Dr. Dobbs Jolt Award Finalist 2014

Adam Shostack Microsoft's Threat Modeling Expert

threat modeling designing for security

WILEY

Threat Modeling

Designing for Security

Adam Shostack

WILEY

Threat Modeling: Designing for Security

Published by John Wiley & Sons, Inc. 10475 Crosspoint BoulevardIndianapolis, IN 46256 www.wiley.com

Copyright © 2014 by Adam Shostack

Published by John Wiley & Sons, Inc., Indianapolis, Indiana Published simultaneously in Canada

ISBN: 978-1-118-80999-0 ISBN: 978-1-118-82269-2 (ebk) ISBN: 978-1-118-81005-7 (ebk)

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013954095

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Credits

Executive Editor

Carol Long

Project EditorsVictoria Swider
Tom Dinse

Technical Editor Chris Wysopal

Production Editor Christine Mugnolo

Copy Editor Luann Rouff

Editorial Manager Mary Beth Wakefield

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Marketing Manager Ashley Zurcher **Business Manager**

Amy Knies

Vice President and Executive

Group Publisher Richard Swadley

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Todd Klemme

Technical Proofreader

Russ McRee

Proofreader Nancy Carrasco

Indexer

Robert Swanson

Cover Image

Courtesy of Microsoft

Cover Designer

Wiley

About the Author

Adam Shostack is currently a program manager at Microsoft. His security roles there have included security development processes, usable security, and attack modeling. His attack-modeling work led to security updates for Autorun being delivered to hundreds of millions of computers. He shipped the SDL Threat Modeling Tool and the *Elevation of Privilege* threat modeling game. While doing security development process work, he delivered threat modeling training across Microsoft and its partners and customers.

Prior to Microsoft, he has been an executive at a number of successful information security and privacy startups. He helped found the CVE, the Privacy Enhancing Technologies Symposium and the International Financial Cryptography Association. He has been a consultant to banks, hospitals and startups and established software companies. For the first several years of his career, he was a systems manager for a medical research lab. Shostack is a prolific author, blogger, and public speaker. With Andrew Stewart, he co-authored *The New School of Information Security* (Addison-Wesley, 2008).

About the Technical Editor

Chris Wysopal, Veracode's CTO and Co-Founder, is responsible for the company's software security analysis capabilities. In 2008 he was named one of InfoWorld's Top 25 CTO's and one of the 100 most influential people in IT by eWeek. One of the original vulnerability researchers and a member of L0pht Heavy Industries, he has testified on Capitol Hill in the US on the subjects of government computer security and how vulnerabilities are discovered in software. He is an author of L0phtCrack and netcat for Windows. He is the lead author of *The Art of Software Security Testing* (Addison-Wesley, 2006).

Acknowledgments

First and foremost, I'd like to thank countless engineers at Microsoft and elsewhere who have given me feedback about their experiences threat modeling. I wouldn't have had the opportunity to have so many open and direct conversations without the support of Eric Bidstrup and Steve Lipner, who on my first day at Microsoft told me to go "wallow in the problem for a while." I don't think either expected "a while" to be quite so long. Nearly eight years later with countless deliverables along the way, this book is my most complete answer to the question they asked me: "How can we get better threat models?"

Ellen Cram Kowalczyk helped me make the book a reality in the Microsoft context, gave great feedback on both details and aspects that were missing, and also provided a lot of the history of threat modeling from the first security pushes through the formation of the SDL, and she was a great manager and mentor. Ellen and Steve Lipner were also invaluable in helping me obtain permission to use Microsoft documents.

The *Elevation of Privilege* game that opens this book owes much to Jacqueline Beauchere, who saw promise in an ugly prototype called "Threat Spades," and invested in making it beautiful and widely available.

The SDL Threat Modeling Tool might not exist if Chris Peterson hadn't given me a chance to build a threat modeling tool for the Windows team to use. Ivan Medvedev, Patrick McCuller, Meng Li, and Larry Osterman built the first version of that tool. I'd like to thank the many engineers in Windows, and later across Microsoft, who provided bug reports and suggestions for improvements in the beta days, and acknowledge all those who just flamed at us, reminding us of the importance of getting threat modeling right. Without that tool, my experience and breadth in threat modeling would be far poorer.

Larry Osterman, Douglas MacIver, Eric Douglas, Michael Howard, and Bob Fruth gave me hours of their time and experience in understanding threat modeling at Microsoft. Window Snyder's perspective as I started the Microsoft job has been invaluable over the years. Knowing when you're done . . . well, this book is nearly done.

Rob Reeder was a great guide to the field of usable security, and Chapter 15 would look very different if not for our years of collaboration. I can't discuss usable security without thanking Lorrie Cranor for her help on that topic; but also for the chance to keynote the *Symposium on Usable Privacy and Security*, which led me to think about usable engineering advice, a perspective that is now suffused throughout this book.

Andy Steingrubl, Don Ankney, and Russ McRee all taught me important lessons related to operational threat modeling, and how the trade-offs change as you change context. Guys, thank you for beating on me—those lessons now permeate many chapters. Alec Yasinac, Harold Pardue, and Jeff Landry were generous with their time discussing their attack tree experience, and Chapters 4 and 17 are better for those conversations. Joseph Lorenzo Hall was also a gem in helping with attack trees. Wendy Nather argued strongly that assets and attackers are great ways to make threats real, and thus help overcome resistance to fixing them. Rob Sama checked the Acme financials example from a CPA's perspective, correcting many of my errors. Dave Awksmith graciously allowed me to include his threat personas as a complete appendix. Jason Nehrboss gave me some of the best feedback I've ever received on very early chapters.

I'd also like to acknowledge Jacob Appelbaum, Crispin Cowan, Dana Epp (for years of help, on both the book and tools), Jeremi Gosney, Yoshi Kohno, David LeBlanc, Marsh Ray, Nick Mathewson, Tamara McBride, Russ McRee, Talhah Mir, David Mortman, Alec Muffet, Ben Rothke, Andrew Stewart, and Bryan Sullivan for helpful feedback on drafts and/or ideas that made it into the book in a wide variety of ways.

Of course, none of those acknowledged in this section are responsible for the errors which doubtless crept in or remain.

Writing this book "by myself" (an odd phrase given everyone I'm acknowledging) makes me miss working with Andrew Stewart, my partner in writing on *The New School of Information Security*. Especially since people sometimes attribute that book to me, I want to be public about how much I missed his collaboration in this project.

This book wouldn't be in the form it is were it not for Bruce Schneier's willingness to make an introduction to Carol Long, and Carol's willingness to pick up the book. It wasn't always easy to read the feedback and suggested changes from my excellent project editor, Victoria Swider, but this thing is better where I did. Tom Dinse stepped in as the project ended and masterfully took control of a very large number of open tasks, bringing them to resolution on a tight schedule.

Lastly, and most importantly, thank you to Terri, for all your help, support, and love, and for putting up with "it's almost done" for a very, very long time.

Contents

Introductio	n	xxi
Part I	Getting Started	1
Chapter 1	Dive In and Threat Model!	3
	Learning to Threat Model	4
	What Are You Building?	5
	What Can Go Wrong?	7
	Addressing Each Threat	12
	Checking Your Work	24
	Threat Modeling on Your Own	26
	Checklists for Diving In and Threat Modeling	27
	Summary	28
Chapter 2	Strategies for Threat Modeling	29
	"What's Your Threat Model?"	30
	Brainstorming Your Threats	31
	Brainstorming Variants	32
	Literature Review	33
	Perspective on Brainstorming	34
	Structured Approaches to Threat Modeling	34
	Focusing on Assets	36
	Focusing on Attackers	40
	Focusing on Software	41
	Models of Software	43
	Types of Diagrams	44
	Trust Boundaries	50
	What to Include in a Diagram	52
	Complex Diagrams	52
	Labels in Diagrams	53

	Color in Diagrams Entry Points	53 53
	Validating Diagrams Summary	54 56
Part II	Finding Threats	59
Chapter 3	STRIDE	61
	Understanding STRIDE and Why It's Useful	62
	Spoofing Threats	64
	Spoofing a Process or File on the Same Machine	65
	Spoofing a Machine	66
	Spoofing a Person	66
	Tampering Threats	67
	Tampering with a File	68
	Tampering with Memory	68
	Tampering with a Network	68
	Repudiation Threats	68
	Attacking the Logs	69
	Repudiating an Action	70
	Information Disclosure Threats	70
	Information Disclosure from a Process	71
	Information Disclosure from a Data Store	71
	Information Disclosure from a Data Flow	72
	Denial-of-Service Threats	72
	Elevation of Privilege Threats	73
	Elevate Privileges by Corrupting a Process	74 74
	Elevate Privileges through Authorization Failures	74 74
	Extended Example: STRIDE Threats against Acme-DB	74
	STRIDE Variants	78 79
	STRIDE-per-Element	78 80
	STRIDE-per-Interaction DESIST	85
	Exit Criteria	85
	Summary	85
Chapter 4	Attack Trees	87
•	Working with Attack Trees	87
	Using Attack Trees to Find Threats	88
	Creating New Attack Trees	88
	Representing a Tree	91
	Human-Viewable Representations	91
	Structured Representations	94
	Example Attack Tree	94
	Real Attack Trees	96
	Fraud Attack Tree	96
	Election Operations Assessment Threat Trees	96
	Mind Maps	98

		Contents	хi
	Parapastiva on Attack Trace	98	
	Perspective on Attack Trees Summary	100	
Chapter 5	Attack Libraries	101	
-	Properties of Attack Libraries	101	
	Libraries and Checklists	103	
	Libraries and Literature Reviews	103	
	CAPEC	104	
	Exit Criteria	106	
	Perspective on CAPEC	106	
	OWASP Top Ten	108	
	Summary	108	
a	•		
Chapter 6	Privacy Tools	111	
	Solove's Taxonomy of Privacy	112	
	Privacy Considerations for	44.4	
	Internet Protocols	114	
	Privacy Impact Assessments (PIA)	114	
	The Nymity Slider and the Privacy Ratchet	115	
	Contextual Integrity	117	
	Contextual Integrity Decision Heuristic	118	
	Augmented Contextual Integrity Heuristic	119	
	Perspective on Contextual Integrity	119	
	LINDDUN	120	
	Summary	121	
Part III	Managing and Addressing Threats	123	
Chapter 7	Processing and Managing Threats	125	
	Starting the Threat Modeling Project	126	
	When to Threat Model	126	
	What to Start and (Plan to) End With	128	
	Where to Start	128	
	Digging Deeper into Mitigations	130	
	The Order of Mitigation	131	
	Playing Chess	131	
	Prioritizing	132	
	Running from the Bear	132	
	Tracking with Tables and Lists	133	
	Tracking Threats	133	
	Making Assumptions	135	
	External Security Notes	136	
	Scenario-Specific Elements of		
	Threat Modeling	138	
	Customer/Vendor Trust Boundary	139	
	New Technologies	139	
	Threat Modeling an API	141	
	Summary	143	

Chapter 8	Defensive Tactics and Technologies	145
	Tactics and Technologies for Mitigating Threats	145
	Authentication: Mitigating Spoofing	146
	Integrity: Mitigating Tampering	148
	Non-Repudiation: Mitigating Repudiation	150
	Confidentiality: Mitigating Information Disclosure	153
	Availability: Mitigating Denial of Service	155
	Authorization: Mitigating Elevation of Privilege	157
	Tactic and Technology Traps	159
	Addressing Threats with Patterns	159
	Standard Deployments	160
	Addressing CAPEC Threats	160
	Mitigating Privacy Threats	160
	Minimization	160
	Cryptography	161
	Compliance and Policy	164
	Summary	164
Chapter 9	Trade-Offs When Addressing Threats	167
	Classic Strategies for Risk Management	168
	Avoiding Risks	168
	Addressing Risks	168
	Accepting Risks	169
	Transferring Risks	169
	Ignoring Risks	169
	Selecting Mitigations for Risk Management	170
	Changing the Design	170
	Applying Standard Mitigation Technologies	174
	Designing a Custom Mitigation	176
	Fuzzing Is Not a Mitigation	177
	Threat-Specific Prioritization Approaches	178
	Simple Approaches	178
	Threat-Ranking with a Bug Bar	180
	Cost Estimation Approaches	181
	Mitigation via Risk Acceptance	184
	Mitigation via Business Acceptance	184
	Mitigation via User Acceptance	185
	Arms Races in Mitigation Strategies	185
	Summary	186
Chapter 10	Validating That Threats Are Addressed	189
	Testing Threat Mitigations	190
	Test Process Integration	190
	How to Test a Mitigation	191
	Penetration Testing	191

		Contents	xiii
		100	
	Checking Code You Acquire	192	
	Constructing a Software Model	193	
	Using the Software Model	194	
	QA'ing Threat Modeling	195	
	Model/Reality Conformance	195	
	Task and Process Completion	196	
	Bug Checking	196	
	Process Aspects of Addressing Threats	197	
	Threat Modeling Empowers Testing;	107	
	Testing Empowers Threat Modeling	197	
	Validation/Transformation	197	
	Document Assumptions as You Go	198	
	Tables and Lists	198	
	Summary	202	
Chapter 11	Threat Modeling Tools	203	
	Generally Useful Tools	204	
	Whiteboards	204	
	Office Suites	204	
	Bug-Tracking Systems	204	
	Open-Source Tools	206	
	TRIKE	206	
	SeaMonster	206	
	Elevation of Privilege	206	
	Commercial Tools	208	
	ThreatModeler	208	
	Corporate Threat Modeller	208	
	SecurITree	209	
	Little-JIL	209	
	Microsoft's SDL Threat Modeling Tool	209	
	Tools That Don't Exist Yet	213	
	Summary	213	
Part IV	Threat Modeling in Technologies and Tricky Areas	215	
Chapter 12	Requirements Cookbook	217	
•	Why a "Cookbook"?	218	
	The Interplay of Requirements, Threats,		
	and Mitigations	219	
	Business Requirements	220	
	Outshining the Competition	220	
	Industry Requirements	220	
	Scenario-Driven Requirements	221	
	Prevent/Detect/Respond as a Frame		
	for Requirements	221	
	Prevention	221	
	Detection	225	

	Response	225
	People/Process/Technology as a Frame	
	for Requirements	227
	People	227
	Process	228
	Technology	228
	Development Requirements vs. Acquisition Requirements	228
	Compliance-Driven Requirements	229
	Cloud Security Alliance	229
	NIST Publication 200	230
	PCI-DSS	231
	Privacy Requirements	231
	Fair Information Practices	232
	Privacy by Design	232
	The Seven Laws of Identity	233
	Microsoft Privacy Standards for Development	234
	The STRIDE Requirements	234
	Authentication	235
	Integrity	236
	Non-Repudiation	237
	Confidentiality	238
	Availability	238
	Authorization	239
	Non-Requirements	240
	Operational Non-Requirements	240
	Warnings and Prompts	241
	Microsoft's "10 Immutable Laws"	241
	Summary	242
Chapter 13	Web and Cloud Threats	243
	Web Threats	243
	Website Threats	244
	Web Browser and Plugin Threats	244
	Cloud Tenant Threats	246
	Insider Threats	246
	Co-Tenant Threats	247
	Threats to Compliance	247
	Legal Threats	248
	Threats to Forensic Response	248
	Miscellaneous Threats	248
	Cloud Provider Threats	249
	Threats Directly from Tenants	249
	Threats Caused by Tenant Behavior	250
	Mobile Threats	250
	Summary	251

		Contents	XV
.			
Chapter 14	Accounts and Identity	253	
	Account Life Cycles	254	
	Account Creation	254	
	Account Maintenance	257	
	Account Termination	258	
	Account Life-Cycle Checklist	258	
	Authentication	259	
	Login	260	
	Login Failures	262	
	Threats to "What You Have"	263	
	Threats to "What You Are"	264	
	Threats to "What You Know"	267	
	Authentication Checklist	271	
	Account Recovery	271	
	Time and Account Recovery	272	
	E-mail for Account Recovery	273	
	Knowledge-Based Authentication	274	
	Social Authentication	278	
	Attacker-Driven Analysis of		
	Account Recovery	280	
	Multi-Channel Authentication	281	
	Account Recovery Checklist	281	
	Names, IDs, and SSNs	282	
	Names	282	
	Identity Documents	285	
	Social Security Numbers and Other		
	National Identity Numbers	286	
	Identity Theft	289	
	Names, IDs, and SSNs Checklist	290	
	Summary	290	
Chapter 15	Human Factors and Usability	293	
	Models of People	294	
	Applying Behaviorist Models of People	295	
	Cognitive Science Models of People	297	
	Heuristic Models of People	302	
	Models of Software Scenarios	304	
	Modeling the Software	304	
	Diagramming for Modeling the Software	307	
	Modeling Electronic Social Engineering Attacks	309	
	Threat Elicitation Techniques	311	
	Brainstorming	311	
	The Ceremony Approach to Threat Modeling	311	
	Ceremony Analysis Heuristics	312	
	Integrating Usability into the Four-Stage Framework	315	

	Tools and Techniques for Addressing	
	Human Factors	316
	Myths That Inhibit Human Factors Work	317
	Design Patterns for Good Decisions	317
	Design Patterns for a Kind Learning	
	Environment	320
	User Interface Tools and Techniques	322
	Configuration	322
	Explicit Warnings	323
	Patterns That Grab Attention	325
	Testing for Human Factors	327
	Benign and Malicious Scenarios	328
	Ecological Validity	328
	Perspective on Usability and Ceremonies	329
	Summary	331
Chapter 16	Threats to Cryptosystems	333
-	Cryptographic Primitives	334
	Basic Primitives	334
	Privacy Primitives	339
	Modern Cryptographic Primitives	339
	Classic Threat Actors	341
	Attacks against Cryptosystems	342
	Building with Crypto	346
	Making Choices	346
	Preparing for Upgrades	346
	Key Management	346
	Authenticating before Decrypting	348
	Things to Remember about Crypto	348
	Use a Cryptosystem Designed by Professionals	348
	Use Cryptographic Code Built and Tested by Professionals	348
	Cryptography Is Not Magic Security Dust	349
	Assume It Will All Become Public	349
	You Still Need to Manage Keys	349
	Secret Systems: Kerckhoffs and His Principles	349
	Summary	351
Part V	Taking It to the Next Level	353
Chapter 17	Bringing Threat Modeling to Your Organization	355
-	How To Introduce Threat Modeling	356
	Convincing Individual Contributors	357
	Convincing Management	358
	Who Does What?	359
	Threat Modeling and Project Management	359

		Contents	xvii
	Prerequisites	360	
	Deliverables	360	
	Individual Roles and Responsibilities	362	
	Group Interaction	363	
	Diversity in Threat Modeling Teams	367	
	Threat Modeling within a Development Life Cycle	367	
	Development Process Issues	368	
	Organizational Issues	373	
	Customizing a Process for Your Organization	378	
	Overcoming Objections to Threat Modeling	379	
	Resource Objections	379	
	Value Objections	380	
	Objections to the Plan	381	
	Summary	383	
Chapter 18	Experimental Approaches	385	
	Looking in the Seams	386	
	Operational Threat Models	387	
	FlipIT	388	
	Kill Chains	388	
	The "Broad Street" Taxonomy	392	
	Adversarial Machine Learning	398	
	Threat Modeling a Business	399	
	Threats to Threat Modeling Approaches	400	
	Dangerous Deliverables	400	
	Enumerate All Assumptions	400	
	Dangerous Approaches	402	
	How to Experiment	404	
	Define a Problem	404	
	Find Aspects to Measure and Measure Them	404	
	Study Your Results	405	
	Summary	405	
Chapter 19	Architecting for Success	407	
	Understanding Flow	407	
	Flow and Threat Modeling	409	
	Stymieing People	411	
	Beware of Cognitive Load	411	
	Avoid Creator Blindness	412	
	Assets and Attackers	412	
	Knowing the Participants	413	
	Boundary Objects	414	
	The Best Is the Enemy of the Good	415	
	Closing Perspectives	416	
	"The Threat Model Has Changed"	417	

	On Artistry	418
	Summary	419
	Now Threat Model	420
Appendix A	Helpful Tools	421
	Common Answers to "What's Your Threat Model?"	421
	Network Attackers	421
	Physical Attackers	422
	Attacks against People	423
	Supply Chain Attackers	423 424
	Privacy Attackers Non-Sentient "Attackers"	424
	The Internet Threat Model	424
	Assets	425
	Computers as Assets	425
	People as Assets	426
	Processes as Assets	426
	Intangible Assets	427
	Stepping-Stone Assets	427
Appendix B		429
	STRIDE Threat Trees	430
	Spoofing an External Entity (Client/ Person/Account)	432
	Spoofing a Process	438
	Spoofing of a Data Flow	439
	Tampering with a Process	442
	Tampering with a Data Flow	444
	Tampering with a Data Store	446
	Repudiation against a Process (or by an External Entity)	450 452
	Repudiation, Data Store Information Disclosure from a Process	454
	Information Disclosure from a Data Flow	456
	Information Disclosure from a Data Store	459
	Denial of Service against a Process	462
	Denial of Service against a Data Flow	463
	Denial of Service against a Data Store	466
	Elevation of Privilege against a Process	468
	Other Threat Trees	470
	Running Code	471
	Attack via a "Social" Program	474
	Attack with Tricky Filenames	476
Appendix C	Attacker Lists	477
	Attacker Lists	478
	Barnard's List	478
	Verizon's Lists	478
	OWASP	478
	Intel TARA	479

		Contents	xix
	Personas and Archetypes	480	
	Aucsmith's Attacker Personas	481	
	Background and Definitions	481	
	Personas	484	
	David "Ne0phyate" Bradley – Vandal	484	
	JoLynn "NightLily" Dobney – Trespasser	486	
	Sean "Keech" Purcell – Defacer	488	
	Bryan "CrossFyre" Walton – Author	490	
	Lorrin Smith-Bates – Insider	492	
	Douglas Hite – Thief	494	
	Mr. Smith – Terrorist	496	
	Mr. Jones – Spy	498	
Appendix D	Elevation of Privilege: The Cards	501	
	Spoofing	501	
	Tampering	503	
	Repudiation	504	
	Information Disclosure	506	
	Denial of Service	507	
	Elevation of Privilege (EoP)	508	
Appendix E	Case Studies	511	
	The Acme Database	512	
	Security Requirements	512	
	Software Model	512	
	Threats and Mitigations	513	
	Acme's Operational Network	519	
	Security Requirements	519	
	Operational Network	520	
	Threats to the Network	521	
	Phones and One-Time Token Authenticators	525	
	The Scenario	526	
	The Threats	527	
	Possible Redesigns	528	
	Sample for You to Model	528	
	Background	529	
	The iNTegrity Data Flow Diagrams	530	
	Exercises	531	
Glossary		533	
Bibliography		543	
Index		567	

Introduction

All models are wrong, some models are useful.

— George Box

This book describes the useful models you can employ to address or mitigate these potential threats. People who build software, systems, or things with software need to address the many predictable threats their systems can face.

Threat modeling is a fancy name for something we all do instinctively. If I asked you to threat model your house, you might start by thinking about the precious things within it: your family, heirlooms, photos, or perhaps your collection of signed movie posters. You might start thinking about the ways someone might break in, such as unlocked doors or open windows. And you might start thinking about the sorts of people who might break in, including neighborhood kids, professional burglars, drug addicts, perhaps a stalker, or someone trying to steal your Picasso original.

Each of these examples has an analog in the software world, but for now, the important thing is not how you guard against each threat, but that you're able to relate to this way of thinking. If you were asked to help assess a friend's house, you could probably help, but you might lack confidence in how complete your analysis is. If you were asked to secure an office complex, you might have a still harder time, and securing a military base or a prison seems even more difficult. In those cases, your instincts are insufficient, and you'd need tools to help tackle the questions. This book will give you the tools to think about threat modeling technology in structured and effective ways.

In this introduction, you'll learn about what threat modeling is and why individuals, teams, and organizations threat model. Those reasons include finding security issues early, improving your understanding of security requirements, and being able to engineer and deliver better products. This introduction has

five main sections describing what the book is about, including a definition of threat modeling and reasons it's important; who should read this book; how to use it, and what you can expect to gain from the various parts, and new lessons in threat modeling.

What Is Threat Modeling?

Everyone threat models. Many people do it out of frustration in line at the airport, sneaking out of the house or into a bar. At the airport, you might idly consider how to sneak something through security, even if you have no intent to do so. Sneaking in or out of someplace, you worry about who might catch you. When you speed down the highway, you work with an implicit threat model where the main threat is the police, who you probably think are lurking behind a billboard or overpass. Threats of road obstructions, deer, or rain might play into your model as well.

When you threat model, you usually use two types of models. There's a model of what you're building, and there's a model of the threats (what can go wrong). What you're building with software might be a website, a downloadable program or app, or it might be delivered in a hardware package. It might be a distributed system, or some of the "things" that will be part of the "Internet of things." You model so that you can look at the forest, not the trees. A good model helps you address classes or groups of attacks, and deliver a more secure product.

The English word *threat* has many meanings. It can be used to describe a person, such as "Osama bin Laden was a threat to America," or people, such as "the insider threat." It can be used to describe an event, such as "There is a threat of a hurricane coming through this weekend," and it can be used to describe a weakness or possibility of attack, such as "What are you doing about confidentiality threats?" It is also used to describe viruses and malware such as "This threat incorporates three different methods for spreading." It can be used to describe behavior such as "There's a threat of operator error."

Similarly, the term *threat modeling* has many meanings, and the term *threat model* is used in many distinct and perhaps incompatible ways, including:

- As a verb—for example, "Have you threat modeled?" That is, have you gone through an analysis process to figure out what might go wrong with the thing you're building?
- As a noun, to ask what threat model is being used. For example, "Our threat model is someone in possession of the machine," or "Our threat model is a skilled and determined remote attacker."
- It can mean building up a set of idealized attackers.
- It can mean abstracting threats into classes such as tampering.

There are doubtless other definitions. All of these are useful in various scenarios and thus correct, and there are few less fruitful ways to spend your time

than debating them. Arguing over definitions is a strange game, and the only way to win is not to play. This book takes a big tent approach to threat modeling and includes a wide range of techniques you can apply early to make what you're designing or building more secure. It will also address the reality that some techniques are more effective than others, and that some techniques are more likely to work for people with particular skills or experience.

Threat modeling is the key to a focused defense. Without threat models, you can never stop playing whack-a-mole.

In short, threat modeling is the use of abstractions to aid in thinking about risks.

Reasons to Threat Model

In today's fast-paced world, there is a tendency to streamline development activity, and there are important reasons to threat model, which are covered in this section. Those include finding security bugs early, understanding your security requirements, and engineering and delivering better products.

Find Security Bugs Early

If you think about building a house, decisions you make early will have dramatic effects on security. Wooden walls and lots of ground-level windows expose you to more risks than brick construction and few windows. Either may be a reasonable choice, depending on where you're building and other factors. Once you've chosen, changes will be expensive. Sure, you can put bars over your windows, but wouldn't it be better to use a more appropriate design from the start? The same sorts of tradeoffs can apply in technology. Threat modeling will help you find design issues even before you've written a line of code, and that's the best time to find those issues.

Understand Your Security Requirements

Good threat models can help you ask "Is that really a requirement?" For example, does the system need to be secure against someone in physical possession of the device? Apple has said yes for the iPhone, which is different from the traditional world of the PC. As you find threats and triage what you're going to do with them, you clarify your requirements. With more clear requirements, you can devote your energy to a consistent set of security features and properties.

There is an important interplay between requirements, threats, and mitigations. As you model threats, you'll find that some threats don't line up with your business requirements, and as such may not be worth addressing. Alternately, your requirements may not be complete. With other threats, you'll find that addressing them is too complex or expensive. You'll need to make a call between

addressing them partially in the current version or accepting (and communicating) that you can't address those threats.

Engineer and Deliver Better Products

By considering your requirements and design early in the process, you can dramatically lower the odds that you'll be re-designing, re-factoring, or facing a constant stream of security bugs. That will let you deliver a better product on a more predictable schedule. All the effort that would go to those can be put into building a better, faster, cheaper or more secure product. You can focus on whatever properties your customers want.

Address Issues Other Techniques Won't

The last reason to threat model is that threat modeling will lead you to categories of issues that other tools won't find. Some of these issues will be errors of omission, such as a failure to authenticate a connection. That's not something that a code analysis tool will find. Other issues will be unique to your design. To the extent that you have a set of smart developers building something new, you might have new ways threats can manifest. Models of what goes wrong, by abstracting away details, will help you see analogies and similarities to problems that have been discovered in other systems.

A corollary of this is that threat modeling should not focus on issues that your other safety and security engineering is likely to find (except insofar as finding them early lets you avoid re-engineering). So if, for example, you're building a product with a database, threat modeling might touch quickly on SQL injection attacks, and the variety of trust boundaries that might be injectable. However, you may know that you'll encounter those. Your threat modeling should focus on issues that other techniques can't find.

Who Should Read This book?

This book is written for those who create or operate complex technology. That's primarily software engineers and systems administrators, but it also includes a variety of related roles, including analysts or architects. There's also a lot of information in here for security professionals, so this book should be useful to them and those who work with them. Different parts of the book are designed for different people—in general, the early chapters are for generalists (or specialists in something other than security), while the end of the book speaks more to security specialists.

You don't need to be a security expert, professional, or even enthusiast to get substantial benefit from this book. I assume that you understand that there are people out there whose interests and desires don't line up with yours. For example, maybe they'd like to take money from you, or they may have other goals, like puffing themselves up at your expense or using your computer to attack other people.

This book is written in plain language for anyone who can write or spec a program, but sometimes a little jargon helps in precision, conciseness, or clarity, so there's a glossary.

What You Will Gain from This Book

When you read this book cover to cover, you will gain a rich knowledge of threat modeling techniques. You'll learn to apply those techniques to your projects so you can build software that's more secure from the get-go, and deploy it more securely. You'll learn to how to make security tradeoffs in ways that are considered, measured, and appropriate. You will learn a set of tools and when to bring them to bear. You will discover a set of glamorous distractions. Those distractions might seem like wonderful, sexy ideas, but they hide an ugly interior. You'll learn why they prevent you from effectively threat modeling, and how to avoid them.

You'll also learn to focus on the actionable outputs of threat modeling, and I'll generally call those "bugs." There are arguments that it's helpful to consider code issues as bugs, and design issues as flaws. In my book, those arguments are a distraction; you should threat model to find issues that you can address, and arguing about labels probably doesn't help you address them.

Lessons for Different Readers

This book is designed to be useful to a wide variety of people working in technology. That includes a continuum from those who develop software to those who combine it into systems that meet operational or business goals to those who focus on making it more secure.

For convenience, this book pretends there is a bright dividing line between development and operations. The distinction is used as a way of understanding who has what capabilities, choices, and responsibilities. For example, it is "easy" for a developer to change what is logged, or to implement a different authentication system. Both of these may be hard for operations. Similarly, it's "easy" for operations to ensure that logs are maintained, or to ensure that a computer is in a locked cage. As this book was written, there's also an important

model of "devops" emerging. The lessons for developers and operations can likely be applied with minor adjustments. This book also pretends that security expertise is separate from either development or operations expertise, again, simply as a convenience.

Naturally, this means that the same parts of the book will bring different lessons for different people. The breakdown below gives a focused value proposition for each audience.

Software Developers and Testers

Software developers—those whose day jobs are focused on creating software—include software engineers, quality assurance, and a variety of program or project managers. If you're in that group, you will learn to find and address design issues early in the software process. This book will enable you to deliver more secure software that better meets customer requirements and expectations. You'll learn a simple, effective and fun approach to threat modeling, as well as different ways to model your software or find threats. You'll learn how to track threats with bugs that fit into your development process. You'll learn to use threats to help make your requirements more crisp, and vice versa. You'll learn about areas such as authentication, cryptography, and usability where the interplay of mitigations and attacks has a long history, so you can understand how the recommended approaches have developed to their current state. You'll learn about how to bring threat modeling into your development process. And a whole lot more!

Systems Architecture, Operations, and Management

For those whose day jobs involve bringing together software components, weaving them together into systems to deliver value, you'll learn to find and address threats as you design your systems, select your components, and get them ready for deployment. This book will enable you to deliver more secure systems that better meet business, customer, and compliance requirements. You'll learn a simple, effective, and fun approach to threat modeling, as well as different ways to model the systems you're building or have built. You'll learn how to find security and privacy threats against those systems. You'll learn about the building blocks which are available for you to operationally address those threats. You'll learn how to make tradeoffs between the threats you face, and how to ensure that those threats are addressed. You'll learn about specific threats to categories of technology, such as web and cloud systems, and about threats to accounts, both of which are deeply important to those in operations. It will cover issues of usability, and perhaps even change your perspective on

how to influence the security behavior of people within your organization and/ or your customers. You will learn about cryptographic building blocks, which you may be using to protect systems. And a whole lot more!

Security Professionals

If you work in security, you will learn two major things from this book: First, you'll learn structured approaches to threat modeling that will enhance your productivity, and as you do, you'll learn why many of the "obvious" parts of threat modeling are not as obvious, or as right, as you may have believed. Second, you'll learn about bringing security into the development, operational and release processes that your organization uses.

Even if you are an expert, this book can help you threat model better. Here, I speak from experience. As I was writing the case study appendix, I found myself turning to both the tree in Appendix B and the requirements chapter, and finding threats that didn't spring to mind from just considering the models of software.

TO MY COLLEAGUES IN INFORMATION SECURITY

I want to be frank. This book is not about how to design abstractly perfect software. It is a practical, grounded book that acknowledges that most software is built in some business or organizational reality that requires tradeoffs. To the dismay of purists, software where tradeoffs were made runs the world these days, and I'd like to make such software more secure by making those tradeoffs better. That involves a great many elements, two of which are making security more consistent and more accessible to our colleagues in other specialties.

This perspective is grounded in my time as a systems administrator, deploying security technologies, and observing the issues people encountered. It is grounded in my time as a startup executive, learning to see security as a property of a system which serves a business goal. It is grounded in my responsibility for threat modeling as part of Microsoft's Security Development Lifecycle. In that last role, I spoke with thousands of people at Microsoft, its partners, and its customers about our approaches. These individuals ranged from newly hired developers to those with decades of experience in security, and included chief security officers and Microsoft's Trustworthy Computing Academic Advisory Board. I learned that there are an awful lot of opinions about what works, and far fewer about what does not. This book aims to convince my fellow security professionals that pragmatism in what we ask of development and operations helps us deliver more secure software over time. This perspective may be a challenge for some security professionals. They should focus on Parts II, IV, and V, and perhaps give consideration to the question of the best as the enemy of the good.

How To Use This Book

You should start at the very beginning. It's a very good place to start, even if you already know how to threat model, because it lays out a framework that will help you understand the rest of the book.

The Four-Step Framework

This book introduces the idea that you should see threat modeling as composed of steps which accomplish subgoals, rather than as a single activity. The essential questions which you ask to accomplish those subgoals are:

- 1. What are you building?
- 2. What can go wrong with it once it's built?
- 3. What should you do about those things that can go wrong?
- 4. Did you do a decent job of analysis?

The methods you use in each step of the framework can be thought of like Lego blocks. When working with Legos, you can snap in other Lego blocks. In Chapter 1, you'll use a data flow diagram to model what you're building, STRIDE to help you think about what can go wrong and what you should do about it, and a checklist to see if you did a decent job of analysis. In Chapter 2, you'll see how diagrams are the most helpful way to think about what you're building. Different diagram types are like different building blocks to help you model what you're building. In Chapter 3, you'll go deep into STRIDE (a model of threats), while in Chapter 4, you'll learn to use attack trees instead of STRIDE, while leaving everything else the same. STRIDE and attack trees are different building blocks for considering what can go wrong once you've built your new technology.

Not every approach can snap with every other approach. It takes crazy glue to make an Erector set and Lincoln logs stick together. Attempts to glue threat modeling approaches together has made for some confusing advice. For example, trying to consider how terrorists would attack your assets doesn't really lead to a lot of actionable issues. And even with building blocks that snap together, you can make something elegant, or something confusing or bizarre.

So to consider this as a framework, what are the building blocks? The four-step framework is shown graphically in Figure I-1.

The steps are:

- 1. Model the system you're building, deploying, or changing.
- 2. Find threats using that model and the approaches in Part II.