[ —— E ]
R e el I M
WILEY JIINEN Pl

Essential _
VidUE1I¢

for market
risk
management

' SIMON HUBBERT I
-







Essential Mathematics for
Market Risk Management




For other titles in the Wiley Finance series
please see www.wiley.com/finance


http://www.wiley.com/finance

Essential Mathematics for
Market Risk Management

Simon Hubbert

FWILEY

A John Wiley & Sons, Ltd., Publication




This edition first published 2012
© 2012 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by
the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to the subject matter covered.
It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional
advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Hubbert, Simon.
Essential mathematics for market risk management / Simon Hubbert. — 2nd ed.
p. cm. — (The Wiley finance series)
Includes bibliographical references and index.
ISBN 978-1-119-97952-4 (hardback)
1. Risk management — Mathematical models. 2. Capital market — Mathematical models. I. Title.
HD61.H763 2012
658.15'50151 — dc23
2011039267

A catalogue record for this book is available from the British Library.

ISBN 978-1-119-97952-4 (hardback) ISBN 978-1-119-95301-2 (ebk)
ISBN 978-1-119-95302-9 (ebk) ISBN 978-1-119-95303-6 (ebk)

Set in 10/12pt Times by Laserwords Private Limited, Chennai, India
Printed in Great Britain by CPI Group (UK) Ltd, Croydon, CRO 4YY


http://www.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

For my parents, Michelle and Nancy.
And dedicated to the memory of my brother, Craig.






Contents

Preface

1

2

Introduction

1.1 Basic Challenges in Risk Management
1.2 Value at Risk
1.3 Further Challenges in Risk Management

Applied Linear Algebra for Risk Managers

2.1 Vectors and Matrices

2.2 Matrix Algebra in Practice
2.3 Eigenvectors and Eigenvalues
2.4 Positive Definite Matrices

Probability Theory for Risk Managers

3.1 Univariate Theory

3.1.1
3.1.2
3.13

Random variables
Expectation
Variance

3.2 Multivariate Theory

3.2.1
322
323
324
325
3.2.6
3.2.7

The joint distribution function

The joint and marginal density functions
The notion of independence

The notion of conditional dependence
Covariance and correlation

The mean vector and covariance matrix
Linear combinations of random variables

3.3 The Normal Distribution

Optimization Tools

4.1 Background Calculus

4.1.1

Single-variable functions

xiii

O\ W — =

11
11
17
21
24

27
27
27
31
32
33
33
34
34
35
35
37
38
39

43

43
43



viii Contents

4.1.2 Multivariable functions 44

4.2 Optimizing Functions 47
4.2.1 Unconstrained quadratic functions 48

4.2.2  Constrained quadratic functions 50

4.3 Over-determined Linear Systems 52

4.4 Linear Regression 54

5 Portfolio Theory I 63
5.1 Measuring Returns 63
5.1.1 A comparison of the standard and log returns 64

5.2 Setting Up the Optimal Portfolio Problem 67

5.3 Solving the Optimal Portfolio Problem 70

6 Portfolio Theory I1 77
6.1 The Two-Fund Investment Service 77

6.2 A Mathematical Investigation of the Optimal Frontier 78
6.2.1 The minimum variance portfolio 78

6.2.2 Covariance of frontier portfolios 78

6.2.3 Correlation with the minimum variance portfolio 79

6.2.4 The zero-covariance portfolio 79

6.3 A Geometrical Investigation of the Optimal Frontier 80
6.3.1 Equation of a tangent to an efficient portfolio 80

6.3.2 Locating the zero-covariance portfolio 82

6.4 A Further Investigation of Covariance 83

6.5 The Optimal Portfolio Problem Revisited 86

7 The Capital Asset Pricing Model (CAPM) 91
7.1 Connecting the Portfolio Frontiers 91

7.2 The Tangent Portfolio 94
7.2.1 The market’s supply of risky assets 94

7.3 The CAPM 95

7.4 Applications of CAPM 96
7.4.1 Decomposing risk 97

8 Risk Factor Modelling 101
8.1 General Factor Modelling 101

8.2 Theoretical Properties of the Factor Model 102

8.3 Models Based on Principal Component Analysis (PCA) 105
8.3.1 PCA in two dimensions 106

8.3.2 PCA in higher dimensions 112

9 The Value at Risk Concept 117
9.1 A Framework for Value at Risk 117
9.1.1 A motivating example 120

9.1.2 Defining value at risk 121

9.2 Investigating Value at Risk 122

9.2.1 The suitability of value at risk to capital allocation 124



Contents

ix

10

11

12

13

14

9.3 Tail Value at Risk
9.4 Spectral Risk Measures

Value at Risk under a Normal Distribution
10.1 Calculation of Value at Risk

10.2 Calculation of Marginal Value at Risk
10.3 Calculation of Tail Value at Risk

10.4 Sub-additivity of Normal Value at Risk

Advanced Probability Theory for Risk Managers

11.1 Moments of a Random Variable

11.2 The Characteristic Function
11.2.1 Dealing with the sum of several random variables
11.2.2 Dealing with a scaling of a random variable
11.2.3 Normally distributed random variables

11.3 The Central Limit Theorem

11.4 The Moment-Generating Function

11.5 The Log-normal Distribution

A Survey of Useful Distribution Functions
12.1 The Gamma Distribution

12.2 The Chi-Squared Distribution

12.3 The Non-central Chi-Squared Distribution
12.4 The F-Distribution

12.5 The t-Distribution

A Crash Course on Financial Derivatives
13.1 The Black—Scholes Pricing Formula
13.1.1 A model for asset returns
13.1.2 A second-order approximation
13.1.3 The Black—Scholes formula
13.2 Risk-Neutral Pricing
13.3 A Sensitivity Analysis
13.3.1 Asset price sensitivity: The delta and gamma measures
13.3.2 Time decay sensitivity: The theta measure
13.3.3 The remaining sensitivity measures

Non-linear Value at Risk

14.1 Linear Value at Risk Revisited

14.2 Approximations for Non-linear Portfolios
14.2.1 Delta approximation for the portfolio
14.2.2 Gamma approximation for the portfolio

14.3 Value at Risk for Derivative Portfolios
14.3.1 Multi-factor delta approximation
14.3.2 Single-factor gamma approximation
14.3.3 Multi-factor gamma approximation

126
127

131
131
132
134
135

137
137
140
142
143
143
145
147
148

151
151
154
157
161
164

169
169
170
172
174
176
179
179
182
183

185
185
186
188
189
190
190
191
192



X Contents
15 Time Series Analysis 197
15.1 Stationary Processes 197
15.1.1 Purely random processes 198

15.1.2 White noise processes 198

15.1.3 Random walk processes 199

15.2 Moving Average Processes 199
15.3 Auto-regressive Processes 201
15.4 Auto-regressive Moving Average Processes 203

16 Maximum Likelihood Estimation 207
16.1 Sample Mean and Variance 209
16.2 On the Accuracy of Statistical Estimators 211
16.2.1 Sample mean example 211

16.2.2 Sample variance example 212

16.3 The Appeal of the Maximum Likelihood Method 215

17 The Delta Method for Statistical Estimates 217
17.1 Theoretical Framework 217
17.2 Sample Variance 219
17.3 Sample Skewness and Kurtosis 221
17.3.1 Analysis of skewness 222

17.3.2 Analysis of kurtosis 223

18 Hypothesis Testing 227
18.1 The Testing Framework 227
18.1.1 The null and alternative hypotheses 227

18.1.2 Hypotheses: simple vs compound 228

18.1.3 The acceptance and rejection regions 228

18.1.4 Potential errors 229

18.1.5 Controlling the testing errors/defining the acceptance region 229

18.2 Testing Simple Hypotheses 230
18.2.1 Testing the mean when the variance is known 231

18.3 The Test Statistic 233
18.3.1 Example: Testing the mean when the variance is unknown 234

18.3.2 The p-value of a test statistic 236

18.4 Testing Compound Hypotheses 237

19 Statistical Properties of Financial Losses 241
19.1 Analysis of Sample Statistics 244
19.2 The Empirical Density and Q—Q Plots 247
19.3 The Auto-correlation Function 247
19.4 The Volatility Plot 252
19.5 The Stylized Facts 253

20 Modelling Volatility 255
20.1 The RiskMetrics Model 256
20.2 ARCH Models 258



Contents

xi

21

22

23

24

20.2.1 The ARCH(1) volatility model
20.3 GARCH Models
20.3.1 The GARCH(1, 1) volatility model
20.3.2 The RiskMetrics model revisited
20.3.3 Summary
20.4 Exponential GARCH

Extreme Value Theory

21.1 The Mathematics of Extreme Events
21.1.1 A naive attempt
21.1.2 Example 1: Exponentially distributed losses
21.1.3 Example 2: Normally distributed losses
21.1.4 Example 3: Pareto distributed losses
21.1.5 Example 4: Uniformly distributed losses
21.1.6 Example 5: Cauchy distributed losses
21.1.7 The extreme value theorem

21.2 Domains of Attraction
21.2.1 The Fréchet domain of attraction

21.3 Extreme Value at Risk

21.4 Practical Issues
21.4.1 Parameter estimation
21.4.2 The choice of threshold

Simulation Models

22.1 Estimating the Quantile of a Distribution
22.1.1 Asymptotic behaviour

22.2 Historical Simulation

22.3 Monte Carlo Simulation
22.3.1 The Choleski algorithm
22.3.2 Generating random numbers

Alternative Approaches to VaR

23.1 The t-Distributed Assumption
23.2 Corrections to the Normal Assumption

Backtesting

24.1 Quantifying the Performance of VaR

24.2 Testing the Proportion of VaR Exceptions
24.3 Testing the Independence of VaR Exceptions

References

Index

260
264
265
268
269
269

271

271
273
273
274
275
275
276
277
278
280
283
286
286
287

291
291
293
296
299
300
302

309

309
313

319

319
320
323

327
331






Preface

The aim of this book is to provide the reader with a clear exposition of some of the
fundamental mathematical tools and techniques that are frequently used in financial risk
management. The book has been written with a wide audience in mind. For instance, it
should appeal to numerate graduates who seek an accessible and self-contained account of
the science behind the evolving story of financial risk management. In addition, it should also
be of interest to the market practitioner who is interested in gaining a deeper understanding
of the mathematical theory which underpins some of the most commonly used quantitative
(black-box) techniques.

Most of the existing books devoted to financial risk management tend to fall into two
categories, those that tackle a large number of topics with only brief overviews of the
mathematical ideas (e.g., Hull (2007), Dowd (2002) and Jorion (2006)) and, on the other
hand, rigorous mathematical expositions that are too advanced for an introductory level (e.g.,
McNeil, Frey and Embrechts (2005) and Moix (2001)). In view of this I have designed this
book to occupy the middle ground, namely one that delivers an accessible yet thorough
mathematical account of a broad sweep of carefully selected topics that an experienced
risk manager is likely to encounter on a regular basis. In order to maintain focus I have
devoted the book entirely to the mathematics of market risk management; there are already
a whole host of excellent texts that cover the science of credit risk management, Bielecki,
and Rutkowski (2010) and Schonbucher (2003) being excellent examples. The book, as
its title suggests, is focused firmly on the essential mathematics of the subject and so, by
design, it should equip the reader with the required scientific background to either embark
on a rewarding career in risk management or to study the subject at a more advanced
level. In particular, it is hoped that this text will serve as a useful companion to Alexander
(2008a), Alexander (2008b) and Christoffersen (2003); three excellent books which place
the emphasis firmly on practical examples and implementation.

The book itself has evolved from two courses on risk management that I teach regularly at
Birkbeck, University of London. Both courses form part of a wider qualification in financial
engineering, one at graduate diploma level and the other at masters level. The graduate
diploma courses at Birkbeck are aimed at students who are familiar with basic calculus,
linear algebra and probability theory, and they are designed to serve as a stepping stone to the
more technically demanding masters level courses. Students who take this route invariably
perform extremely well and, in view of this, the book represents a blend of introductory
material (from the graduate diploma) and advanced topics (from the masters course). The
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field of market risk management is so vast that one could devote an entire textbook to
several of its sub-branches (e.g., volatility modelling, simulation methods, extreme value
theory) and thus I do not claim that this text represents an exhaustive account of state-of-
the-art topics in this field. However, it is hoped that the book will inspire the reader to go
on and investigate these topics in more depth.

It is a pleasure to thank the people who have helped make this book possible. I would
like to acknowledge my colleagues Brad Baxter and Raymond Brummelhuis at Birkbeck
for their support and encouragement. I also gratefully appreciate many of my past students
for their valuable feedback on the structure and content of the book; special thanks go to
Mafalda Alabort Jordan who provided many of the figures that appear in Chapter 19.
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Introduction

In life we simply cannot avoid the presence of risk. However, we tend to avoid its potential
impact because, on the whole, we do a good job of risk management; we wear a bicycle
helmet when cycling, we fasten our seat belts in a moving car, we use gloves when handling
corrosive substances, etc. In the world of financial investments the universally held view is
that the more risk we take the more we stand to gain but, just as importantly, the greater the
chance we will lose. The task of the financial risk manager is to be aware of the presence
of risk, to understand how it can damage a potential investment and, most of all, to be able
to reduce the exposure to it in order to avert a potential disaster. It is the aim of this book
to develop the mathematical tools which can be used to manage and control risks that are
inherent in the financial market. We will be guided by two basic principles. Firstly, we shall
endeavour to ensure that, on average, a financial investment provides a healthy return rate
for a tolerable amount of risk. Secondly, we shall be prepared for rare market events whose
impact could trigger a potentially catastrophic loss. The purpose of this chapter is to shed
light on both the day-to-day issues and also the big challenges that a typical risk manager
is likely to face, thus it serves as aperitif to stimulate the mathematical journey ahead.

1.1 BASIC CHALLENGES IN RISK MANAGEMENT

We open our discussion by considering a seemingly simple problem. Assume that we are
armed with a wealth of $W and we decide to invest this today, at time 7, in a single
financial asset for a period of t days into the future. The value of the asset today is known
and denoted by S(¢) but its future value S(¢ + t) is uncertain. We think of our asset being
a simple market product such as a share in a stock, an amount of foreign currency or the
ownership of a bond or some other commodity. In this situation there are two possible
strategies:

e The holding strategy.
If we believe the asset price will rise then we simply buy it today and sell it in the future at the
(hopefully) higher price. In which case we make a profit from the purchase.

e The short-selling strategy.
If we believe the asset price will fall then we can profit out of this situation by employing the
strategy of short selling. This is summarized as follows.

t t+7
Borrow the asset today Buy the asset for S( + )
and and
sell it immediately return it to the lender

to receive S(r)

If, as we suspected, the value of the asset falls (i.e., if S( 4+ ) < S(¢)) then we have made a profit.
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The risk profiles of the two strategies are very different. The asset price can never drop
below zero but, theoretically, it can grow without bound. For the holding strategy this means
potentially unlimited profits and a bounded loss. However, for short selling the reverse is
true and there is a potential for unlimited losses. In view of this one finds that, in practice,
the process of pure short selling is supplemented by certain restrictions and safeguards.

We now suppose that we choose to invest our $W in a collection of n risky assets denoted
by {S1, ..., Sy}. Our strategy is simply to invest a fraction of our wealth, w; say, in asset
S; for i =1,...,n. We shall assume that short selling is allowed and so some of the wj;
may be negative. This scenario leads us to our next challenging problem:

The Portfolio Problem

How can we choose an optimal set of weights {wy, ..., w,}, so that our overall
investment is likely to yield a promising return with minimal risk?

Occasionally in mathematics one finds that seemingly complex problems have the most
elegant and rewarding solutions. The portfolio problem above is such an example and it
is the perfect starting point for our mathematical journey through risk management. The
problem itself was solved in the early 1950s by Harry Markowitz (1952) in his PhD studies.
The route that Markowitz took to derive his famous solution is as follows:

o Establish a formula for the random return rate for the portfolio, denoted by r,, as a function of its
weights wy, ..., wy.

e Use basic probability theory to derive expressions for the expected return (i, (a measure of potential
reward) and the volatility o, (a measure of risk) of r,.

e We now search for the weights w, ..., w, that provide a desired level of expected return while
ensuring that the risk involved is as small as possible.

The mathematical tools needed to attack this problem are developed in Chapters 2—4 and
its full solution is delivered in Chapter 5; this will represent our first major landmark result.

Before Markowitz’s theory emerged most investment decisions were made on the basis of
gut instinct or simple advice such as don’t put all of your eggs in one basket, there was little
in the way of quantitative analysis. Markowitz gave investment theory a scientific footing
and, in Chapter 6, we will discover some intriguing consequences of his pioneering work.
Indeed these discoveries subsequently inspired many other researchers to investigate more
deeply the relationship between the value of an asset and its perceived riskiness. This is
a tough problem and one that is made even more difficult by the fact that asset prices do
not always move of their own accord. More often than not we find that asset prices are
related to each other. Strong price fluctuations in one asset will influence the movements of
another and vice versa, we say they possess a correlation structure. This leads us to address
the following.

The Modelling Challenge
How can we accurately model the way the price of a risky asset evolves through time?

The Correlation Challenge

How can we accurately model the correlation structure of a collection of many
risky assets?
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In the early 1960s Markowitz encouraged a PhD student, William Sharpe, to investigate
these problems. To do this Sharpe imagined a world where all investors build their port-
folios with Markowitz weights and, in this setting, he developed the famous Capital Asset
Pricing Model (CAPM) Sharpe (1964). Chapter 7 of this book is devoted to the math-
ematical derivation of this model. We shall demonstrate some of its practical uses and its
consequences, including the follwing intriguing discovery:

Asset prices are related to each other through

(1.1

their responses to a single risk factor.

This revelation tells us that, in the Markowitz world, a single known risk factor can be
viewed as the main driving force behind the movements and co-movements of all our risky
assets. This conclusion is a remarkable one and, not surprisingly, it fuelled much debate
amongst financial economists. Indeed, a great deal of empirical work has been done over
the years to test the validity of the CAPM and its underlying assumptions.

In the 1970s a more cavalier approach to the development of financial risk models
was taken. Specifically, inspired by the CAPM, the following more general situation was
considered:

Asset prices are related to each other through (12)

their responses to several risk factors.

In response to the above hypothesis a more general class of risk model was proposed,
the so-called linear factor model. We will examine this popular approach in greater detail
in Chapter 8 of this book. The most appealing feature of the linear factor model is the fact
that there is a great deal of flexibility in the choice and composition of the driving factors.
This flexibility leads us to an important practical risk management challenge.

The Factor Selection Challenge

How do we choose the number and nature of the driving risk factors?

We shall conclude Chapter 8 by describing how principal components analysis, a famous
dimension-reduction tool from multivariate statistics, can be used to deliver a useful scientific
solution to this challenge.

1.2 VALUE AT RISK

In the late 1980s fund managers and traders with complicated risk positions looked increas-
ingly to a new breed of so-called derivative products as a means of dampening their risk
profiles. Derivatives are literally products that are derived from simpler assets like those
we have already encountered (i.e., stocks and shares, commodities, foreign currencies and
bonds). When used correctly derivatives are able to protect those who hold them against risk;
they can be viewed as a kind of insurance policy. However, as their popularity began to rise
it became clear that the misuse of these products can have devastating consequences. Indeed,
throughout the mid-1990s a whole host of derivatives-related disasters finally led to a much
needed shake-up in the way banks were regulated. New tighter controls were imposed on
financial institutions and consequently the industry as a whole had to rethink its approach to
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risk management. In the present day all financial institutions have dedicated research teams
of applied scientists who employ sophisticated mathematical and statistical methods to quan-
tify and control exposure to risk. The risk-management revolution was initiated in the early
1990s when the famous Basel committee (on banking supervision) began a consultation
process which, essentially, set about addressing the following important questions.

Ensuring Against Large Losses

How can investment banks measure their exposure to unfavourable and unanticipated
movements of the basic financial assets?

How can they use this measure to determine their capital adequacy requirements?

In order to attack this problem the committee proposed that each investment bank should
divide its market positions into two books, the trading book and the bank book. The trading
book, as its name suggests, contains all products that are used as part of an active day-to-
day trading strategy (e.g., investment portfolios and derivatives would belong in the trading
book). In contrast, the bank book consists of positions that are held over a much longer
time horizon such as long-term loans.

The Basel committee directed its attention on the trading book and investigated how its
riskiness could be quantified. The value of each product in the trading book has a price
which can be discovered on the market (provided there is enough liquidity). The prices of
these products in the future however are unknown, and thus, even though we may know the
value of the trading book today, its value tomorrow or at any time in the future is unknown.
When market conditions are calm one would hope that the trading portfolio would report
a daily profit or at least only a mild, manageable loss. However, we cannot control market
conditions and history dictates that, once in a while, we can expect a financial storm where
an increase in market volatility can wipe away significant value from a financial product.
In view of this a natural question to ask could be the following:

What is the largest loss the trading book is likely to suffer 99 out of every 100 days?

The answer to this question is known as the Value at Risk (VaR) for the trading book at
the 99% confidence level; obviously the same question can be posed for other confidence
levels, e.g., 95% represents the maximum likely loss in 95 out of 100 days. The idea of
measuring the VaR of a portfolio is popular with practitioners; it represents a potential
monetary loss and, in that respect, it is concise, practical and easy to understand. In 1996,
the Basel committee added their own support to the VaR concept by proposing that banks
could use VaR as a measure of its trading book’s exposure to market risk. The final Basel
committee report is viewed as pioneering for two reasons:

1. It endorses that investment banks can use their own internal models to calculate VaR estimates.
2. It provides all investment banks with a universal formula which they can use to calculate their
own capital adequacy requirements; the formula is based upon the bank’s own VaR estimates.

Value at Risk is widely regarded as one of the key milestones in the new risk-management
revolution. However, the simplicity of the VaR concept disguises the complexity involved
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in its measurement. For instance, before a single computation takes place we need to ensure
that we have access to all relevant financial data, both historical and real time. Thus, a
typical financial institution faces the following significant task:

The IT Challenge
Construct an IT system with the following functionality:

e Real-time position data for all products in the trading portfolio are gathered and correctly mapped
to the risk calculation engine.

e A database that is dynamically populated with historical prices at regular intervals (e.g., daily
prices) is accessible.

This IT challenge is enormous, especially for multinational investment banks whose
trading portfolio consists of products that span the global markets. Not surprisingly most
investment banks choose to hand these data management projects over to one of the many
IT consultancy firms with specialized skills in database architecture.

The VaR concept can be viewed as the trigger for a new approach to risk management;
indeed, it marks the starting point of an exciting area of science where academic progress and
real-world applications are in constant exchange. We consider the VaR calculation challenge
in two parts.

The VaR Calculation Challenge

For a given confidence level a € (0, 1) how can we measure the corresponding Value
at Risk for a portfolio which consists entirely of:

1. Basic financial assets such as stocks and shares, commodities, foreign currencies and bonds.
2. More complex derivatives products.

We take up the first part of the VaR challenge in Chapter 9 where we examine its math-
ematical properties. We shall discover some of VaR’s enticing features, however we also
reveal some unfortunate problems. We endeavour to correct these problems by investigat-
ing alternative risk measures, and ask whether such candidates can be viewed as serious
competitors to VaR.

In Chapter 10 we turn to the practical calculation of VaR and its associated challenges.
As a starting point, we propose a basic model which assumes that the random variable
representing the daily portfolio loss is normally distributed. In particular, for this simplified
framework, we will show how we can derive neat closed-form solutions to almost all of the
crucial VaR-related challenges.

The second part of the VaR challenge involves an additional level of complexity as
we now allow derivative products to be included in the portfolio. In order to attack this
problem we need some advanced results from probability theory and statistics and these are
developed in Chapters 11 and 12. At the simplest level we can invest in a single derivative
whose value depends upon the price of its underlying asset. Mathematically we say that the
derivative price is a function of the asset price and write

derivative price at r = f(S(t)),
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where f is some non-linear function. In order to examine the potential profit/loss associated
with the derivative we need to determine, as accurately as possible, the form of f. This
leads us to our next challenge:

Derivative Pricing

For a given derivative how can we determine the relationship between its value and
the level of the underlying asset?

Derivative pricing is a branch of mathematical finance in its own right and there are a
whole host of excellent textbooks written on this subject (e.g., Higham (2004), Joshi (2005),
Neftci (1996) and Wilmott, Howison and Dewynne (1995)). However, in Chapter 13 we
provide a self-contained derivation of the celebrated Black—Scholes option pricing model
for the simplest plain European options. This model dates back to the early 1970s and
yet its impact on the development of modern mathematical finance cannot be overstated; a
great deal of the pioneering work on derivative pricing can be viewed as an extension or
an innovation of the original Black—Scholes model.

We will not pursue derivative pricing in any further depth, but will simply assume that a
calculation engine exists and is able to deliver a price for any derivative we encounter. In
this situation we are able to tackle the problem of computing VaR estimates for a portfolio
of derivatives. In a deliberate effort to reduce the computational burden of this problem we
shall investigate the possibility of providing a closed-form solution. We remark that this
problem is difficult for at least two reasons:

1. The number of underlying assets (upon which the derivatives are written) can be very large, i.e.,
the problem is a high-dimensional one.

2. Even if we understand the probabilistic nature of a particular asset it is much harder to predict
how a non-linear function (i.e., a derivative) of it will behave.

In the late 1990s Britten-Jones and Schaeffer (1999) tackled the above issues and proposed
the following recipe:

e Step 1. Dimension reduction.
A linear factor model is proposed as a model for the changes in the underlying asset returns. It is
assumed that the number of factors is much smaller than the number of assets and thus the size
(dimension) of the problem is greatly reduced.

e Step 2. Probabilistic assumptions.
Some simplifying assumptions are proposed for the probabilistic laws that govern the random nature
of the risk factors.

e Step 3. Function approximations.

A local approximation of the non-linear derivative function is made.

In Chapter 14 we will develop the above steps in detail and show how the local approxi-
mations to the derivatives can be used to provide closed-form expressions for so-called
non-linear Value at Risk.

1.3 FURTHER CHALLENGES IN RISK MANAGEMENT

The early attempts to calculate VaR were made in the mid-1990s and, during this time, the
main priority for most practitioners was to establish a straightforward solution that could
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be implemented with ease. As a result these early attempts were based upon rather simple
assumptions regarding the random behaviour of the financial losses/returns. Towards the
end of the 1990s almost all financial institutions took advantage of the rapid advances in
information technology, where faster computing speed coupled with increased data storage
enabled teams of quantitative analysts to perform deeper scientific investigations. A particu-
larly important example is to use historical data to help gain an insight into the characteristic
properties of the underlying financial variables; indeed, this becomes the focus of our next
challenge:

Statistical Investigation

Using realized price data, perform a statistical investigation to determine the key
empirical properties of asset losses/returns.

In Chapters 15—-18 we develop the statistical tools and techniques needed to tackle this
problem. Then, in Chapter 19, we put these tools into action and conduct a scientific
investigation whose aim is to pin down the key statistical properties that characterize the true
nature of financial losses/returns. These properties are commonly referred to as the stylized
facts and they serve as a guide for the development of new and improved risk models; a
successful mathematical model should capture as many (if not all) of these properties as
possible.

One particular result of our investigation is the observation that extreme values tend to
occur more often than some of the basic models would predict, with large losses occurring
more often than large profits. In relation to this we also discover that the future volatility
of a basic financial asset is closely related to its past. This is an important observation
because it implies that when an asset experiences a period of high volatility the likelihood
of an extreme swing is increased; unfortunately, the swing can be downward as well as
upward. These observations lead us to one of the central questions that all risk managers
must address:

The Volatility Challenge

How can we construct a time-dependent volatility model which accurately captures
the stylized facts of financial losses?

The topic of volatility modelling is so large that it can also be regarded as a branch of
mathematical finance in its own right, indeed there are several textbooks devoted to this
topic (e.g., Gouriéroux (1997), Poon (2005) and Taylor (2007)). We take on the volatility
challenge in Chapter 20 where, rather than provide a bite-size review of the many different
approaches, we present the mathematical story of one of the most popular, the so-called
GARCH family of models. GARCH models have found a wide range of applications in
financial modelling because, as we shall discover, they have the ability to capture almost
all of the stylized facts and, what’s more, they are also fairly simple to implement. The
GARCH modelling framework is also extremely flexible; once one understands the basic
model, it is then possible to introduce extensions designed to enhance its performance. This
is reflected in the vast range of innovative GARCH-type volatility models on the market.

In order to motivate the next important challenge we recall that our Value at Risk measure,
as we know it, is designed to cope with those unanticipated events which typically occur two
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or three times in a year. Unfortunately, however, experience has shown that financial markets
can also be exposed to tornado-like events such as terrorist attacks, political instabilities and
natural disasters. These events have the potential to wipe billions off the value of global stock
markets. Thus, one of the new challenges of mathematical risk management is to develop
a methodology to cater for such extreme events. In this respect we face a new challenge:

The Challenge of Quantifying Losses Due to Rare Events

How do we assign appropriate probabilities to potential extreme movements of a
financial asset?

We tackle this problem in Chapter 21 where we appeal to extreme value theory (EVT),
a branch of probability theory that is concerned with describing the statistical properties
of extreme events. EVT has applications in many areas of science and engineering. In
particular, hydrologists have successfully used EVT to help predict the likelihood and size
of potentially damaging floods, the hydrologist then uses these findings to estimate the
optimal height of a dam which is to be constructed to protect against such floods. In finance
the application of EVT is much the same; the risk manager uses the theory to model the
likelihood and size of a portfolio loss due to a financial storm, he can then use this data to
determine the size of the buffer fund which is designed to absorb such losses.

A common situation in finance (and other branches of science and engineering) is that
closed-form solutions to real-world problems only tend to be available in the simplest
of cases. For instance, the fair price of a plain European option can be derived analyti-
cally, however numerical methods are needed for most non-standard options. We find this
in risk management too, for instance if we (erroneously) assume that the portfolio loss
random variable is normally distributed then we can derive expressions for almost any risk
measure, however if a more sophisticated risk model is used then we must turn to numerical
techniques. This leads us to our next challenge:

Numerical Methods for Risk Quantification

How can we develop numerical techniques to compute the Value at Risk for a
financial portfolio?

In order to address this problem we must study the mathematical ideas behind one of
the most crucial numerical tools in risk management — the ability to perform numerical
simulations. We take on this challenge in Chapter 22 where we demonstrate how simulation
techniques can be used to deliver estimates of financial risk measures such as Value at
Risk. In particular we describe how to design a simulation algorithm whose purpose is to
generate a range of potential future prices for each asset and/or derivative in the portfolio,
these are then combined to produce a simulated value of the portfolio. Then, as more and
more simulated values are generated, a clearer picture of the crucial statistical properties of
the portfolio loss random variable emerges and, as a result, estimates for VaR (and other risk
measures) can easily be derived. The success of the method lies in the specification of the
algorithm. It may depend upon the past price history of the portfolio (historical simulation)
or it may depend upon some mathematical model that is calibrated to real market prices
(Monte Carlo simulation).
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Obviously, from a practitioner’s perspective, an accurate closed-form expression for VaR
is highly desirable. Indeed, in the late 1990s several alternative VaR methodologies were
proposed, each delivering closed-form solutions while attempting to simultaneously capture
the true statistical properties of the loss random variable. In Chapter 23 we shall present two
of the most commonly used methods and by doing so we bring the story of VaR calculation
methods to a close.

At the end of the day the model that is finally selected to compute the VaR of the
trading portfolio is of particular importance. The resulting VaR calculations will determine
the size of the institution’s buffer fund, the amount of regulatory capital it must set aside
to help absorb unexpected losses. The buffer fund cannot be used for investment purposes,
it is off-limits and its size must adhere to the regulator’s formula. If we choose a model
that consistently overestimates the true VaR then we will be overcommitting funds that
could otherwise be used to generate profits. On the other hand, if we choose a model that
consistently underestimates the true VaR then it will be punished; the regulator will revise
its formula so that the size of the buffer fund is increased, i.e., the regulator penalizes a
substandard VaR model. In view of these two influences we must select the most accurate
calculation method to suit the characteristics of our trading portfolio, i.e., we must face the
following challenge:

Verification of Risk Models

How can we scientifically test the performance of a particular VaR model?

We address this question in Chapter 24, the final chapter of the book. Specifically we
develop Christoffersen’s testing methodology Christoffersen (1998) that dates back to the
late 1990s. The idea here is to appeal to our earlier review of statistical testing (Chapter 18)
and use this to propose a certain test statistic whose value is dependent upon the past
performance of the VaR model. The test statistic itself can be viewed as a random quantity
which obeys certain known probability laws and we can use this fact to construct a decision
rule that determines whether the model should be accepted or rejected.






2
Applied Linear Algebra for Risk Managers J

Many of the problems in risk management are said to be high dimensional because they
involve a large number of underlying variables. For instance, problems involving financial
portfolios are high dimensional because a portfolio is made up of many financial assets and
its value is determined by the monetary amounts that are invested in these assets. Applied
linear algebra is the branch of mathematics that provides the framework needed to set up
and solve these problems and, in this chapter, we present the most crucial results.

2.1 VECTORS AND MATRICES

The fundamental objects of applied linear algebra are vectors and matrices. A vector, by
definition, is a column of real numbers, i.e., elements of R. The number of entries in the
column is called the dimension of the vector and we write

X1
X2
X = . € R” is an n-dimensional vector.

Xn

Suppose we have a collection of m vectors, each of the same dimension:

ap ar alm

ag an am
a; = . , Ay = . s Ay =

dnl an2 Anm

A matrix is a means of displaying all of this information in one object. We write

apy app - Aim
azy azy -+ Aym

nxm

A= . . : € R,
anl Ap2 - dpm

and say that A is an n X m matrix as it consists of n rows (the dimension of the columns)
and m columns (the number of vectors on display).

Any matrix is completely defined by its elements and, in general, if A € R"*™ then we
let Ay; denote the entry appearing in the kth row and /th column; commonly called the
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(k, Dth entry. Using this notation the matrix above can be defined in a much more compact
way by writing

A € R™ such that Ay :=ay for (1 <k <n), (1 <[ <m).

One of the simplest operations one can perform on a matrix is to turn its rows into
columns and vice versa; the result is called the transpose and we write

T
app a2 s dim
azy dax - dom apy azr oo am1
alz a22 ...... amz
alm azm ...... amn
Anl dn2 =~ dnm =AT c Rmxn

or, in compact form, A7 € R™*" defined by
(A"), =Ax =ay for 1 <1 <m),(1<k<n).

We note that an n-dimensional column vector can be viewed as an n x 1 matrix. It is often
useful to refer to a column as the transpose of its row vector, i.e., we shall often see

X = (x1, X2, ..., %) " € R'(= R™1),

We are now in a position to assemble our first working toolkit of important facts, defini-
tions and handy results of applicable linear algebra.
A Basis of Spanning Vectors

In geometry, whenever we describe the location of a point in the plane or in three-
dimensional space we generally do so with reference to a standard coordinate system, i.e.,

we write
<§ ) =x < é) +y (? ) for 2-dimensional space R?

X 1 0 0
y|=x[0]|+y[1]+z]| 0] for3-dimensional space R>.
b4 0 0 1

This idea extends to higher-dimensional spaces and, for a general n > 1, we define

1 0 0

0 1 0
U=3e =] . |.eo = oo, ep =1 . . 2.1)
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The set U is said to form the standard basis for n-dimensional space because any
n-dimensional vector X can be written uniquely as a linear combination of the elements
of U, i.e.,

X1
X2
X = . = xi1e; + xex + - - - + x,€,.

Xn

There are other collections of vectors that can also serve as an n-dimensional basis,

however the standard basis I/ is the simplest of its kind. In general we say that a collection
of n vectors

ar apn Aln
as| az azy,
B=q a = ,a) = O
anl ap2 App
forms a basis for R”" if, for each vector x = (xi, ..., x,)T € R", there exists a unique
coordinate vector ¢ = (cy, ..., cy)T € R", such that
X1 ar apn aln
X2 az azn A,
=c| . |t |t ta] L)
Xn apl ap2 [

or, in more compact form, that

n
x:é cja; forauniquec:(c],...,c,,)TER”.
j=1

In order to investigate whether the coordinate vector is unique we suppose the contrary,
i.e., assume that, for a given x € R" there are two distinct coordinate vectors ¢ and ¢

such that
n n
X = E cja; = E cja;j.
j=1 j=1

If this is the case we can subtract the two representations to deduce that the zero vector
0=(0,...,007 € R" also has more than one coordinate representation, for instance

0= i(cj —ca; and 0= io-aj.

Jj=1 j=1
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We can deduce from this that a vector x € R” has a unique coordinate vector provided
the equation

n
ch-ajzo implies ¢j=c=---=¢, =0. 2.2)
j=1

A collection of column vectors {aj, ay, ..., a,} that satisfies (2.2) is said to form a linearly
independent set. Thus, any set of n linearly independent vectors (of dimension n) serves
as a basis for R”.

The Magnitude of a Vector

The magnitude of a vector X = (x1, ..., x,)! € R" is denoted by ||x|| and is defined by

x|l = /xi 4+ + x2. (2.3)

We collect the following related facts:

e We say that x is a unit vector if ||x|| = 1. We note that the standard basis vectors (2.1) are simple
examples of unit vectors.
e The quantity d(x,y) denotes the distance between any two n-dimensional vectors x and y, and is
defined by
d(x,y) =[x -yl

Inner and Outer Product of Two Vectors

The inner product between two n-dimensional vectors x and y is defined by

Y1
<x,y>=xTy=(x1,...,xn)

Yn (2.4)

n
=x1y1+ -+ XpYn = ijyj eR.
Jj=1

We collect the following properties:

e The inner product is symmetric, i.e., < X,y > =<y, x> for any X,y € R".
e The inner product is linear, i.e., if X, y and z are n-dimensional vectors then

<ax+py,z>=a<x,2>+p<y,z> aBcR

e The inner product of a vector x € R” with itself is the square of its magnitude, i.e.,

n
<X, X> = ijz = ||Ix|%.
j=1



