security, even if you have no intent to do so. Sneaking
in or out of someplace, you worry about who might catch you. When you speed
down the highway, you work with an implicit threat model where the main threat
is the police, who you probably think are lurking behind a billboard or overpass.
Threats of road obstructions, deer, or rain might play into your model as well.

When you threat model, you usually use two types of models. There’s a model
of what you're building, and there’s a model of the threats (what can go wrong).
What you're building with software might be a website, a downloadable program
or app, or it might be delivered in a hardware package. It might be a distributed
system, or some of the “things” that will be part of the “Internet of things.” You
model so that you can look at the forest, not the trees. A good model helps you
address classes or groups of attacks, and deliver a more secure product.

The English word threat has many meanings. It can be used to describe a
person, such as “Osama bin Laden was a threat to America,” or people, such
as “the insider threat.” It can be used to describe an event, such as “There is
a threat of a hurricane coming through this weekend,” and it can be used to
describe a weakness or possibility of attack, such as “What are you doing about
confidentiality threats?” It is also used to describe viruses and malware such as
“This threat incorporates three different methods for spreading.” It can be used
to describe behavior such as “There’s a threat of operator error.”

Similarly, the term threat modeling has many meanings, and the term threat
model is used in many distinct and perhaps incompatible ways, including;:

m As a verb—for example, “Have you threat modeled?” That is, have you
gone through an analysis process to figure out what might go wrong with
the thing you're building?

m As a noun, to ask what threat model is being used. For example, “Our
threat model is someone in possession of the machine,” or “Our threat
model is a skilled and determined remote attacker.”

m |t can mean building up a set of idealized attackers.

m |t can mean abstracting threats into classes such as tampering.

There are doubtless other definitions. All of these are useful in various sce-
narios and thus correct, and there are few less fruitful ways to spend your time



Introduction

xxiii

than debating them. Arguing over definitions is a strange game, and the only
way to win is not to play. This book takes a big tent approach to threat model-
ing and includes a wide range of techniques you can apply early to make what
you're designing or building more secure. It will also address the reality that
some techniques are more effective than others, and that some techniques are
more likely to work for people with particular skills or experience.

Threat modeling is the key to a focused defense. Without threat models, you
can never stop playing whack-a-mole.

In short, threat modeling is the use of abstractions to aid in thinking about
risks.

Reasons to Threat Model

In today’s fast-paced world, there is a tendency to streamline development activ-
ity, and there are important reasons to threat model, which are covered in this
section. Those include finding security bugs early, understanding your security
requirements, and engineering and delivering better products.

Find Security Bugs Early

If you think about building a house, decisions you make early will have dramatic
effects on security. Wooden walls and lots of ground-level windows expose you
to more risks than brick construction and few windows. Either may be a reason-
able choice, depending on where you're building and other factors. Once you've
chosen, changes will be expensive. Sure, you can put bars over your windows,
but wouldn't it be better to use a more appropriate design from the start? The
same sorts of tradeoffs can apply in technology. Threat modeling will help you
find design issues even before you've written a line of code, and that’s the best
time to find those issues.

Understand Your Security Requirements

Good threat models can help you ask “Is that really a requirement?” For example,
does the system need to be secure against someone in physical possession of
the device? Apple has said yes for the iPhone, which is different from the tradi-
tional world of the PC. As you find threats and triage what youre going to do
with them, you clarify your requirements. With more clear requirements, you
can devote your energy to a consistent set of security features and properties.

There is an important interplay between requirements, threats, and mitiga-
tions. As you model threats, you'll find that some threats don't line up with your
business requirements, and as such may not be worth addressing. Alternately,
your requirements may not be complete. With other threats, you'll find that
addressing them is too complex or expensive. You'll need to make a call between



XXiv

Introduction

addressing them partially in the current version or accepting (and communicat-
ing) that you can’t address those threats.

Engineer and Deliver Better Products

By considering your requirements and design early in the process, you can
dramatically lower the odds that you'll be re-designing, re-factoring, or facing
a constant stream of security bugs. That will let you deliver a better product on
a more predictable schedule. All the effort that would go to those can be put
into building a better, faster, cheaper or more secure product. You can focus on
whatever properties your customers want.

Address Issues Other Techniques Won't

The last reason to threat model is that threat modeling will lead you to catego-
ries of issues that other tools won't find. Some of these issues will be errors of
omission, such as a failure to authenticate a connection. That’s not something
that a code analysis tool will find. Other issues will be unique to your design.
To the extent that you have a set of smart developers building something new,
you might have new ways threats can manifest. Models of what goes wrong,
by abstracting away details, will help you see analogies and similarities to
problems that have been discovered in other systems.

A corollary of this is that threat modeling should not focus on issues that your
other safety and security engineering is likely to find (except insofar as finding
them early lets you avoid re-engineering). So if, for example, you're building a
product with a database, threat modeling might touch quickly on SQL injection
attacks, and the variety of trust boundaries that might be injectable. However,
you may know that you'll encounter those. Your threat modeling should focus
on issues that other techniques can’t find.

Who Should Read This book?

This book is written for those who create or operate complex technology. That’s
primarily software engineers and systems administrators, but it also includes
a variety of related roles, including analysts or architects. There’s also a lot of
information in here for security professionals, so this book should be useful to
them and those who work with them. Different parts of the book are designed
for different people—in general, the early chapters are for generalists (or special-
ists in something other than security), while the end of the book speaks more
to security specialists.



Introduction

You don’t need to be a security expert, professional, or even enthusiast to
get substantial benefit from this book. I assume that you understand that there
are people out there whose interests and desires don't line up with yours. For
example, maybe they’d like to take money from you, or they may have other
goals, like puffing themselves up at your expense or using your computer to
attack other people.

This book is written in plain language for anyone who can write or spec a
program, but sometimes a little jargon helps in precision, conciseness, or clarity,
so there’s a glossary.

What You Will Gain from This Book

When you read this book cover to cover, you will gain a rich knowledge of threat
modeling techniques. You'll learn to apply those techniques to your projects
so you can build software that’s more secure from the get-go, and deploy it
more securely. You'll learn to how to make security tradeoffs in ways that are
considered, measured, and appropriate. You will learn a set of tools and when
to bring them to bear. You will discover a set of glamorous distractions. Those
distractions might seem like wonderful, sexy ideas, but they hide an ugly inte-
rior. You'll learn why they prevent you from effectively threat modeling, and
how to avoid them.

You'll also learn to focus on the actionable outputs of threat modeling, and
I'll generally call those “bugs.” There are arguments that it’s helpful to consider
code issues as bugs, and design issues as flaws. In my book, those arguments
are a distraction; you should threat model to find issues that you can address,
and arguing about labels probably doesn't help you address them.

Lessons for Different Readers

This book is designed to be useful to a wide variety of people working in tech-
nology. That includes a continuum from those who develop software to those
who combine it into systems that meet operational or business goals to those
who focus on making it more secure.

For convenience, this book pretends there is a bright dividing line between
development and operations. The distinction is used as a way of understand-
ing who has what capabilities, choices, and responsibilities. For example, it is
“easy” for a developer to change what is logged, or to implement a different
authentication system. Both of these may be hard for operations. Similarly, it’s
“easy” for operations to ensure that logs are maintained, or to ensure that a
computer is in a locked cage. As this book was written, there’s also an important



XXVi

Introduction

model of “devops” emerging. The lessons for developers and operations can
likely be applied with minor adjustments. This book also pretends that security
expertise is separate from either development or operations expertise, again,
simply as a convenience.

Naturally, this means that the same parts of the book will bring different les-
sons for different people. The breakdown below gives a focused value proposi-
tion for each audience.

Software Developers and Testers

Software developers—those whose day jobs are focused on creating software—
include software engineers, quality assurance, and a variety of program or
project managers. If you're in that group, you will learn to find and address
design issues early in the software process. This book will enable you to deliver
more secure software that better meets customer requirements and expecta-
tions. You'll learn a simple, effective and fun approach to threat modeling, as
well as different ways to model your software or find threats. You'll learn how
to track threats with bugs that fit into your development process. You'll learn to
use threats to help make your requirements more crisp, and vice versa. You'll
learn about areas such as authentication, cryptography, and usability where the
interplay of mitigations and attacks has a long history, so you can understand
how the recommended approaches have developed to their current state. You'll
learn about how to bring threat modeling into your development process. And
a whole lot more!

Systems Architecture, Operations, and Management

For those whose day jobs involve bringing together software components,
weaving them together into systems to deliver value, you'll learn to find and
address threats as you design your systems, select your components, and get
them ready for deployment. This book will enable you to deliver more secure
systems that better meet business, customer, and compliance requirements.
You'll learn a simple, effective, and fun approach to threat modeling, as well as
different ways to model the systems you're building or have built. You'll learn
how to find security and privacy threats against those systems. You'll learn
about the building blocks which are available for you to operationally address
those threats. You'll learn how to make tradeoffs between the threats you face,
and how to ensure that those threats are addressed. You'll learn about specific
threats to categories of technology, such as web and cloud systems, and about
threats to accounts, both of which are deeply important to those in operations.
It will cover issues of usability, and perhaps even change your perspective on



Introduction xxvii

how to influence the security behavior of people within your organization and/
or your customers. You will learn about cryptographic building blocks, which
you may be using to protect systems. And a whole lot more!

Security Professionals

If you work in security, you will learn two major things from this book: First,
you'll learn structured approaches to threat modeling that will enhance your
productivity, and as you do, you'll learn why many of the “obvious” parts
of threat modeling are not as obvious, or as right, as you may have believed.
Second, you'll learn about bringing security into the development, operational
and release processes that your organization uses.

Even if you are an expert, this book can help you threat model better. Here,
I speak from experience. As I was writing the case study appendix, I found
myself turning to both the tree in Appendix B and the requirements chapter,
and finding threats that didn’t spring to mind from just considering the models
of software.

TO MY COLLEAGUES IN INFORMATION SECURITY

I want to be frank. This book is not about how to design abstractly perfect software.
Itis a practical, grounded book that acknowledges that most software is built in some
business or organizational reality that requires tradeoffs. To the dismay of purists,
software where tradeoffs were made runs the world these days, and I'd like to make
such software more secure by making those tradeoffs better. That involves a great
many elements, two of which are making security more consistent and more acces-
sible to our colleagues in other specialties.

This perspective is grounded in my time as a systems administrator, deploying
security technologies, and observing the issues people encountered. It is grounded
in my time as a startup executive, learning to see security as a property of a system
which serves a business goal. It is grounded in my responsibility for threat model-
ing as part of Microsoft’s Security Development Lifecycle. In that last role, | spoke
with thousands of people at Microsoft, its partners, and its customers about our
approaches. These individuals ranged from newly hired developers to those with
decades of experience in security, and included chief security officers and Microsoft’s
Trustworthy Computing Academic Advisory Board. | learned that there are an awful
lot of opinions about what works, and far fewer about what does not. This book aims
to convince my fellow security professionals that pragmatism in what we ask of devel-
opment and operations helps us deliver more secure software over time. This perspec-
tive may be a challenge for some security professionals. They should focus on Parts I,
IV, and V, and perhaps give consideration to the question of the best as the enemy of
the good.




xxviii Introduction

How To Use This Book

You should start at the very beginning. It’s a very good place to start, even if
you already know how to threat model, because it lays out a framework that
will help you understand the rest of the book.

The Four-Step Framework

This book introduces the idea that you should see threat modeling as composed
of steps which accomplish subgoals, rather than as a single activity. The essential
questions which you ask to accomplish those subgoals are:

1. What are you building?

2. What can go wrong with it once it’s built?

3. What should you do about those things that can go wrong?
4. Did you do a decent job of analysis?

The methods you use in each step of the framework can be thought of like
Lego blocks. When working with Legos, you can snap in other Lego blocks.
In Chapter 1, you'll use a data flow diagram to model what you're building,
STRIDE to help you think about what can go wrong and what you should do
about it, and a checklist to see if you did a decent job of analysis. In Chapter 2,
you'll see how diagrams are the most helpful way to think about what you're
building. Different diagram types are like different building blocks to help
you model what you're building. In Chapter 3, you'll go deep into STRIDE (a
model of threats), while in Chapter 4, you'll learn to use attack trees instead of
STRIDE, while leaving everything else the same. STRIDE and attack trees are
different building blocks for considering what can go wrong once you've built
your new technology.

Not every approach can snap with every other approach. It takes crazy glue
to make an Erector set and Lincoln logs stick together. Attempts to glue threat
modeling approaches together has made for some confusing advice. For example,
trying to consider how terrorists would attack your assets doesn’t really lead
to a lot of actionable issues. And even with building blocks that snap together,
you can make something elegant, or something confusing or bizarre.

So to consider this as a framework, what are the building blocks? The four-
step framework is shown graphically in Figure I-1.

The steps are:

1. Model the system you're building, deploying, or changing.
2. Find threats using that model and the approaches in Part II.



