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Introduction

All models are wrong, some models are useful.
— George Box

This book describes the useful models you can employ to address or mitigate
these potential threats. People who build software, systems, or things with
software need to address the many predictable threats their systems can face.

Threat modeling is a fancy name for something we all do instinctively. If I
asked you to threat model your house, you might start by thinking about the
precious things within it: your family, heirlooms, photos, or perhaps your collec-
tion of signed movie posters. You might start thinking about the ways someone
might break in, such as unlocked doors or open windows. And you might start
thinking about the sorts of people who might break in, including neighborhood
kids, professional burglars, drug addicts, perhaps a stalker, or someone trying
to steal your Picasso original.

Each of these examples has an analog in the software world, but for now,
the important thing is not how you guard against each threat, but that you're
able to relate to this way of thinking. If you were asked to help assess a friend’s
house, you could probably help, but you might lack confidence in how complete
your analysis is. If you were asked to secure an office complex, you might have
a still harder time, and securing a military base or a prison seems even more
difficult. In those cases, your instincts are insufficient, and you'd need tools to
help tackle the questions. This book will give you the tools to think about threat
modeling technology in structured and effective ways.

In this introduction, you'll learn about what threat modeling is and why indi-
viduals, teams, and organizations threat model. Those reasons include finding
security issues early, improving your understanding of security requirements,
and being able to engineer and deliver better products. This introduction has

XXi



Introduction

five main sections describing what the book is about, including a definition of
threat modeling and reasons it’s important; who should read this book; how to
use it, and what you can expect to gain from the various parts, and new lessons
in threat modeling.

What Is Threat Modeling?

Everyone threat models. Many people do it out of frustration in line at the airport,
sneaking out of the house or into a bar. At the airport, you might idly consider how
to sneak something through security, even if you have no intent to do so. Sneaking
in or out of someplace, you worry about who might catch you. When you speed
down the highway, you work with an implicit threat model where the main threat
is the police, who you probably think are lurking behind a billboard or overpass.
Threats of road obstructions, deer, or rain might play into your model as well.

When you threat model, you usually use two types of models. There’s a model
of what you're building, and there’s a model of the threats (what can go wrong).
What you're building with software might be a website, a downloadable program
or app, or it might be delivered in a hardware package. It might be a distributed
system, or some of the “things” that will be part of the “Internet of things.” You
model so that you can look at the forest, not the trees. A good model helps you
address classes or groups of attacks, and deliver a more secure product.

The English word threat has many meanings. It can be used to describe a
person, such as “Osama bin Laden was a threat to America,” or people, such
as “the insider threat.” It can be used to describe an event, such as “There is
a threat of a hurricane coming through this weekend,” and it can be used to
describe a weakness or possibility of attack, such as “What are you doing about
confidentiality threats?” It is also used to describe viruses and malware such as
“This threat incorporates three different methods for spreading.” It can be used
to describe behavior such as “There’s a threat of operator error.”

Similarly, the term threat modeling has many meanings, and the term threat
model is used in many distinct and perhaps incompatible ways, including;:

m As a verb—for example, “Have you threat modeled?” That is, have you
gone through an analysis process to figure out what might go wrong with
the thing you're building?

m As a noun, to ask what threat model is being used. For example, “Our
threat model is someone in possession of the machine,” or “Our threat
model is a skilled and determined remote attacker.”

m |t can mean building up a set of idealized attackers.

m |t can mean abstracting threats into classes such as tampering.

There are doubtless other definitions. All of these are useful in various sce-
narios and thus correct, and there are few less fruitful ways to spend your time
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than debating them. Arguing over definitions is a strange game, and the only
way to win is not to play. This book takes a big tent approach to threat model-
ing and includes a wide range of techniques you can apply early to make what
you're designing or building more secure. It will also address the reality that
some techniques are more effective than others, and that some techniques are
more likely to work for people with particular skills or experience.

Threat modeling is the key to a focused defense. Without threat models, you
can never stop playing whack-a-mole.

In short, threat modeling is the use of abstractions to aid in thinking about
risks.

Reasons to Threat Model

In today’s fast-paced world, there is a tendency to streamline development activ-
ity, and there are important reasons to threat model, which are covered in this
section. Those include finding security bugs early, understanding your security
requirements, and engineering and delivering better products.

Find Security Bugs Early

If you think about building a house, decisions you make early will have dramatic
effects on security. Wooden walls and lots of ground-level windows expose you
to more risks than brick construction and few windows. Either may be a reason-
able choice, depending on where you're building and other factors. Once you've
chosen, changes will be expensive. Sure, you can put bars over your windows,
but wouldn't it be better to use a more appropriate design from the start? The
same sorts of tradeoffs can apply in technology. Threat modeling will help you
find design issues even before you've written a line of code, and that’s the best
time to find those issues.

Understand Your Security Requirements

Good threat models can help you ask “Is that really a requirement?” For example,
does the system need to be secure against someone in physical possession of
the device? Apple has said yes for the iPhone, which is different from the tradi-
tional world of the PC. As you find threats and triage what youre going to do
with them, you clarify your requirements. With more clear requirements, you
can devote your energy to a consistent set of security features and properties.

There is an important interplay between requirements, threats, and mitiga-
tions. As you model threats, you'll find that some threats don't line up with your
business requirements, and as such may not be worth addressing. Alternately,
your requirements may not be complete. With other threats, you'll find that
addressing them is too complex or expensive. You'll need to make a call between
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addressing them partially in the current version or accepting (and communicat-
ing) that you can’t address those threats.

Engineer and Deliver Better Products

By considering your requirements and design early in the process, you can
dramatically lower the odds that you'll be re-designing, re-factoring, or facing
a constant stream of security bugs. That will let you deliver a better product on
a more predictable schedule. All the effort that would go to those can be put
into building a better, faster, cheaper or more secure product. You can focus on
whatever properties your customers want.

Address Issues Other Techniques Won't

The last reason to threat model is that threat modeling will lead you to catego-
ries of issues that other tools won't find. Some of these issues will be errors of
omission, such as a failure to authenticate a connection. That’s not something
that a code analysis tool will find. Other issues will be unique to your design.
To the extent that you have a set of smart developers building something new,
you might have new ways threats can manifest. Models of what goes wrong,
by abstracting away details, will help you see analogies and similarities to
problems that have been discovered in other systems.

A corollary of this is that threat modeling should not focus on issues that your
other safety and security engineering is likely to find (except insofar as finding
them early lets you avoid re-engineering). So if, for example, you're building a
product with a database, threat modeling might touch quickly on SQL injection
attacks, and the variety of trust boundaries that might be injectable. However,
you may know that you'll encounter those. Your threat modeling should focus
on issues that other techniques can’t find.

Who Should Read This book?

This book is written for those who create or operate complex technology. That’s
primarily software engineers and systems administrators, but it also includes
a variety of related roles, including analysts or architects. There’s also a lot of
information in here for security professionals, so this book should be useful to
them and those who work with them. Different parts of the book are designed
for different people—in general, the early chapters are for generalists (or special-
ists in something other than security), while the end of the book speaks more
to security specialists.
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You don’t need to be a security expert, professional, or even enthusiast to
get substantial benefit from this book. I assume that you understand that there
are people out there whose interests and desires don't line up with yours. For
example, maybe they’d like to take money from you, or they may have other
goals, like puffing themselves up at your expense or using your computer to
attack other people.

This book is written in plain language for anyone who can write or spec a
program, but sometimes a little jargon helps in precision, conciseness, or clarity,
so there’s a glossary.

What You Will Gain from This Book

When you read this book cover to cover, you will gain a rich knowledge of threat
modeling techniques. You'll learn to apply those techniques to your projects
so you can build software that’s more secure from the get-go, and deploy it
more securely. You'll learn to how to make security tradeoffs in ways that are
considered, measured, and appropriate. You will learn a set of tools and when
to bring them to bear. You will discover a set of glamorous distractions. Those
distractions might seem like wonderful, sexy ideas, but they hide an ugly inte-
rior. You'll learn why they prevent you from effectively threat modeling, and
how to avoid them.

You'll also learn to focus on the actionable outputs of threat modeling, and
I'll generally call those “bugs.” There are arguments that it’s helpful to consider
code issues as bugs, and design issues as flaws. In my book, those arguments
are a distraction; you should threat model to find issues that you can address,
and arguing about labels probably doesn't help you address them.

Lessons for Different Readers

This book is designed to be useful to a wide variety of people working in tech-
nology. That includes a continuum from those who develop software to those
who combine it into systems that meet operational or business goals to those
who focus on making it more secure.

For convenience, this book pretends there is a bright dividing line between
development and operations. The distinction is used as a way of understand-
ing who has what capabilities, choices, and responsibilities. For example, it is
“easy” for a developer to change what is logged, or to implement a different
authentication system. Both of these may be hard for operations. Similarly, it’s
“easy” for operations to ensure that logs are maintained, or to ensure that a
computer is in a locked cage. As this book was written, there’s also an important
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model of “devops” emerging. The lessons for developers and operations can
likely be applied with minor adjustments. This book also pretends that security
expertise is separate from either development or operations expertise, again,
simply as a convenience.

Naturally, this means that the same parts of the book will bring different les-
sons for different people. The breakdown below gives a focused value proposi-
tion for each audience.

Software Developers and Testers

Software developers—those whose day jobs are focused on creating software—
include software engineers, quality assurance, and a variety of program or
project managers. If you're in that group, you will learn to find and address
design issues early in the software process. This book will enable you to deliver
more secure software that better meets customer requirements and expecta-
tions. You'll learn a simple, effective and fun approach to threat modeling, as
well as different ways to model your software or find threats. You'll learn how
to track threats with bugs that fit into your development process. You'll learn to
use threats to help make your requirements more crisp, and vice versa. You'll
learn about areas such as authentication, cryptography, and usability where the
interplay of mitigations and attacks has a long history, so you can understand
how the recommended approaches have developed to their current state. You'll
learn about how to bring threat modeling into your development process. And
a whole lot more!

Systems Architecture, Operations, and Management

For those whose day jobs involve bringing together software components,
weaving them together into systems to deliver value, you'll learn to find and
address threats as you design your systems, select your components, and get
them ready for deployment. This book will enable you to deliver more secure
systems that better meet business, customer, and compliance requirements.
You'll learn a simple, effective, and fun approach to threat modeling, as well as
different ways to model the systems you're building or have built. You'll learn
how to find security and privacy threats against those systems. You'll learn
about the building blocks which are available for you to operationally address
those threats. You'll learn how to make tradeoffs between the threats you face,
and how to ensure that those threats are addressed. You'll learn about specific
threats to categories of technology, such as web and cloud systems, and about
threats to accounts, both of which are deeply important to those in operations.
It will cover issues of usability, and perhaps even change your perspective on



Introduction xxvii

how to influence the security behavior of people within your organization and/
or your customers. You will learn about cryptographic building blocks, which
you may be using to protect systems. And a whole lot more!

Security Professionals

If you work in security, you will learn two major things from this book: First,
you'll learn structured approaches to threat modeling that will enhance your
productivity, and as you do, you'll learn why many of the “obvious” parts
of threat modeling are not as obvious, or as right, as you may have believed.
Second, you'll learn about bringing security into the development, operational
and release processes that your organization uses.

Even if you are an expert, this book can help you threat model better. Here,
I speak from experience. As I was writing the case study appendix, I found
myself turning to both the tree in Appendix B and the requirements chapter,
and finding threats that didn’t spring to mind from just considering the models
of software.

TO MY COLLEAGUES IN INFORMATION SECURITY

I want to be frank. This book is not about how to design abstractly perfect software.
Itis a practical, grounded book that acknowledges that most software is built in some
business or organizational reality that requires tradeoffs. To the dismay of purists,
software where tradeoffs were made runs the world these days, and I'd like to make
such software more secure by making those tradeoffs better. That involves a great
many elements, two of which are making security more consistent and more acces-
sible to our colleagues in other specialties.

This perspective is grounded in my time as a systems administrator, deploying
security technologies, and observing the issues people encountered. It is grounded
in my time as a startup executive, learning to see security as a property of a system
which serves a business goal. It is grounded in my responsibility for threat model-
ing as part of Microsoft’s Security Development Lifecycle. In that last role, | spoke
with thousands of people at Microsoft, its partners, and its customers about our
approaches. These individuals ranged from newly hired developers to those with
decades of experience in security, and included chief security officers and Microsoft’s
Trustworthy Computing Academic Advisory Board. | learned that there are an awful
lot of opinions about what works, and far fewer about what does not. This book aims
to convince my fellow security professionals that pragmatism in what we ask of devel-
opment and operations helps us deliver more secure software over time. This perspec-
tive may be a challenge for some security professionals. They should focus on Parts I,
IV, and V, and perhaps give consideration to the question of the best as the enemy of
the good.
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How To Use This Book

You should start at the very beginning. It’s a very good place to start, even if
you already know how to threat model, because it lays out a framework that
will help you understand the rest of the book.

The Four-Step Framework

This book introduces the idea that you should see threat modeling as composed
of steps which accomplish subgoals, rather than as a single activity. The essential
questions which you ask to accomplish those subgoals are:

1. What are you building?

2. What can go wrong with it once it’s built?

3. What should you do about those things that can go wrong?
4. Did you do a decent job of analysis?

The methods you use in each step of the framework can be thought of like
Lego blocks. When working with Legos, you can snap in other Lego blocks.
In Chapter 1, you'll use a data flow diagram to model what you're building,
STRIDE to help you think about what can go wrong and what you should do
about it, and a checklist to see if you did a decent job of analysis. In Chapter 2,
you'll see how diagrams are the most helpful way to think about what you're
building. Different diagram types are like different building blocks to help
you model what you're building. In Chapter 3, you'll go deep into STRIDE (a
model of threats), while in Chapter 4, you'll learn to use attack trees instead of
STRIDE, while leaving everything else the same. STRIDE and attack trees are
different building blocks for considering what can go wrong once you've built
your new technology.

Not every approach can snap with every other approach. It takes crazy glue
to make an Erector set and Lincoln logs stick together. Attempts to glue threat
modeling approaches together has made for some confusing advice. For example,
trying to consider how terrorists would attack your assets doesn’t really lead
to a lot of actionable issues. And even with building blocks that snap together,
you can make something elegant, or something confusing or bizarre.

So to consider this as a framework, what are the building blocks? The four-
step framework is shown graphically in Figure I-1.

The steps are:

1. Model the system you're building, deploying, or changing.
2. Find threats using that model and the approaches in Part II.



