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INTRODUCTION 

In the last decades, chemical physics has attracted an ever- 
increasing amount of interest. The variety of problems, such as 
those of chemical kinetics, molecular physics, molecular spectro- 
scopy, transport processes, thermodynamics, the study of the state 
of matter, and the variety of experimental methods used, makes 
the great development of this field understandable. But the 
consequence of this breadth of subject matter has been the scatter- 
ing of the relevant literature in a great number of publications. 

Despite this variety and the implicit difficulty of exactly 
defining the topic of chemical physics, there are a certain number 
of basic problems that concern the properties of individual 
molecules and atoms as well as the behaviour of statistical en- 
sembles of molecules and atoms. This new series is devoted to 
this group of problems which are characteristic of modern chemical 
physics. 

As a consequence of the enormous growth in the amount of 
information to be transmitted, the original papers, as published 
in the leading scientific journals, have of necessity been made as 
short as is compatible with a minimum of scientific clarity. They 
have, therefore, become increasingly difficult to follow for anyone 
who is not an expert in this specific field. In order to alleviate 
this situation, numerous publications have recently appeared 
which are devoted to review articles and which contain a more or 
less critical survey of the literature in a specific field. 

An alternative way to improve the situation, however, is to ask 
an expert to write a comprehensive article in which he explains 
his view on a subject freely and without limitation of space. The 
emphasis in this case would be on the personal ideas of the author. 
This is the approach that has been attempted in this new series. 
We hope that as a consequence of this approach, the series may 
become especially stimulating for new research. 

Finally, we hope that the style of this series will develop into 
something more personal and less academic than what has become 
the standard scientific style. Such a hope, however, is not likely 
to be completely realized until a certain degree of maturity 

V 



vi INTRODUCTION 

has been attained-a process which normally requires a few 
years. 

At present, we intend to publish one volume a year, but this 
schedule may be revised in the future. 

In order to proceed to a more effective coverage of the different 
aspects of chemical physics, it has seemed appropriate to form *an 
editorial board. I want to express to them my thanks for their 
cooperation. 

I. PRIGOGINE 
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2 R. DAGONNIER 

1. INTRODUCTION 

For several years, much interest has been raised by the 
“microscopic” justification of the Brownian motion theory. This 
theory was developed initially by Einstein and Smoluchowsky in 
terms of semi-phenomenological arguments and later elaborated by 
Langevin and 0thers.l These authors describe the effects of the 
fluid particles (of mass m) on Brownian particles (of mass M $ m )  
in a stochastic fashion. Their results are summarized in the well- 
known Fokker-Planck equation satisfied by the distribution 
function of the heavy particle in its position and momentum space. 
All descriptions of Brownian motion still relied, up to very recently, 
on stochastic assumptions because the dynamics of the motion of 
the fluid atoms, which cause the Brownian motion of the heavier 
particles, was not introduced explicitly. 

In recent years, various authors2“‘ have deveIoped a microscopic 
theory of Brownian motion using the latest developments of non- 
equilibrium statistical mechanics. Since the laws of mechanics 
alone describe the irreversible behaviour of large systems (provided 
suitable initial conditions are chosen) no extramechanical assump- 
tions are needed for a theory of Brownian motion. 

Starting from the Liouville equation for the total distribution 
function, these authors derive a general transport equation for the 
one particle distribution function of the Brownian particle by 
integrating over the variables of the fluid molecules in certain 
limits involving the time scale and the size of the system. As the 
fluid is taken at thermal equilibrium the motion of the Brownian 
particle is studied under the quasi-equilibrium condition : 

which is obviously realized when both average momenta are in the 
thermal range (where P and p ,  denote respectively the momentum 
of the Brownian particle and of the fluid molecule). The Fokker- 
Planck equation is then readily obtained as the limiting form of the 
Brownian particle generalized transport equation when y tends to 
zero. 

Very recently, some authors6-10 have extended to quantum 
systems this method for obtaining a Fokker-Planck-like equation. 
The aim of the present paper is to give a general report of the study 
of the quantum-mechanical Brownian motion. 

(<p4>/<P2))* = (m/M)* = y < 1 (1) 
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The quantum theory of Brownian motion appears to be useful 
in understanding various physical situations, for example theoretical 
interpretations of ionic mobilities in quantum liquids89 9, 14915 and 
predictions about non-classical isotope effects that should appear 
in diffusion experiments with heavy particles in quantum fluids at 
very low temperatures.’ It should be therefore emphasized that 
limitations concerning the domain of validity of a Fokker-Planck- 
like description are necessary, chiefly in the very low temperature 
range where the zero-point motion of the particles plays an 
important part. 

Here we shall apply the general theory of irreversible processes 
due to Prigogine and c o w ~ r k e r s l ~ - ~ ~  by using for the description of 
quantum Brownian motion the method developed by Resibois and 
the author.8,B Section 2 deals with the general formulation of the 
problem; we consider the model of one heavy charged Brownian 
particle (mass M, charge e) immersed in a fluid of N fight quantum 
particles (for instance, bosons of mass m) and influenced by a weak 
electrostatic field E. Starting from the von Neumann equation for 
the (N+ 1) particle density matrix, we obtain a generalized trans- 
port equation for the Brownian motion. From this equation we 
derive, in Section 3, the usual Fokker-Planck equation by expand- 
ing the dynamic properties of the Brownian particle in the mass 
ratio y2 ; the Fokker-Planck equation appearing then as the limiting 
form of the general transport equation when y+O [see Eq. (l)]. 
This requirement is obviously realized for a weakly coupled sur- 
rounding fluid such as a nearly perfect Bose gas. This model is then 
considered to interpret the experimental data obtained from 
measurements of ionic mobilities in liquid 4He. In  the next Section 
we discuss the problem of Brownian motion in a Fermi fluid where 
the convergence of the y expansion appears to depend crucially on 
the temperature range considered; indeed it is shown that the 
condition of validity of the Fokker-Planck equation [Eq. (l)] 
should be replaced by the much more restrictive requirement : 

where + denotes the Fermi energy and 4 is defined by ( e F / k T ) + .  
T o  illustrate this case we give a theoretical interpretation of the 
behaviour of heavy ions in liquid 3He. 

Section5 is devoted to the analysis of the next term of the 
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y series appearing in the basic transport equation for Brownian 
motion. This examination of the first “correction” to the usual 
Fokker-Planck equation shows that condition (1) is no longer valid 
for strongly coupled systems (dense fluids) at very low temperatures, 
the zero-point motion of both kinds of particles starting to play a 
decisive part. Consequently when the localization effects are such 
that the convergence of the general transport equation is no longer 
ensured the whole framework of the usual Brownian motion theory 
breaks down. 

Finally some lengthy calculations are reported in the Appendices. 
The work reported in this paper has been carried out in the 

department of Professor I. Prigogine, at Brussels University. We 
wish to thank him for his continuous encouragement during its 
progress. We are also most indebted to P. Resibois, who suggested 
and collaborated in the major part of this work, and to H. T. Davis, 
who played an essential part in developing the results concerning 
the Fermi systems. Dr. J .  Lekner read the manuscript and we 
thank him for his aid. 

2. THE GENERALIZED TRANSPORT EQUATION FOR 
QUANTUM B R O W ”  MOTION 

A. The Von Neumanx-Liouville Equation 
We consider a system enclosed in a box of volume Q, made of 

one heavy charged particle (mass M, charge e)  immersed in a fluid 
of N bosons of mass m ( m < M ) ,  submitted to the influence of a 
weak external electrostatic field E. As in the equivalent classical 
situation24 the motion of the heavy ion is studied under the quasi- 
equilibrium condition (1). This requirement can obviously be 
realized at sufficiently low temperatures for a weakly coupled system 
(at T = 0, ( p ; )  = O!). However for a system with stronginteractions, 
the zero-point motion of both kinds of particles starts to play a 
part; it is difficult then to make general assertions and Eq. (1) will 
in this case be considered as a sufficient condition for the validity of 
our proof. This point will be considered in more detail in Section 5 .  
Let us stress also, that although the theory is formulated for bosons, 
the method is quite general provided that (1) is valid. 

If we use a second quantization representation for free particles, 
we can cast the Hamiltonian of our system into the well-known 
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form : 

where the “internal” Hamiltonian H contains the kinetic energy 
term : * 

H’ = H + H e ;  H = Ho+AW (3) 

and the interaction energy between the particles : 

AW = AVf+ AVfB 

( 5 )  
A +- C u(k-  I )  exp [ -i(k- Z)R] a; a, 

kl 

where (R,R) denote the coordinate and momentum operators of 
the Brownian particle; a: and ak are the usual creation and des- 
truction operators for bosons. Moreover v(klpr) represents the 
fluid-fluid interaction while u(k -- I) corresponds to the potential 
energy between the fluid and the Brownian particle (both potentials 
are scaled with the dimensionless parameter A). The eigenstates 
IKn) of the unperturbed Hamiltonian in definition (3) are then 
given by 

where n denotes the occupation numbers (nk, n,, nP, ..., nr, ...).t 
Moreover He represents the interaction between the charged 
Brownian particle with the external electrostatic field 

He = --eER (7) 

We start from the von Neumann equation for the total density 
matrix p, i.e. in the I Kn) representation: 

i&(KnIplK’n’) = (Knl[H’,p]lK’n’) (8) 

* Except when explicitly noticed, we drop the vector notation and set 

t As usual, we have for bosons: 
h = m = l .  

0 : l n k )  = (nl ,+I)’Inl ,+1) ,  aklnk> = nbInk-l> 
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We now rewrite this equation using the following definition valid 
for any operator A l6 

(Kn I A 1 K In') = Ag-g.,,-,. ( ___ 2 7 7 )  = d K , V ( P , N )  (9) 
K + K '  n+n' 

Here 

define a new set of variables for the Brownian particle, while for 
the fluid molecules we use 

K = K -  K' ,  P = $(K+ K')  (10) 

v = n-n', N = #(n+n') (11) 
with v = (vk, y, vp, ..., v,, ...) and N = (Nk, N,, Np ,*..., N,, ...). It is 
then easy to express Eq. (8) in terms of these variables; we obtain 

iat PK,V(', ; t ,  

(12) 
where the summation over v' runs over all possible values from 
- N to N [that is for bosons: vk = nk-n;;  vk in the range 

If we now introduce displacement operators ( f K ,  r]fV such that 
( N , N -  1, ..., - N +  1, - N ) ] .  

for any function of P or N: 

S"f(N) = f(N+G) (14) 

we can cast Eq. (8) into the following form: 

iat f K , U ( p >  N; t ,  = <Kv I x'(p, N, I K'V')  Pd,V'(', N; t ,  ( 15) 
K ' p *  

where the "von Neumann-Liouville operator"* A?' is defined by 

<KV 1 #'(p, N) 1 K'V') = [ 5"' T~ 'H; -~ ,~ - , , , (~ ,  N) 5" q-" 

- C-K'~-W'H:-K*,Vy-V,(l', N) PqY] (16) 
* Operators of this kind will be represented by script letters. 
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The p,,(P,N) are the Fourier components of the Wigner dis- 
tribution function of the whole system. The states KV # 0 corre- 
spond to the existence of spatial correlations between the Brownian 
particle and the fluid ; the dynamic evolution of these correlations 
is described by the von Neumann-Liouville equation (15). As 
in the case of quantum gasesl6 Eq. (15) is the strict analogue of the 
classical Liouville equation. This great formal similarity will allow 
us to apply to this problem the general technique developed by 
Prigogine and coworkers11-13* l6 to deal with non-equilibrium 
situations. 

Before going to our derivation of a general transport equation 
for the Brownian particle momentum distribution function let US 
give the definitions of the script operators which correspond to the 
various terms 
and (16) with 
algebra : 

of our starting Hamiltonian. Using definitions (9) 
Eqs. (4), (5), and (7) we get after some elementary 

2‘ = 2 + 2 e ;  sf = S0+hW (17) 
where 

{ K V l q l K ‘ V ’ )  == { K V I s f f + 2 i I K ’ v ‘ )  = [ K P / M + E * v ]  ”,8;’* 
(18) 

represents the Brownian particle kinetic energy term plus the fluid 
unperturbed Hamiltonian (notice that E - Y  means C k  ckvk). On the 
other hand, the potential energy corresponds to 

(KV I )tw I K ‘ V ’ )  = ( K V  I h v  -k )t@ I K ‘ v ’ )  (19) 

where the “fluid-fluid” interaction term is given by 

2 
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and the “Brownian particle-fluid” interaction operator, defined by 

x 
( K V ~  A@l  K’v’> = ax u(k - Z) F ( K -  I +  K - K ’ )  

kl 

(21) Kr x %,:,-I q q + l  %,{V,Y 

Finally the “external” Hamiltonian Xe has the following form: 

B. The Master Equation in an External Electrostatic Field 

We now analyse the evolution equation of the particle density 

(1) the system is supposed to be uniform; we thus consider the 
evolution of the total momentum distribution function 

(2) the external electrostatic field E is switched on at the initial 

matrix [Eq. (15)] in the special case where: 

P o p ,  N ; t )  ;* 

time. For t < 0, the system is at equilibrium: 

pd,,*(P, N ;  0) = &.(t,(P, N) 

(3) we suppose that this external field is weak and we limit our- 
selves to  a linear theory in this smallness parameter. 

We thus set: 

/Jo(PJN; t )  = &‘(P,N)+APo(P,N; t )  

* We shall often use the term “distribution function” in lieu of density 
matrix (recall how they are simply related in the definition of the Wigner 
distribution function). 
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the system being just off its equilibrium position under the 
influence of the weak external field. 

In  this case the von Neumann-Liouville equation [Eq. (15)] 
becomes 

and its formal solution has the following form: 

as may be checked by direct derivation. However, this expression 
is of no great help until we know how to operate explicitly with the 
very complicated exponential operator. In order to circumvent 
this difficulty, we shall use a resolvent technique: we define a 
resolvent operator (% - z)-1, a function of the complex variable z 
and write (see RCsiboisl3) : 

exp ( - izt) 
exp ( - iX’t) = dx 

27ri. ‘ P  c H‘-z 

The contour C will always be chosen as a straight line parallel to  the 
real axis in the upper half-plane and a large semi-circle in the lower 
half-plane: since 2 is Hermitian, all the singularities of the 
resolvant are on the real axis and are thus included in the contour C. 

The resolvant technique furnishes a very elegant perturbation 
method for calculating Eq. (24), i.e. : 

po(P,N; t) = ----; dzexp(-ixt) 2571 ‘ P  c 

Indeed, using the following formal expansion in the external force : 

(2’ - z)-1 = (2 + 2 6  -. .)-I 

a 
= c (S - x)-1 [ - X e ( 2  - z)-1]” (27) 

n=O 

one sees immediately that, in a linear theory in the external 
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f I 

perturbation,* Eq. (26) may be cast into 

- - I + 

dp,(P,N; t )  = -- -exp(-izt) 
27~i f" cz 

f I 

x C (0 I (S- z)-' Ze I K'u') p:pY,(P, N) (28) 
K'V' 

if one uses the obvious identity: 

S p " 9  = [H,  pep] = 0 (29) 

- - I + 

1 
Fig. 1.  The complex contour C in Eq. (25). 

Moreover we may expand the right-hand side of Eq. (28) in the 
coupling constant A, i.e. using the formal series (which is assumed 
to be convergent) : 

OD 

(S - z)-1 = (So - z)-1 c [ - AW(8, - z)-l]" 
n=O 

Then we get 

dP,(P, N; t )  

00 

x 2 (0 I (1/ - z) [ - XW(So - z)-l]" A?" I K'u') p:pY.(P, N) (30) 
K'V' n=O 

* The external field is supposed weak and the series (27), convergent. 
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This expression describes the departure of the system from its 
equilibrium position under the influence of an external perturba- 
tion supposed weak. Here this deviation is expressed in terms of 
the spatial correlations existing between the Brownian particle and 
the fluid. In order to isolate in Eq. (30) the various contributions 
of physical interest let us introduce the following operators whose 
physical meaning will become clear. 

We define the “diagonal fragment” Y o o ( x )  as the sum of all 
“irreducible” transitions leading from the state I 0) to the same 
final state ; by irreducible, we mean that all intermediate states 
I K V )  are such that K V # O  and this condition will be indicated by a 
dash (’) in all subsequent formulae. We thus have 

“ 
Y,(z) = C (O~-AW[(~~-Z) -~( -AW)] ’+~~O) ’  (31) 

The “destruction term” is defined as the sum of all irreducible 
transitions starting from any initial state I KV) with KV # 0 and ending 
with the “vacuum” state 10) : 

n= 2 

Finally in the calculation of the equilibrium correlation function 
pz(P, N) we shall also need the so-called “creation fragment” 
which is defined by 

If we now turn back to the perturbation expansion Eq. (30) for 
dpo(P, N; t), we may readily express the right-hand side as the sum 
of an arbitrary number of diagonal fragments preceded by a des- 
truction term. We have identically : 

dpo(P, N; t )  = -- 
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where we have carried out the formal summation contained in 
Eq. (34). 

To proceed with the discussion of Eq. (35) we need information 
concerning the analytic behaviour of the quantities Yoo(z), 
g0,,,(z) or ‘i3‘m,o(z) which will be all denoted formally by F(z). We 
shall not discuss all the analytic properties of F(z )  in detail, but we 
shall simply give some important properties that may be deduced 
from complex analysis (for detailed justifications see references 

F(x) is an analytic function of z in the whole complex plane, 
except for a finite discontinuity along the real axis. As far as the 
destruction operator is concerned, this property is realized for a 
certain class of initial conditions, i.e. when the range of correlations 
in configuration space is finite. We have two functions F+(z) and 
F-(z) according to Ym z > 0 or Ym z < 0 which are analytic in their 
respective domains of definition, i.e. the first one in the upper 
half-plane S+, the second one in the Iower half-pIane S-. More- 
over it is possible to show that F+(z) has an analytical continuation 
in the lower half-plane S- and vice versa. This continuation has 
singularities which we shall always assume to be poles of finite order 
located at z = zi with the typical requirement: 

11-13, 17). 

where T~ denotes the “collision time”. This last property has been 
shown to be true for certain laws of interaction (for an explicit 
example see reference 13). In the following discussion Eq. (36) 
will be considered as a sufficient condition for the validity of the 
equations of evolution which we shall derive. 

We first notice that because of the factor exp ( - izt) the integral 
along the semi-circle at infinity is vanishing. We may thus formally 
replace F(z) by F+(z) on that part of the contour. Moreover, along 
the real axis, we are in S+, then we also need F+(z). 

Second, as we are interested in the long time behaviour of the 
total momentum distribution function dp,,(P, N ; t), the integrations 
contained in Eq. (35) may be performed in the following asymptotic 
way : 
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and then readily evaluated using the well-known residue theorem : 

I = F+(O) (39) 
Notice that as F+(z) is defined in S+, the residue we denote 
simply F+(O) taken in the limit z+O+ or z+iO. Consequently the 
stationary momentum distribution function Opo(P, N), which is 
realized after a long time when the system is submitted to a weak 
external electrostatic field, is given by the solution of the following 
time-independent transport equation: 

Before explaining the physical meaning of the different terms of 
this transport equation, let us quote a useful relation between the 
equilibrium correlations (KV # 0) and the momentum distribution 
function (KV = 0). One can show that 

p","(P, N) = lim p,(P, N ; t )  = %'k,o(0) pgq(P, N) (41) 
k W  

where the creation term %',,o(z) is defined by Eq. (33). We do not 
wish to give a detailed proof of Eq. (41) here (see, for instance, 
reference 13); let us merely point out the fact that this dynamic 
formulation of the equilibrium correlations leads to results 
analogous to the usual methods based on the canonical distribution: 

but it has the advantage of being readily extended to non- 
equilibrium situations. 

With Eq. (41) the basic transport equation (40) may be cast into 
the compact form: 

i e o ( 0 )  dpo(P, N) = i s e  pgq(P, N) 

+ C gi,'v'(0) se %'K'V*,o(o) pgq(P, N, (43) 
K'V' 

This equation describes exactly the linear response of the system 
to an external electrostatic field in the limit t+co and with 
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equilibrium initial conditions. 
stationary situation one has 

Bearing in mind that in this 

at po(P, N ; t )  = at po(P, N ; t )  loon + a, po(P, N; t )  \field 3 0 
one may easily point out the physical meaning of the different terms 
of Eq. (43). The left-hand side contains the asymptotic collision 
operator which generalizes to a strongly coupled system the well- 
known quantum-mechanical collision Boltzmann operator for a 
dilute system. The first term of the right-hand side, where the 
external field acts on a “vacuum” state lo), is the usual flow term 
coming from the influence of the external perturbation on the 
momentum distribution function of the system. The second term 
corresponds to situations where the outer force acts on particles 
which are mutually interacting; in this sense, it represents the 
effect of the external field during the collision process. In  the dilute 
gas limit, this effect disappears because the duration of the collision 
is very small. However, in a dense system, it can play an essential 
part. 

It should be emphasized that because we are interested in a linear 
transport theory, the operators of the right-hand side of Eq. (43) 
are acting on the exact equilibrium distribution function which may 
“formally” be factorized :* 

P:“(P, N) = do(r; P) P P )  (4-4) 
where +o(y; P) is the complete quantum equilibrium distribution 
function of the Brownian particle which still depends on y [because 
of the non-commutativity of HOB and Hi = H l +  AW, see Eqs. (4) 
and ( 5 ) ]  and pi(N) denotes the equilibrium distribution function of 
the fluid particles. 

Now we shall show that, although Eq. (43) is still purely formal- 
in the sense that it involves the complete N particle distribution 
function dp0(P,N)-it can be reduced to a transport equation for 
the single Brownian particle distribution function. 

* By “formally” we mean the following: in the presence of interactions 
there is of course no strict factorization of the density matrix Eq. (44). 
However, if we compute an average value and denote <#(P)> the momentum 
distribution of the heavy particle while <nk> = Tr Ak p‘, it may be shown that 

<+(PI %> = <W)> <%> +OW-’) 
(see reference 4 for a similar argument). 
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C. The Transport Equation for Quantum Brownian Motion 

We assume that the departure from equilibrium may be written 
in the linear form: 

4Jo(P, N) = PXN) W ( P )  + M Y ;  P) *Pf(N) (45) 
The justification of this assumption of molecular chaos is now well 
established in the limit of an infinite system (N+m, Q-+oo; 
NlQ = p = finite) and we shall not discuss it here. 

Let us now recall the main feature of our Brownian motion 
model, which is that when a very few heavy particles move through 
a fluid of N light particles they cannot cause it to depart from 
its equilibrium condition, the non-equilibrium situation of the 
Brownian particles being caused by an external perturbation. 
Thus, in our case, if we allow that the fluid particles are not affected 
by the presence of the Brownian particle we can set in Eq. (45): 

Spf(N) = 0 (46) 
Let us also note that this rather obvious statement can be sup- 
ported with a mathematical demonstration valid up to order 
O(N-l) (see, for instance, reference 2). 

Inserting Eqs. (44) and (45) into Eq. (43) and summing over the 
fluid variables N, one can reduce the formal equation (43) to the 
following closed transport equation for the Brownian particle 
distribution function : 

where we have averaged the various operator quantities in the 
variables P and N over the fluid equilibrium distribution function 
pf (where 2, denotes the fluid partition function) : 

pf=Z;lexp(-/?Hf); Hf = H ; + V + V f B  (48) 

(49) 

using the definition 

(A), = T r  Ap, := C. A(N) pi(N) 
N 

The generalized transport equation for quantum Brownian motion, 
Eq. (47), will be the starting point of: (1) a microscopic derivation 
of the usual Fokker-Planck equation (Section 3) and (2) discussion 
of the validity of a Fokker-Planck type description for a Brownian 
motion situation in the very low temperature limit (Section 4). 
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D. Expansion in the Momentum Ratio 

In  the basic transport equation (47) we now take into account 
explicitly the Brownian motion condition (1). Let us first introduce 
a reduced variable 

defined in such a way that if the “classical requirement” (1) is 
satisfied, the average value of p remains finite in the limit y+O. 
This new variable enables us to take out the y-dependence of the 
“von Neumann-Liouville” operators [see Eqs. (17)-(22)] and 
split them into 

P = YP (50) 

= #f+y&I+y2*IJ+ Y 3#III + 0(Y4)  (51) 
Ho = #;+ y x :  (52) 
T = v-f + y~~ + y% W I  + p WII + 0 ( ~ 4 )  (53) 

2; = E’V (54) 

(55) 

We have thus, parallel to the classical case: 

(fluid unperturbed von Nuemann-Liouville operator) 

(Brownian particle unperturbed von Neumann-Liouville operator). 
Here 2 is an operator defined by 21 K V )  = K I  K V )  [see Eq. (IS)]. 
Moreover, 

yf = v + q.p) 
(perturbation that the fluid would feel if the Brownian particle was 
fixed). Here Y is given by Eq. (20) and @(O) is zero-order in y 
of the expression (21) where we simply replace the displacement 
operators ( f K  by the y-expansion: 

y 2 q  = 2: = yGp 

(56) 

Similarly, at order y, the interaction of the Brownian particle with 
the fluid corresponds to 

<KV I ‘)la1 [ K’V’)  



THEORY OF QUANTUM BROWNIAN MOTION 17 

Let us here explain the meaning of this expression. Let us express 
how this operator acts on any quantity A(n) which we choose, for 
simplicity, diagonal in the occupation number n: 

(KV I Y e 1  I K’O) Ao(N) 
a 

= A i l - 1  u(k - I )  6(k - I +  K - K’) *y(k - I )  8gl 6E-l SB,o 
kJ 

[(Nk + 4) (4 f i)l*[AO(Nk - t ,  4 + 4, t N Y )  
-AO(Nk+J,q-?!!, {N}’)l 

If we now go back to the usual occupation number representation 
(n = N + 4v) we may write 

(KV I Y@I I K’O) A O N  
a 

= XS1-l U(k - C!) 8(k - I!+ K - K ’ )  i y ( k  - I )  @ 8iVy,o 
k.l 

x [?tk(nl+ I)]’ [ ( n k -  n,+ {n}’] A I n k -  nl+ l, {.}’> 

- <n I A I n>l 
or, with the definition of the operators at ,  ak: 

(KV I re1 I K’O)  A O N  
= Ail- lEu(k-1)  S ( k - C ! + ~ . - ~ ‘ ) : y ( k - Z ) ~ 6 ~ ~ 8 ~ - ~ 8 ~ ~ , 0  a 

k f  

x (111 aka;’ A + A a i  all nk - 1, nl+ l, (n>’) 

This example shows that the operator y a l  may be represented as 

where 9+ is an operator associated with the quantum-mechanical 
force F existing between the Brownian particle and the fluid, the 
subscript (+) having been introduced as a reminder that it 
corresponds to an anticommutator, i.e. : 

with 
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Let us add that the terms of 2 I 1  (of order 72) can be obtained in a 
similar fashion but we shall not need their explicit form here. 

If we note that Se, as given by Eq. (22), is also of order y we 
may easily obtain the following expansions: 

cc) 

(Y;o(y-lp, N ;  O ) ) ,  = Cy2" LPn) (61) 
n=i 

From the symmetry properties of these expressions, one can show 
that 

Q(0) = Q2(2"+1, = 0 (634 

(63b) G(1) = G(2) = 0 

For instance, by examining the explicit form of one sees 
immediately that this contribution vanishes identically once the 
trace over the fluid variables is taken, indeed we have 

(q" - 7') f(N) E 0 (64) 
N 

Moreover let us stress that in Eq. (47) the complete equilibrium 
distribution function of the Brownian particle is involved; it can 
itself be expanded in y :  

+o("/; p>  = : r"4"'(P> (65) 
n = O  

However, as is easily checked, the zero-order term of the Brownian 
particle equilibrium distribution function is simply the unper- 
turbed Maxwellian distribution function 

and the higher order terms express quantum deviations (which may 
however become large in the low temperature limit, see Section 4.B). 

When relations Eqs. (61), (62), and (65) are introduced in our 
basic transport equation Eq. (47), we obtain 

i[yZe -I- ( y3  G(3) + y4 G(4) + . . .)] [+e)(P)  + y2+h2)(P) + . . .] 
= i(y2 LF2) + y4 + . . .) +(P) (67) 

where we have turned back to the ordinary momentum variable P. 


