

Hacking the Kinect

� � �

Jeff Kramer
Nicolas Burrus
Florian Echtler
Daniel Herrera C.
Matt Parker

Hacking the Kinect

Copyright © 2012 by Jeff Kramer, Nicolas Burrus, Florian Echtler, Daniel Herrera C., and Matt Parker

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN 978-1-4302-3867-6

ISBN 978-1-4302-3868-3 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Curiomotion LLC
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Heather Lang
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

I dedicate this book to Jennifer Marriott, the light of my life.

—Jeff Kramer

For my family and for Lauren, who helped me in every possible way.

—Matt Parker

iv

Contents at a Glance

� About the Authors... x
� About the Technical Reviewer ... xiii
� Acknowledgments ... xiv
� Chapter 1: Introducing the Kinect...1
� Chapter 2: Hardware...11
� Chapter 3: Software ..41
� Chapter 4: Computer Vision ..65
� Chapter 5: Gesture Recognition ..89
� Chapter 6: Voxelization...103
� Chapter 7: Point Clouds, Part 1...127
� Chapter 8: Point Clouds, Part 2...151
� Chapter 9: Object Modeling and Detection ...173
� Chapter 10: Multiple Kinects ..207
� Index ...247

v

Contents

� About the Authors... x

� About the Technical Reviewer ... xiii

� Acknowledgments ... xiv

� Chapter 1: Introducing the Kinect...1

Hardware Requirements and Overview ...1
Installing Drivers..2

Windows... 2
Linux ... 6
Mac OS X .. 8
Testing Your Installation ... 9
Getting Help .. 9

Summary ...9

� Chapter 2: Hardware...11

Depth Sensing ...11

RGB Camera...13
Kinect RGB Demo...13

Installation .. 14
Making a Calibration Target ... 16
Calibrating with RGB Demo .. 17

Tilting Head and Accelerometer ..23

Summary ...39

�

vi

� Chapter 3: Software ..41

Exploring the Kinect Drivers ..41
OpenNI .. 41
Microsoft Kinect SDK.. 41
OpenKinect ... 41

Installing OpenCV...42
Windows... 42
Linux ... 44
Mac OS X .. 46

Installing the Point Cloud Library (PCL)..48
Windows... 48
Linux ... 52
Mac OS X .. 53

Summary ...63

� Chapter 4: Computer Vision ..65

Anatomy of an Image...65
Image Processing Basics...66

Simplifying Data ... 66
Noise and Blurring.. 67
Contriving Your Situation.. 69
Brightness Thresholding... 69
Brightest Pixel Tracking ... 72

Comparing Images...74
Thresholding with a Tolerance ... 75
Background Subtraction... 76
Frame Differencing... 80
Combining Frame Differencing with Background Subtraction ... 85

�

vii

Summary ...87

� Chapter 5: Gesture Recognition ..89

What Is a Gesture?...89

Multitouch Detection..89
Acquiring the Camera Image, Storing the Background, and Subtracting... 92
Applying the Threshold Filter.. 92
Identifying Connected Components.. 93
Assigning and Tracking Component IDs... 95
Calculating Gestures... 96
Creating a Minority Report—Style Interface .. 99
Considering Shape Gestures .. 101

Summary ...101

� Chapter 6: Voxelization...103

What Is a Voxel? ..103

Why Voxelize Data? ...104
Voxelizing Data ..105
Manipulating Voxels...107

Clustering Voxels ...120
Tracking People and Fitting a Rectangular Prism..122

Summary ...125

� Chapter 7: Point Clouds, Part 1...127

Representing Data in 3-D ..127
Voxels ... 128
Mesh Models .. 128
Point Clouds.. 128

Creating a Point Cloud with PCL ..129

�

viii

Moving From Depth Map to Point Cloud ..130
Coloring a Point Cloud ...131

From Depth to Color Reference Frame ... 131
Projecting onto the Color Image Plane ... 132

Visualizing a Point Cloud..132
Visualizing with PCL ... 133
Visualizing with OpenGL ... 133

Summary ...150

� Chapter 8: Point Clouds, Part 2...151

Registration ...151
2-D Registration ... 152
3-D Registration ... 155
Robustness to Outliers ... 157

Simultaneous Localization and Mapping (SLAM)...159
SLAM Using a Conventional Camera .. 159
Advantages of Using the Kinect for SLAM .. 160
A SLAM Algorithm Using the Kinect.. 160
Real-Time Considerations .. 161

Surface Reconstruction ...162
Normal Estimation .. 162
Triangulation of Points.. 162

Summary ...172

� Chapter 9: Object Modeling and Detection ...173

Acquiring an Object Model Using a Single Kinect Image...173
Tabletop Object Detector .. 174
Fitting a Parametric Model to a Point Cloud ... 178
Building a 3-DModel by Extrusion .. 179

�

ix

Acquiring a 3-D Object Model Using Multiple Views ...188
Overview of a Marker-Based Scanner.. 189
Building a Support with Markers.. 191
Estimating the 3-DCenter of the Markers in the Camera Space... 191
Kinect Pose Estimation from Markers .. 192
Cleaning and Cropping the Partial Views ... 195
Merging the Point Clouds ... 196
Getting a Better Resolution... 199

Detecting Acquired Objects ...200
Detection Using Global Descriptors .. 200
Estimating the Pose of a Recognized Model .. 204

Summary ...206

� Chapter 10: Multiple Kinects ..207

Why Multiple Kinects? ...207
The Kinect Has a Limited Field of View .. 207
The Kinect Fills Data from a Single Direction Only ... 207
The Kinect Casts Depth Shadows in Occlusions .. 208

What Are the Issues with Multiple Kinects? ..208
Hardware Requirements... 209
Interference Between Kinects .. 209
Calibration Between Kinects .. 209

Interference ...209

Calibration ...228
Summary ...246

� Index ...247

x

About the Authors

� Jeff Kramer (@Qworg) is a builder, maker, hacker, and dreamer. Jeff is
currently a research programmer and roboticist at the National Robotics
Engineering Center (NREC) in Pittsburgh, PA (www.rec.ri.cmu.edu/). He also
breaks things and rebuilds them all of the time. He’s taught graduate courses
in animal psychology, chaired international robotics conference sessions,
made Bill Nye cry with a weapon of mass destruction, constructed high-
powered arc lamps, written journal articles in robotics, devastated players with
a robotic foozball table, and generally made a mess—a beautiful, strangely
functional mess that is always evolving. Jeff holds a master’s degree in robotics
from the University of South Florida. You can check him out at http://mind-
melt.com/ and http://about.me/JeffreyKramer/. Or just e-mail him at
jeffkramr@gmail.com.

� ABOUT THE AUTHORS

xi

� Nicolas Burrus is a researcher in computer vision at the Carlos III
University of Madrid, with a special interest in 3D object model acquisition
and recognition for robotic applications. He actively took part in the
impressive wave of interest that followed the release of the Kinect by
publishing RGBDemo, an open source software showcasing many
applications of the Kinect. RGBDemo is being used by many research labs,
companies, and hobbyists, and this success led him to co-found the Manctl
startup with the ambition of developing a low-cost universal 3D scanner. He
holds a PhD from Paris VI University and a master’s of computer science from
EPITA (Paris, France).

� Florian Echtler is a researcher in human-computer interaction and
information security, currently working at Siemens Corporate Technology in
Munich, Germany. He wrote the very first Kinect hack, an interface in the
style of Minority Report, in less than 24 hours after the first release of the
open source drivers. He is the main author of libTISCH, a NUI development
platform that supports the Kinect as an input device and is actively used in
several research projects. He holds a diploma and a PhD in computer
science from the Technical University of Munich (TUM).

� ABOUT THE AUTHORS

xii

� Daniel Herrera C. works as a computer vision researcher at the
University of Oulu, Finland. He is currently doing his PhD in the
areas of image-based rendering and free viewpoint video. His early
work with the Kinect led him to develop an open source calibration
algorithm. The Kinect Calibration Toolbox is now being used by
researchers around the world. Since then the Kinect has become
one of the main tools for his research. He holds a master’s in
computer vision and robotics from the Erasmus Mundus program
Vibot (UK, Spain, and France).

� Matt Parker is a new media artist and game designer. As an artist,
his interest lies in exploring the intersection of the physical and
digital worlds. His work has been displayed at the American Museum
of Natural History, SIGGRAPH Asia, the NY Hall of Science, Museum
of the Moving Image, FILE Games Rio, Sony Wonder Technology
Lab, and many other venues. His game Lucid was a finalist in
Android’s Developer Challenge 2, and his game Recurse was a finalist
for Indiecade 2010. His project Lumarca won the “Create the Future”
Prize at the World Maker Faire 2010.

Matt earned his BS in computer science from Vassar College and a
master’s from NYU’s Interactive Telecommunications Program
(ITP). He has served as a new media researcher and adjunct faculty
member at NYU since 2009. He is currently a visiting professor at
Sarah Lawrence College and an artist in residence at Eyebeam Art
and Technology Center.

xiii

About the Technical Reviewer

� Curiomotion LLC is a technology company dedicated
not to providing a specific product or service, but to
bringing tomorrow’s technology to today’s applications.
Currently, Curiomotion’s team of software engineers is
working with the latest advancements in motion sensing
technology to enhance consumer engagement in retail
scenarios. Curiomotion is one of the first companies to
offer products for this new paradigm of technology-
driven commerce, providing interactive marketing
solutions compatible with any business strategy.

xiv

Acknowledgments
A book of this magnitude cannot be accomplished alone. First, I would like to thank everyone at Apress
for giving me the opportunity to write about something truly exciting and game changing. I’m proud
that we are supporting future creative and commercial endeavors using the Kinect and other 3D sensors.
I would like to thank Jonathan Gennick, my lead editor, who first reached out to me and offered just a
chapter, then half a book, and then a book. Without him, I would have never started. I would like to
thank Anita Castro, my coordinating editor, who dealt with my fuzzy deadlines, last-minute changes,
and never-ending shenanigans with grace and dignity. I know I put her through hell, and I simply cannot
apologize enough. Without her, I would have never finished. Technical reviewer Max Choi’s insight not
only caught bugs and hammered on inconsistencies, but also truly turned the examples from mere toys
to finished products. Copy editor Heather Lang’s deft touch polished my oft-times clunky prose and
refitted all of the text—a monumental task. Thank you both. Michelle Lowman, part of the editorial
board, also deserves thanks for her role in refining the ideas that led to this book.

Working with genuinely amazing people never gets old. I would like to thank Ed Paradis
(http://edparadis.com/) for his unending support, as well as his deft photography and Lego skills,
especially on the final chapter. He was an excellent person to bounce ideas off of and helped me get my
chapters finished. I would like to thank my coauthors—Daniel, Florian, Matt, and Nicolas. You guys took
a chance on me, on this book, and it panned out! Like jumping into a very cold lake—you just have to
start swimming. Thank you for your efforts and contributions. This book would not have been even a
quarter as good without you.
I would like to thank Kyle Wiens over at iFixit (www.ifixit.com) for letting me use one of their teardown
images, and for providing such an amazing resource for hardware hackers everywhere. If you can’t fix it,
you don’t own it. I would like to thank the team building PCL (http://pointclouds.org/) for all of their
crucial work—they are truly bringing 3D manipulation to the masses.
I would like to thank Dr. Abraham Kandel. As always, your support from afar carries me through rough
spots, and your example inspires me to always do more, better. Thank you.
I would like to thank my mom and dad for providing such an excellent example and their support
growing up. I would have never been in this position without them.
Last and most certainly not least, I would like to thank my soon-to-be wife, Jennifer Marriott, and our
lovely daughter, Charlotte. Late nights, missed dinners, angst, misery, and snark—you both stood by me,
supported me, and loved me, even when it was hard to do so. I love you both in ways I cannot express in
words. Thank you!

Jeff Kramer

I wish to thank all those who have called me their friend in this cold city, for any endeavor is rendered
empty if there is nobody to share it with. And a special mention to those who have fed me, for I often
forget to do it myself.

Daniel Herrera C.

I’d like to thank NYU ITP, Eyebeam Art and Technology Center, and the Openframeworks community.

Matt Parker

C H A P T E R 1

1

Introducing the Kinect

Welcome to Hacking the Kinect. This book will introduce you to the Kinect hardware and help you
master using the device in your own programs. We’re going to be covering a large amount of ground—
everything you’ll need to get a 3-D application running—with an eye toward killer algorithms, with no
unusable filler.

Each chapter will introduce more information about the Kinect itself or about the methods to work
with the data. The data methods will be stretched across two chapters: the first introduces the concept
and giving a basic demonstration of algorithms and use, and the second goes into more depth. In that
second chapter, we will show how to avoid or ameliorate common issues, as well as discuss more
advanced algorithms. All chapters, barring this one, will contain a project—some basic, some advanced.

We expect that you will be able to finish each chapter and immediately apply the concepts into a
project of you own; there is plenty of room for ingenuity with the first commercial depth sensor and
camera!

Hardware Requirements and Overview
The Kinect requires the following computer hardware to function correctly. We’ll cover the requirements
more in depth in Chapter 3, but these are the basic requirements:

• A computer with at least one, mostly free, USB 2.0 hub.

• The Kinect takes about 70% of a single hub (not port!) to transmit its data.

• Most systems can achieve this easily, but some palmtops and laptops
cannot. To be certain, flip to Chapter 2, where we give you a quick guide on
how to find out.

• A graphics card capable of handling OpenGL. Most modern computers that have
at least an onboard graphics processor can accomplish this.

• A machine that can handle 20 MB/second of data (multiplied by the number of
Kinects you’re using). Modern computers should be able to handle this easily, but
some netbooks will have trouble.

• A Kinect sensor power supply if your Kinect came with your Xbox 360 console
rather than standalone.

Figure 1-1 shows the Kinect itself. The callouts in the figure identify the major hardware
components of the device. You get two cameras: one infrared and one for standard, visible light. There is
an infrared emitter to provide structured light that the infrared camera uses to calculate the depth

CHAPTER 1 � INTRODUCING THE KINECT

2

image. The status light is completely user controlled, but it will tell you when the device is plugged into
the USB (but not necessarily powered!) by flashing green.

Status LED RGB Camera

IR Laser Emitter

IR Camera

Figure 1-1. Kinect hardware at a glance

Installing Drivers
This book focuses on the OpenKinect driver – a totally open source, low level driver for the Kinect. There
are a few other options (OpenNI and the Kinect for Windows SDK), but for reasons to be further
discussed in Chapter 3, we’ll be using OpenKinect. In short, OpenKinect is totally open source, user
supported and low level, therefore extremely fast. The examples in this book will be written in C/C++,
but you can use your favorite programming language; the concepts will definitely carry over.

� Note Installation instructions are split into three parts, one for each available OS to install to. Please skip to the
section for the OS that you’re using.

Windows
While installing and building OpenKinect drivers from source is fairly straightforward, it can be
complicated for first timers. These steps will take you through how to install on Windows 7 (and should
also work for earlier versions of Windows).

1. Download and install Git (http://git-scm.com). Be sure to select “Run git from
the Windows Command Prompt” and “Check out Windows style, commit
Unix-style line endings”.

2. Open your command prompt; go to the directory where you want your source
folder to be installed, and clone/branch as in Listing 1-1. See the “Git Basics”
sidebar for more information.

CHAPTER 1 � INTRODUCING THE KINECT

3

Listing 1-1. Git Commands for Pulling the Source Code

C:\> mkdir libfreenect
C:\> cd libfreenect
C:\libfreenect> git clone https://github.com/OpenKinect/libfreenect.git (This will clone into
a new libfreenect directory)
C:\libfreenect> cd libfreenect
C:\libfreenect\libfreenect> git branch –track unstable origin/unstable

3. There are three major dependencies that must be installed for libfreenect to
function: libusb-win32, pthreads-win32, and GLUT. Some of the options you
select in the next section are dependent on your choice of compiler.

a. Download libusb-win32 from http://sourceforge.net/projects/libusb-
win32/.

b. Extract and move the resulting folder into /libfreenect.

c. Download pthreads-win32 from http://sourceware.org/pthreads-win32/.
Find the most recent candidate with release.exe at the end.

d. Extract and store the folder in /libfreenect. If you’re using Microsoft Visual
Studio 2010, copy /Pre-built.2/lib/pthreadVC2.dll to /Windows/System32/. If
using MinGW, copy /Pre-built.2/lib/pthreadGC2.dll to /Windows/System32/
instead.

e. Download GLUT from http://www.xmission.com/~nate/glut.html. Find the
most recent release ending in “-bin.zip”.

f. Extract and store the resulting folder in /libfreenect.

g. Copy glut32.dll to /Windows/System32/. If you’re using Microsoft Visual
Studio 2010, copy glut.h to the /include/GL folder in your Visual Studio tree
and glut32.lib library to /lib in the same tree. If the GL folder does not exist,
create it. However, if you’re using MinGW, copy glut.h to /include/GL folder
in the MinGW root directory.

4. All of the dependencies are in place! Now we can install the low-level Kinect
device driver.

a. Plug in your Kinect. After a quick search for drivers, your system should
complain that it cannot find the correct drivers, and the LED on the Kinect
itself will not light. This is normal.

b. Open Device Manager. Start Control Panel Hardware and Sound Device
Manager.

c. Double-click Xbox NUI Motor. Click Update Driver in the new window that
appears.

d. Select “Browse my computer for driver software”, and browse to
/libfreenect/platform/inf/xbox nui motor/.

e. After installation, the LED on the Kinect should be blinking green. Repeat steps
3 and 4 for Xbox NUI Camera and Xbox NUI Audio.

CHAPTER 1 � INTRODUCING THE KINECT

4

5. Download CMake from www.cmake.org/cmake/resources/software.html. Get
the most recent .exe installer, and install it.

6. Make sure you have a working C compiler, either MinGW or Visual Studio
2010.

7. Launch CMake-GUI, select /libfreenect as the source folder, select an output
folder, and click the Grouped and Advanced check boxes to show more
options.

8. Click Configure. You see quite a few errors. This is normal! Make sure that
CMake matches closely to Figure 1-2. At the time of this writing, Fakenect is
not working on Windows, so uncheck its box.

� Note MinGW is a minimal development environment for Windows that requires no external third-party runtime
DLLs. It is a completely open source option to develop native Windows applications. You can find out more about it
at www.mingw.org.

CHAPTER 1 � INTRODUCING THE KINECT

5

Figure 1-2. CMake preconfiguration

9. Here too, the following steps split based on compiler choices; this installation
step is summarized in Table 1-1.

a. For Microsoft Visual Studio 2010, GLUT_INCLUDE_DIR is the /include directory in
your Visual Studio tree. GLUT_glut_LIBRARY is the actual full path to glut32.lib
in your Visual Studio tree. LIBUSB_1_LIBRARY is /lib/msvc/libusb.lib in the
libusb installation directory. THREADS_PTHREADS_WIN32_LIBRARY is /Pre-
built.2/lib/pthreadVC2.lib in the pthreads installation directory.

b. For MinGW, the following choices must be set: GLUT_INCLUDE_DIR is the GLUT
root directory. GLUT_glut_LIBRARY is the actual full path to glut32.lib in the
GLUT root directory. LIBUSB_1_LIBRARY is /lib/gcc/libusb.a in the libusb
installation directory. THREADS_PTHREADS_WIN32_LIBRARY is /Pre-
built.2/lib/pthreadGC2.a in the pthreads installation directory.

CHAPTER 1 � INTRODUCING THE KINECT

6

c. For both, the following choices must be set: LIBUSB_1_INCLUDE_DIR is /include
in the libusb installation directory. THREADS_PTHREADS_INCLUDE_DIR is /Pre-
built.2/include in the pthreads installation directory.

Table 1-1. CMake Settings for Microsoft Visual Studio 2010 and MinGW

CMake Setting Microsoft Visual Studio 2010 MinGW

GLUT_INCLUDE_DIR <MSVSRoot>/VC/include <GLUTRoot>/

GLUT_glut_LIBRARY <MSVSRoot>/VC/lib/glut32.lib <GLUTRoot>/glut32.lib

LIBUSB_1_INCLUDE_DIR <LIBUSBRoot>/include <LIBUSBRoot>/include

LIBUSB_1_LIBRARY <LIBUSBRoot>/lib/msvc/libusb.lib <LIBUSBRoot>/lib/gcc/libusb.a

THREADS_PTHREADS_INCLUDE_DIR <PTHREADRoot>/Pre-built.2/include <PTHREADRoot>/Pre-
built.2/include

THREADS_PTHREADS_WIN32_LIBRARY <PTHREADRoot>/Pre-
built.2/lib/pthreadVC2.lib

<PTHREADRoot>/Pre-
built.2/lib/pthreadGC2.a

10. Dependencies that have yet to be resolved are in red. Click Configure again to
see if everything gets fixed.

11. As soon as everything is clear, click Generate.

12. Open your chosen output folder, and compile using your compiler.

13. Test by running /bin/glview.exe.

� Note If you have problems compiling in Windows, check out the fixes in Chapter 3 to get your Kinect running.

Linux
Installing on Linux is a far simpler than on Windows. We’ll go over both Ubuntu and Red Hat/Fedora.
For both systems, you need to install the following dependencies; the first line in each of the listings
below takes care of this step for you:

• git-core

• cmake

• libglut3-dev

• pkg-config

• build-essential

CHAPTER 1 � INTRODUCING THE KINECT

7

• libxmu-dev

• libxi-dev

• libusb-1.0.0-dev

Ubuntu
Run the commands in Listing 1-2. Follow up by making a file named 51-kinect.rules in
/etc/udev/rules.d/, as shown in Listing 1-3, and 66-kinect.rules in the same location, as shown in
Listing 1-4.

Listing 1-2. Ubuntu Kinect Installation Commands

sudo apt-get install git-core cmake libglut3-dev pkg-config build-essential libxmu-dev libxi-
dev libusb-1.0-0-dev
git clone https://github.com/OpenKinect/libfreenect.git
cd libfreenect
mkdir build
cd build
cmake ..
make
sudo make install
sudo ldconfig /usr/local/lib64/
sudo adduser <SystemUserName> video
sudo glview

Listing 1-3. 51-kinect.rules

ATTR{product}=="Xbox NUI Motor"
SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02b0", MODE="0666"
ATTR{product}=="Xbox NUI Audio"
SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02ad", MODE="0666"
ATTR{product}=="Xbox NUI Camera"
SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02ae", MODE="0666"

Listing 1-4. 66-kinect.rules

#Rules for Kinect
SYSFS{idVendor}=="045e", SYSFS{idProduct}=="02ae", MODE="0660",GROUP="video"
SYSFS{idVendor}=="045e", SYSFS{idProduct}=="02ad", MODE="0660",GROUP="video"
SYSFS{idVendor}=="045e", SYSFS{idProduct}=="02b0", MODE="0660",GROUP="video"
#End

Red Hat / Fedora
Use Listing 1-5 to install, and then make the files in Listings 1-3 and 1-4 in /etc/udev/rules.d/.

CHAPTER 1 � INTRODUCING THE KINECT

8

Listing 1-5. Red Hat/Fedora Kinect Installation Commands

yum install git cmake gcc gcc-c++ libusb1 libusb1-devel libXi libXi-devel libXmu libXmu-devel
freeglut freeglut-devel
git clone https://github.com/OpenKinect/libfreenect.git
cd libfreenect
mkdir build
cd build
cmake ..
make
sudo make install
sudo ldconfig /usr/local/lib64/
sudo adduser <SystemUserName> video
sudo glview

Mac OS X
There are several package installers for OS X, but we’ll be focusing on MacPorts (Fink and Homebrew are
not as well supported and are too new for most users). The maintainers of OpenKinect have issued a
special port of libusb-devel that is specifically patched to work for the Kinect. Move to a working
directory, and then issue the commands in Listing 1-6. If you want to build an XCode project instead of a
CMake one, change the cmake line to cmake –G Xcode In cmake, configure and generate before
exiting to run the remaining code.

� Note MacPorts is an open source system to compile, install, and upgrade software on your OS X machine. It is
the Mac equivalent of apt-get. Although it is almost always properly compiles new libraries on your system, it is
extremely slow due to its “reinstall everything to verify” policy. Homebrew is up and coming and will likely be the
package manager of the future. To learn more about MacPorts, please visit www.macports.org.

Listing 1-6. Mac OS X Kinect Installation Commands

sudo port install git-core
sudo port install libtool
sudo port install libusb-devel
sudo port install cmake
git clone https://github.com/OpenKinect/libfreenect.git
cd libfreenect/
mkdir build
cd build
ccmake ..
Run Configure to generate the initial build description.
Double check the settings in the configuration (this shouldn’t be an issue with a standard
installation)
Run Generate and Exit

CHAPTER 1 � INTRODUCING THE KINECT

9

make
sudo make install

Testing Your Installation
Our driver of choice, libfreenect, helpfully ships with a small set of demonstration programs. You can
find these in the /bin directory of your build directory. The most demonstrative of these is glview; it
shows an attempt at fitting the color camera to the 3D space. Your glview output should look much like
Figure 1-3.

Figure 1-3. glview capture

Getting Help
While much of the information in this chapter should be straightforward, there are sometimes hiccups
in the process. In that case, there are several places to seek help. OpenKinect has one of the friendliest
communities out there, so do not hesitate to ask questions.

• http://openkinect.org: This is the home page for the OpenKinect community; it
also has the wiki and is full of great information.

• http://groups.google.com/group/openkinect: This is the OpenKinect user group
mailing list, which hosts discussions and answers questions.

• IRC: #OpenKinect on irc.freenode.net

Summary
In this first chapter, you installed the initial driver software, OpenKinect, and ran your first 3-D
application on your computer. Congratulations on entering a new world! In the next chapter, we’re
going to dive deep into the hardware of the Kinect itself, discussing how the depth image is generated
and some of the limitations of your device.

C H A P T E R 2

11

Hardware

In this chapter, you will extensively explore the Kinect hardware, covering all aspects of the system
including foibles and limitations. This will include the following:

• How the depth sensing works

• Why you can’t use your Kinect outside

• System requirements and limitations

Let’s get started.

Status LED

IR Laser Emitter

RGB Camera IR Camera

Figure 2-1. Kinect external diagram

Depth Sensing
Figure 2-1 will serve as your guidebook to the Kinect hardware. Let’s start with the depth sensing system.
It consists of two parts: the IR laser emitter and the IR camera. The IR laser emitter creates a known noisy
pattern of structured IR light at 830 nm. The output of the emitter is shown in Figure 2-2. Notice the nine
brighter dots in the pattern? Those are caused by the imperfect filtering of light to create the pattern.
Prime Sense Ltd., the company that worked with Microsoft to develop the Kinect, has a patent
(US20100118123) on this process, as filters to create light like this usually end up with one extremely
bright dot in the center instead of several moderately bright dots. The change from a single bright dot to

CHAPTER 2 � HARDWARE

12

several moderately bright dots is definitely a big advancement because it allows for the use of a higher
powered laser.

Figure 2-2. Structured light pattern from the IR emitter

The depth sensing works on a principle of structured light. There’s a known pseudorandom pattern
of dots being pushed out from the camera. These dots are recorded by the IR camera and then compared
to the known pattern. Any disturbances are known to be variations in the surface and can be detected as
closer or further away. This approach creates three problems, all derived from a central requirement:
light matters.

• The wavelength must be constant.

• Ambient light can cause issues.

• Distance is limited by the emitter strength.

The wavelength consistency is mostly handled for you. Within the sensor, there is a small peltier
heater/cooler that keeps the laser diode at a constant temperature. This ensures that the output
wavelength remains as constant as possible (given variations in temperature and power).

Ambient light is the bane of structured light sensors. Again, there are measures put in place to
mitigate this issue. One is an IR-pass filter at 830 nm over the IR camera. This prevents stray IR in other
ranges (like from TV remotes and the like) from blinding the sensor or providing spurious results.
However, even with this in place, the Kinect does not work well in places lit by sunlight. Sunlight’s wide
band IR has enough power in the 830 nm range to blind the sensor.

The distance at which the Kinect functions is also limited by the power of the laser diode. The laser
diode power is limited by what is eye safe. Without the inclusion of the scattering filter, the laser diode in

