
SERVICE-ORIENTED

MODELING

SERVICE ANALYSIS, DESIGN, AND ARCHITECTURE

MICHAEL BELL

JOHN WILEY & SONS, INC.

SERVICE-ORIENTED

MODELING

SERVICE ANALYSIS, DESIGN, AND ARCHITECTURE

MICHAEL BELL

JOHN WILEY & SONS, INC.

This book is printed on acid-free paper.

Copyright  2008 by Michael Bell. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax
978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services, or technical support, please contact our
Customer Care Department within the United States at 800-762-2974, outside the United States at
317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

For more information about Wiley products, visit our Web site at http://www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Bell, Michael, 1951—
Service-oriented modeling : service analysis, design, and architecture / Michael Bell.

p. cm.
Includes index.
ISBN 978-0-470-14111-3 (cloth)

1. Business enterprises—Computer networks—Management. 2. System
design. 3. Computer software—Development. 4. Computer simulation.
5. Computer network architectures. I. Title.

HD30.37.B45 2008
004.068—dc22

2007033463

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

www.wiley.com

For Yvonne, whose love, patience, and support carried me through this project.

Service-Oriented Modeling Framework

Abstraction
Practice

Realization
Practice

Conceptual
Environment

Service
Conceptualization

Discipline

Conceptual
Architecture
Discipline

Business
Integration
Discipline

Service
Discovery

and
Analysis

Discipline

Analysis
Environment

Service
Design

Discipline

Logical
Architecture
Discipline

Logical
Environment

Conceptual
Service

Analysis
Service

Design
Service

Conceptual
Architecture

Logical
Architecture

Physical Environment

Solution
Service

Physical
Architecture

Modeling Practices

M
od

el
in

g
E

nv
iro

nm
en

ts

M
od

el
in

g
D

is
ci

pl
in

es
M

od
el

in
g

A
rt

ifa
ct

s
M

od
el

in
g

S
ol

ut
io

ns

Service Typing Model

Service-Oriented Analysis Typing Model

Service-Oriented Analysis Asset Notation

Service-Oriented Analysis Notation

Abstraction

ContextSource

Legacy Portfolio Business Technical Other

Composite Cluster OtherAtomic

Service-Oriented
Analysis Typing Model

Structure

Atomic
Service

Composite
Service

Service
Cluster

Service-Oriented Analysis Operation Notation

Aggregated

Subtracted Decomposed

Unified Intersected

Transformed

Overlapped

Comment

Service-Oriented Business Integration Operations Notation

Service-Oriented Business Integration Asset Notation

Business Domain Contextual PerspectiveBusiness Tier

Atomic
Service

Composite
Service

Service
Cluster

Business
Architecture
Integration
Elements

Service-Oriented
Software Assets

Perspective of...

Separated

Contained

Comment

Integrated

Disintegrated

Service-Oriented Design Notation

Service-Oriented Design Asset Notation

Service-Oriented Logical Design Relationship Connectors

Atomic
Service

Composite
Service

Service
Cluster

Consumer

Apparent Unidirectional

Implied Bidirectional Apparent Bidirectional

Comment
Implied Unidirectional

Service-Oriented Design Composition Style Beams

Logical Design Composition Styles

Star Beam

Circular Beam

Network Beam

Hierarchical Beam

Circular Hierarchical Network Star

Service-Oriented Conceptual Architecture Notation

Conceptual Architecture Solution Elements

Conceptual Architecture Operations Notation

Business Domain Packaged Technological
Asset

Architectural Concept
(conceptual machine)

Technological Function
(attribute descriptor)

Conceptualized as...

Function of...

Extended

Owner of...

Recognized

Comment

Service-Oriented Logical Architecture Notation

Logical Architecture Assets Notation

Logical Architecture Operations Notation

@

EXC

Utilized

Executed

Comment

Packaged Technological
Asset

Business or Technological
Process

CONTENTS

Preface xv
Acknowledgments xvii

CHAPTER 1 Introduction 1

Service-Oriented Modeling: What Is It About? 2

Driving Principles of Service-Oriented Modeling 4

Organizational Service-Oriented Software Assets 6

Service-Oriented Modeling Process Stakeholders 7

Modeling Services Introduction: A Metamorphosis Embodiment 8

Service-Oriented Modeling Disciplines: Introduction 14

Modeling Environments 21

Service-Oriented Modeling Framework 23

Summary 27

PART ONE Service-Oriented Life Cycle 29

CHAPTER 2 Service-Oriented Life Cycle Model 31

Service-Oriented Life Cycle Model Principles 31

Service-Oriented Life Cycle Model Structure 34

Service-Oriented Life Cycle Disciplines 42

Summary 48

CHAPTER 3 Service-Oriented Life Cycle Perspectives 49

Service-Oriented Life Cycle Workflows: Introduction 49

Planning Service-Life Cycle Workflows 53

Service Life Cycle Progress View 59

Service Life Cycle Iteration View 61

Service Life Cycle Touch-Points View 66

Summary 67

PART TWO Service-Oriented Conceptualization 69
What Is a Conceptual Service? 70

Service-Oriented Conceptualization Model 71

Guiding Principles of Service-Oriented Conceptualization 72

ix

x CONTENTS

CHAPTER 4 Attribution Analysis 75

Establishing Core Attributes 75

Establishing an Attribution Model 78

Attribution Analysis 80

Attribute Selection 82

Deliverables 85

Summary 86

CHAPTER 5 Conceptual Service Identification 87

Service Conceptualization Toolbox 88

Conceptual Service Identification and Categorization 89

Conceptual Service Association Process 96

Conceptual Service Structure 103

Deliverables 109

Summary 110

PART THREE Service-Oriented Discovery and Analysis 111

CHAPTER 6 Service-Oriented Typing and Profiling Model 115

Service-Oriented Typing 115

Service Typing Namespaces 124

Service-Oriented Profiling 124

Deliverables 126

Summary 128

CHAPTER 7 Service-Oriented Discovery and Analysis:
Implementation Mechanisms 131

Service-Oriented Analysis Assets 131

Service Discovery and Analysis Toolbox 133

Granularity Analysis 135

Aggregation Analysis 139

Decomposition Analysis 140

Unification Analysis 143

Intersection Analysis 145

Subtraction Analysis 147

Combining Service Analysis Methods 150

Deliverables 153

Summary 153

CHAPTER 8 Service-Oriented Analysis Modeling 155

Analysis Modeling: Guiding Principles 156

CONTENTS xi

Analysis Proposition Diagrams 157

Analysis Notation 157

Analysis Modeling Rules 159

Analysis Modeling Process 160

Service-Oriented Analysis Modeling Operations 160

Deliverables 167

Summary 167

PART FOUR Service-Oriented Business Integration 169
Service-Oriented Business Integration Principles 169

Service-Oriented Business Architecture Perspectives Introduction 170

CHAPTER 9 Business Architecture Contextual Perspectives 177

Business Model Perspectives 177

Problem-Solving Perspectives 187

Deliverables 189

Summary 190

CHAPTER 10 Business Architecture Structural Perspectives 191

Business Architecture Structural Integration Model 192

Business Architecture Integration Structures 192

Business Domain Geographic Boundaries 199

Business Tier Distribution Formations 203

Business Control Structures 207

Deliverables 208

Summary 209

CHAPTER 11 Service-Oriented Business Integration Modeling 211

Service-Oriented Business Integration Modeling Principles 211

Service-Oriented Business Integration Diagram 213

Modeling Process 215

Deliverables 228

Summary 228

PART FIVE Service-Oriented Design Model 229
Service-Oriented Logical Design General Model 230

Service-Oriented Logical Design Assets 232

CHAPTER 12 Service-Oriented Logical Design Relationship 233

Major Influences on Service Relationships 234

xii CONTENTS

A Formal Service Logical Relationship Notation 235

Roles in the Service-Oriented Design Context 237

Service Design Visibility Aspects 237

Service Cardinality 243

Synchronization 247

Tagging Intermediaries 249

Service-Oriented Logical Design Relationship Diagram 252

Deliverables 255

Summary 255

CHAPTER 13 Service-Oriented Logical Design Composition 257

What Is a Service-Oriented Logical Design Composition? 257

Service-Oriented Design Composition Components 258

Service-Oriented Design Composition Styles 259

Logical Design Composition Strategies 270

Deliverables 281

Summary 282

CHAPTER 14 Service-Oriented Transaction Model 283

Service-Oriented Transaction Planning Success Criteria 284

Logical Design View: Service-Oriented Transaction Diagram 284

Conveying Functionality in the Activity Section 291

Planning Service-Oriented Transactions 295

Deliverables 304

Summary 305

PART SIX Service-Oriented Software Architecture
Modeling Principles 307
Service-Oriented Conceptual Architecture Modeling 308

Service-Oriented Logical Architecture Modeling 309

Service-Oriented Physical Architecture 309

CHAPTER 15 Service-Oriented Conceptual Architecture Modeling
Principles 311

Conceptual Architecture Layers 312

Architectural Concepts as Machines 320

Modeling Conceptual Architecture 329

Deliverables 339

Summary 339

CONTENTS xiii

CHAPTER 16 Service-Oriented Logical Architecture Principles 341

Logical Architecture Building Blocks 341

Logical Architecture Perspectives 342

Asset Utilization Diagram 342

Reusability Perspective 347

Discoverability Perspective 348

Behavioral Perspective 349

Loose Coupling Perspective 351

Interoperability Perspective 354

Deliverables 357

Summary 357

Index 359

PREFACE

Not long after the beginning of the current decade, the new service-oriented architecture (SOA)
paradigm picked up steam and was established as a leading business and technology organiza-
tional concept. Lack of software asset reusability standards, absence of software interoperability
disciplines, and incoherent business and technology strategies drove the enterprise to establish a
more suitable model that promised to foster business agility and increase return on investment.
This model also galvanized the development of SOA governance best practices, introduced SOA
products, and promoted new service-oriented modeling disciplines.

The enterprise is still seeking mechanisms that can alleviate alignment challenges between
business and information technology (IT) organizations. This effort includes the establishment of
a common service taxonomy and vocabulary—an easy-to-understand language that can fill in the
communication gaps between the problem and solution domain entities and establish a proper
service development life cycle.

Unlike other SOA books on the market, this one introduces a service-oriented modeling
framework that employs an agile and universal business and technology language to facilitate
analysis, design, and architecture initiatives. The service-oriented modeling disciplines presented
will enable practitioners to integrate existing legacy applications and to incorporate new ideas
and concepts to address organizational concerns. These proposed best practices can be applied to
all technologies, software platforms, and languages despite their physical location or ownership.
Furthermore, business and IT professionals, such as managers, business analysts, business archi-
tects, technical architects, team leaders, and developers can now share the burden of software
development initiatives as they are commissioned to bear equal responsibility and accountability.

The service-oriented modeling research presented in this book was driven by the following
vision statements:

• Introduce a state-of-the-art and holistic modeling language that can facilitate an SOA
implementation

• Introduce advanced service life cycle concepts and processes that can be employed to
manage service-oriented projects

• Enable business and IT personnel to equally partner in service-oriented modeling efforts
and to represent their unique perspectives

This book’s mission focuses on the following service-oriented modeling disciplines that
also offer an easy-to-understand modeling language and a notation that is simple to use:

• Service-oriented conceptualization
• Service-oriented discovery and analysis
• Service-oriented business integration
• Service-oriented design
• Service-oriented conceptual architecture
• Service-oriented logical architecture

Chapter 1 introduces the proposed service-oriented modeling framework and outlines its
components. This chapter targets business and technology personnel who seek to establish and
implement a service-oriented modeling language that can be employed during projects to guide,
monitor, and control service development life cycles.

xv

xvi PREFACE

Part One discusses the service life cycle model and its various building blocks. It elaborates
on service evolution management mechanisms during given projects and business initiatives.
It also discusses various life cycle perspectives that enable monitoring and assessment of a
project’s process. Chapters 2 and 3 set the stage for the management of service-oriented modeling
disciplines that are discussed throughout the book. They provide a solid framework for the
service-oriented modeling environment and will be practical for business and IT executives,
product managers, project managers, architects, and lead developers.

Part Two is dedicated to the service-oriented conceptualization process and elaborates
on various mechanisms that can help organizations to establish common concepts and identify
conceptual services and establish enterprise taxonomies. This Part is targeted at product managers,
business architects, business analysts, technical architects, technical managers, team leaders, and
developers. Chapters 4 and 5 introduce a step-by-step and an easy-to-employ concept discovery
process that yields conceptual solution propositions to organizational problems.

Part Three delves into service-oriented discovery and analysis mechanisms. This Part
furnishes best practices and procedures that should be used to discover new services and even
employ legacy applications to provide viable business and technological solutions. Chapter 6
provides unique mechanisms to establish services’ identities and to categorize them based on
their distinctive characteristics. Chapter 7 enables product managers, business architects, technical
architects, business analysts, technical leaders, and developers to perform service-oriented analysis
on identified software assets. Chapter 8 introduces an analysis proposition modeling process that
employs a service-oriented analysis language that can be further used in future service design,
architecture, and construction phases.

Part Four depicts service-oriented business integration mechanisms and furnishes a busi-
ness modeling language that can be used to integrate services with business domains and business
products. Chapters 9, 10, and 11 expand on industry-standard business architecture and propose
an implementation of business architecture disciplines. Business product managers, business man-
agers, IT managers, business architects, technical architects, business analysts, and developers will
find these chapters useful for alignment initiatives between business and technology organizations.

Part Five focuses on service-oriented design strategies, service relationships, logical com-
positions of services, and service behavior analysis. Chapters 12, 13, and 14 target analy-
sis, architecture, and development personnel; these individuals must understand the nature of
service-oriented software relationships as well as prepare packaged solutions for the architecture
and construction teams, study service behaviors, and devise service-oriented transactions.

Finally, Part Six elaborates on fundamental aspects of service-oriented software archi-
tecture. These topics include conceptual and logical architecture modeling disciplines. Chapters
15 and 16 offer a conceptual architecture modeling language that can be employed to describe
organizational technological abstractions, as well as a logical architecture topic that depicts the
fundamental service-oriented building blocks that will be deployed to production and become an
integral part of an organization’s physical architecture.

ACKNOWLEDGMENTS

For all of those who have helped shape this book by contributing their ideas, vision and strategies,
many thanks. Without their involvement, enthusiasm, and the coherent direction they provided,
this book would not have been possible to accomplish.

The valuable insights and feedback that were extended through the research and the actual
writing process were concerned with many fundamental aspects of business and technology prac-
tices. These include the general strategy of the book, business modeling aspects, business process
disciplines, business architecture policies, enterprise and application architecture standards, com-
puter programming topics, and even editorial contributions.

Charu Bansal, Donald Buckley, Dolly Dsa, Donald Mahaya, Eric Marks, Boris Minkin,
Lisa Nathan, Mark Penna, Hormazd Pochara, Monica Roman, Jeff Schneider, and Alex Rozen.
To all of you thank you for your time and commitment to the success of this book.

Special thanks to Mr. Sheck Cho, the executive editor that not only encouraged this project,
but also provided strategic and tactical support throughout the publishing process.

xvii

CHAPTER 1
INTRODUCTION

As human beings, we are passionate about new ideas that promise to transform our lives and
create new opportunities. We also tend to rapidly replace old technologies with new ones. Ours
is a versatile society that runs on tomorrow’s software piled on top of the technology layers of
yesterday and today.

Try to imagine the next breakthrough that will supersede today’s examples of human
ingenuity. Will it be miniature software installed on microwave ovens or refrigerators that monitors
a diet prescribed by a personal nutritionist? Could it be a smart software component that not only
designs itself but also architects its own operating production environment? Or perhaps a virtual
software development platform that enables business and technology personnel to jointly build
applications with goggles and gloves?

These futuristic software concepts would probably contribute yet another layer to our
already complex computing environments, one requiring resources to maintain and budgets to
support. This layer would sit on top of technological artifacts accumulated over the past few
decades that are already difficult to manage.

Not long after the new millennium, discontent over interoperability, reusability, and other
issues drove the software community to come up with the service-oriented architecture (SOA)
paradigm. Even readers who are not familiar with SOA will probably agree that it is rooted in tra-
ditional software development best practices and standards. To fulfill the promise of SOA, superb
governance mechanisms are necessary to break up organizational silos and maximize software
asset reusability. The SOA vision also addresses the challenges of tightly coupled software and
advocates an architecture that relies on the loose coupling of assets. On the financial front, it
tackles budgeting and return-on-investment issues. Another feature that benefits both the techno-
logical and business communities is a reduction of time to market and business agility. Indeed,
the list of advantages continues to grow.

But does the promise of SOA address software diversity issues? Does it offer solutions
to the integration and collaboration hurdles created by the accumulation of generations of het-
erogeneous computing landscapes? Will the SOA vision constitute yet another stratum of ideas
and technologies that will be buried beneath future innovations? Will SOA be remembered as a
hollow buzzword that failed to solve one of the most frustrating technological issues of our time?
Or will it serve as an inspiration for generations to come?

It is possible that SOA may fail to deliver on its promise, but if it does, we, business
and IT personnel, must shoulder some of the blame. SOA may turn out to be little more than a
technological fire drill if we are ambivalent about the roles and responsibilities of legacy software
in our existing and future organizational strategies; if we fail to tie together past, present, and future
software development initiatives; and if we disregard the contributions of previous generations
of architectures to today’s business operations. Indeed, the idea of properly bridging new and old
software technologies is a novel one. But what about establishing a more holistic view of the
technological inventory that we have been building up for years? Can we treat all our software

1

2 Ch. 1 Introduction

assets equally in terms of their analysis, design, and architectural value propositions? Can we
understand their collaborative contribution to our environment without being too concerned about
their underlying languages and implementation detail? Can we name these assets services? Can
we conceive of them as service-oriented entities? Are they not built on similar SOA strategies
and principles?

This book introduces service-oriented modeling mechanisms that will enable us to con-
ceive software products that we have been constructing, acquiring, and integrating during the past
few decades as service-oriented constituents. These entities—either legacy applications written in
languages such as COBOL, PL1, Visual Basic, Java, C++, C#, or diverse empowering platforms
and middleware—should all take part in an SOA modeling framework. Most important, they
should be treated equally in the face of analysis, design, and architectural initiatives, and should
simply be recognized as services.

A new SOA modeling language will be unveiled in this book that is not based on any
particular programming language paradigm, constrained by language structure barriers, or limited
to a language syntax. As a result of this universal language, the modeling process becomes more
accessible to both the business and technology communities. This SOA modeling approach is well
suited to provide tactical, short-term solutions to enterprise concerns, yet it furnishes strategic
remedies to persistent organizational problems. So what is service-oriented modeling?

Service-oriented modeling is a software development practice that employs modeling disci-
plines and language to provide strategic and tactical solutions to enterprise problems. This
anthropomorphic modeling paradigm advocates a holistic view of the analysis, design, and
architecture of all organizational software entities, conceiving them as service-oriented assets,
namely services.

SERVICE-ORIENTED MODELING: WHAT IS IT ABOUT?
Modeling activities are typically embedded in the planning phase of almost any project or soft-
ware development initiative that an organization conducts. The modeling paradigm embodies
the analysis, design, and architectural disciplines that are being pursued during a given project.
These major modeling efforts should not center only on design and architectural artifacts such
as diagrams, charts, or blueprints. Indeed, modeling deliverables is a big part of a modeling
process. But the service-oriented modeling venture is chiefly about simulating the real world. It
is also about visualizing the final software product and envisioning the coexistence of services
in an interoperable computing environment. Therefore, the service-oriented modeling paradigm
advocates first creating a small replica of the “big thing” to represent its key characteristics and
behavior—in other words, plan small, dream big; test small, execute big!

A VIRTUAL WORLD. How is it possible to simulate such a business and technological environ-
ment that offers solutions to organizational business and technology problems? “Simulating” does
not necessarily mean starting with the construction of a software executable. It does not imply
instantly embarking on an implementation initiative to produce source code and build components
and services. The service-oriented modeling process begins with the construction of a miniature
replica on paper. This may involve modeling teams in whiteboard analysis, design, and architec-
ture sessions, or even the employment of software modeling tools that can visually illustrate the
solutions arrived at. Thus, the simulation process entails the creation of a virtual world in which
software constituents interface and collaborate to provide a viable remedy to an organizational
concern.

A STRATEGIC ENDEAVOR GUIDED BY MODELING DISCIPLINES. Creating a miniature mockup
of a final software product and its supporting environment can obviously reduce investment risk
by ensuring the success of the impending software construction initiative. This can be achieved

Service-Oriented Modeling: What Is It About? 3

by employing analysis, design, and architectural disciplines that are driven by a modeling strategy
that fosters asset reusability, a high return on investment, and a persuasive value proposition for
the organization.

Service-oriented modeling disciplines enable us to focus on modeling strategies rather
than being concerned with source code and detailed programming algorithms. By employing this
modeling paradigm we raise the bar from the granular constructs of our applications, yet we must
accommodate the language requirements of the underpinning platforms. We focus on identifying
high-level business and technological asset reusability and consolidation opportunities, but we
must also foster the reuse of software building blocks such as components and libraries. We
rigorously search for interoperability solutions that can bridge heterogeneous technological envi-
ronments, but we also concentrate on integration and message exchange implementation detail.

A LEARNING AND VALIDATION PROCESS. By producing a small version of the final artifact
we are also engaging in a learning and verification process. This activity characteristically would
enable us to validate the hypothesis that we have made about a software product’s capability and
its ability to operate flawlessly later on in a production environment. We are also being given
the opportunity to inspect key aspects of software behavior, examine the relationships between
software components, and even understand their internal and external structures. We are involved
in a software assessment process that validates the business and technological motivation behind
the construction of our tangible services.

To better understand the key characteristics of a future software product and its environ-
ment, the assessment effort typically leads to a proof-of-concept, a smaller construction project
that concludes the service-oriented modeling initiative. This small-scale software executable, if

Furnishes Modeling
 Disciplines that

Provide

Modeling Standards

Modeling Process

Modeling Best Practices Offers a
Language that

Provides

Is About

Behavior, Structure, and Relationship Inspection

Construction of a Virtual Computing World

Feasibility and Capability Analysis

Simulation

Motivation Assessment

Hypothesis Verification Service-Oriented
Modeling

Contributes
to

Alignment of Business and IT Organizations

Loosening Structure of Silo Organizations

Strategic and Tactical Organizational Solutions

Reduction of Time-to-Market

Software Asset Reusability Enhancement

Loosely-Coupled Computing Environment

Software Assets Consolidation

Expenditure Reduction

Simple Vocabulary and Taxonomy
Intuitive Syntax

Universal Terminology

EXHIBIT 1.1 ESSENCE OF THE SERVICE-ORIENTED MODELING PARADIGM

4 Ch. 1 Introduction

approved and agreed on, can later serve as the foundation for the ultimate service construction
process.

EVERYBODY’S LANGUAGE: A UNIVERSAL LANGUAGE FOR BUSINESS AND TECHNOLOGY. We
are often driven by tactical decisions to alleviate organizational concerns and to provide rapid
solutions to problems that arise. The proposed service-oriented modeling language is designed to
ease time to market by strengthening the ties between business and technology organizations. This
can accelerate the delivery process of software assets to the production environment. Furthermore,
the service-oriented modeling language can also be employed to fill in communication gaps and
enhance alignment between the problem and solution domain bodies.

To achieve these goals, the service-oriented modeling language offers an intuitive syntax,
a simple vocabulary, and a taxonomy that can be well understood and easily employed by various
business and technology stakeholders during service life cycle phases and projects. The language
can be utilized not only by professional modelers, architects, or developers, but by managers,
business executives, business analysts, business architects, and even project administrators.

Exhibit 1.1 depicts the service-oriented modeling activities, language, disciplines, and
benefits.

DRIVING PRINCIPLES OF SERVICE-ORIENTED MODELING
Service-oriented modeling principles capitalize on devised SOA standards already in use by orga-
nizations and professionals. These are best practices that are designed to foster strategic solutions
to address enterprise concerns, and to overcome the shortsightedness that is frequently attributed
to organizational tactical decisions. The following modeling principles promote business agility,
software asset reuse, loosely coupled service-oriented environments, and a universal modeling
language that can address software interoperability challenges:

• Virtualization
• Metamorphosis
• Literate modeling

VIRTUALIZATION. Modeling software is essentially a process of manipulating intangible enti-
ties. These are typically nonphysical assets that reside in peoples’ minds or appear on paper.
An effective modeling process should be as visual as possible, enabling business and technology
personnel to view software elements as if they were concrete assets.

The virtuality and reality aspects of our surroundings have been debated by numerous
philosophers going back to the eighteenth century. The traditional assertions that “everything has
a reality and a virtuality” or “everything other than what is virtual is reality” are in agreement with
sociologist, philosopher, and information technology pioneer Ted Nelson’s claim that virtuality is
the focal point of software design.1 He further argued that virtuality is about designing software
conceptual structure and feel.2

The visual aspect of the service-oriented modeling paradigm is driven by the construction
of a virtual world in which elements seem almost as tangible as real physical objects. This
world that we create to simulate reality is made up of two major elements: (1) the landscape
that “glues” all pieces together; meaning the environment that empowers and executes services
and (2) the services that communicate, interact, and exchange information to provide business
value. Moreover, a virtual world can effectively simulate a heterogeneous computing landscape by
treating software assets as equal partners in a modeling endeavor. This effect is called federated
modeling.

Driving Principles of Service-Oriented Modeling 5

The visualization process that we pursue enables us to model relationships, structures, and
behaviors of services that would provide satisfying solutions to organizational problems. These
goals can be achieved by fostering asset reusability, promoting a loosely coupled computing
environment, and resolving interoperability challenges across organizations.

METAMORPHOSIS. The business environment that we all share is a dynamic market that keeps
evolving and changing direction and also influences technological trends and application develop-
ment. This vibrant business landscape often dictates alterations to a service’s behavior, structure,
and relationship to its environment during its life span. These modifications typically start at a
service’s inception, when it manifests as an intangible entity—an idea—and then continue as
the service evolves into a physical software asset that executes business functionality in pro-
duction. This transformation process is the essence of the metamorphosis paradigm driven by
service-oriented modeling disciplines that ensure software elasticity, and ultimately, business
agility.

But the transformation process does not stop with the deployment of services to production.
Imagine how frequently a valuable application is involved in multiple project iterations that lead
to software upgrades. Think about the myriad instances of a service finding its way back to the
drawing board to be redesigned and then ferried back to the production environment again. This
is typical of the software development life cycle, during which software products are upgraded,
enhanced, and redistributed.

LITERATE MODELING. Should a programming language offer a simple syntax that is easy to
understand, and is intuitive and readable? Or should it offer formal grammar, rules, and symbols
that only developers can handle? Should a programming language be based on machine-readable
source code that is easy to debug and optimize? Or should it be considered a scientific artifact,
a mathematical formula that only experts on the subject can deliver?

This long-running debate is believed to have begun in the early 1980s and encompasses two
major approaches to software development that have major ramifications for the service-oriented
modeling paradigm. The first was introduced by Donald Knuth’s theory of “literate programming”
in which he argues: “I believe that the time is ripe for significantly better documentation of
programs, and that we can best achieve this by considering programs to be works of literature.
Hence, my title: ‘Literate Programming’.”

The second approach was introduced by Edsger Dijkstra in his 1988 article “On the Cruelty
of Really Teaching Computer Science,” in which he claims that programming is merely a branch
of mathematics.3 He writes: “Hence, computing science is—and will always be—concerned with
interplay between mechanized and human symbol manipulation, usually referred to as ‘computing’
and ‘programming’ respectively.”

This debate further informs the discussion about the modeling paradigm. Should service-
oriented modeling be founded on a specific programming platform structure that only developers
and modelers can utilize? Or should modeling disciplines offer universal and easy to understand
notations that are independent of language? Should a service-oriented modeling approach be tied
to fashionable technologies? Or should a modeling language offer tools to design and architect
multiple generations of legacy platforms, applications, and middleware?

The service-oriented anthropomorphic modeling approach provides easy mechanisms to
address analysis, design, and architectural challenges and perceives software assets as hav-
ing human characteristics. In the virtual world that we are commissioned to create, services
“interact,” “behave,” “exchange information,” and “collaborate;” they are “retired,” “promoted,”
“demoted,” and “orchestrated.” Inanimate software entities are often treated as though they had

6 Ch. 1 Introduction

human qualities. This “literate modeling” approach obviously enhances the strategies that are
pursued during business initiatives and projects.

ORGANIZATIONAL SERVICE-ORIENTED SOFTWARE ASSETS
The service-oriented modeling paradigm regards all organizational software assets as candidates
for modeling activities. We not only conceive them as our service-oriented modeling elements,
meaning services , but we also evaluate them based on their contribution to a service-oriented
environment, in terms of integration, collaboration, reusability, and consumption capabilities.
These assets are also subjected to the modeling discipline activities depicted throughout this
book. They are the enduring artifacts of the service-oriented modeling process and are regarded
as units of concern, discovery, analysis, design, and architecture in a business initiative or a
service-oriented project. Exhibit 1.2 illustrates the various service-oriented software assets that
can be involved in providing solutions to organizational concerns: concepts, foundation software,
legacy software, repositories, and utility software.

ORGANIZATIONAL CONCEPTS. Business or technical concepts embody an organization’s for-
malized ideas, which are regarded as components of propositions to organizational concerns.
These abstractions typically capture enterprise problems and offer remedies to alleviate nega-
tive effects on business execution. Concepts characteristically offer direction and strategy to the
service-oriented analysis, discovery, design, and architectural disciplines. They also contribute to
the establishment of a common organizational business and technical terminology that can be
employed to fill in the communication gaps between business and information technology (IT)
organizations. Agriculture Community Center, Business Community, and Pals’ Community are
examples of concepts that identify the financial prospects and marketing targets of a business goal.
Here, the Community business concern is the driving aspect behind a particular organization’s
culture and strategy.

FOUNDATION SOFTWARE. Organizational empowering middleware and platform products are
the basic software ingredients of the service-oriented modeling practice. Middleware products
offer integration, hosting, and network environment support, including message orchestration
and routing, data transformation, protocol conversion, and searching and binding capabilities.
This software asset category may include application servers, portal products, software proxies,

Software Assets

Foundation
Software

Legacy
Software

Repositories Utility
Software

Concepts

EXHIBIT 1.2 ORGANIZATIONAL SERVICE-ORIENTED SOFTWARE ASSETS

Service-Oriented Modeling Process Stakeholders 7

SOA intermediaries, gateways, universal description, discovery and integration (UDDI) registries,
and even content management systems. Message-oriented middleware (MOM) technologies are
also regarded as middleware, which may include traditional message busses or enterprise ser-
vice busses (ESBs). Conversely, software platforms are akin to frameworks that enable lan-
guages to run. This category may also include operating systems, runtime libraries, and virtual
machines.

LEGACY SOFTWARE. “Legacy” refers to existing software assets that are regarded as applica-
tions. These include business and technology software executables that already operate in the
production environment. The term “legacy” also includes deployed organizational services such
as Web services and even services that are running on a mainframe or other platforms and do
not comply with Web service technologies and standards. Third-party vendor applications, ser-
vice consumers, and partner services that operate outside of an organization are also conceived
as legacy software assets. Customer Profile Service, Accounts Payable Application, or Trading
Consumer are examples of existing and operating legacy software products, offered by third-party
vendors or custom built by an organization’s internal development personnel.

REPOSITORIES. Repositories play a major role in most service-oriented modeling activities.
This software category is characteristically provided by third-party vendor products that require
organizational adoption and integration policies. These are software entities that offer storage
facilities, such as relational databases, data warehouse repositories, and various database storage
management products, such as data optimization and replication. The repository category can
also include data-about-data, meaning repositories that do not necessarily store the actual data
but describe it. These are known as meta-data repositories. We employ these storage facilities
for a variety of management and data organization purposes. For example, meta-data repositories
are used for governance rules, service life cycle management, security policies, search categories,
and document management.

SOFTWARE UTILITIES. Utility executables are typically regarded as nontransactional software
assets employed to facilitate flawless system operations in a production environment. These
utilities chiefly offer performance-monitoring services, enforce service-level agreements (SLAs)
between consumer and producers, track security infringements, and provide alert mechanisms in
case of contract violations or system intrusions. Moreover, software utilities also provide provi-
sioning and asset portfolio management facilities and even message mediation policy management
between message exchange parties.

SERVICE-ORIENTED MODELING PROCESS STAKEHOLDERS
The service-oriented modeling process is characteristically overseen by SOA governance and
SOA Center of Excellence enterprise bodies that provide best practices, standards, guidance, and
assistance to service-oriented modeling activities. Moreover, the modeling process involves two
major stakeholders, the problem and the solution domain organizations, typically managed by
business and IT personnel that partner in an array of business and technological initiatives, such
as a small project or a large service life cycle venture that may include a number of smaller
projects.

The involvement of two major stakeholder groups is anticipated, each of which rep-
resents a different perspective; they are both vital contributors to a service-oriented modeling
effort. In addition, they must collaborate and jointly facilitate alignment between business and
IT organizations. Exhibit 1.3 illustrates these two major views that collaboratively contribute to
the service-oriented modeling process: the business view and the technological view. Note the
overseeing governance and Center of Excellence bodies that drive modeling activities.

8 Ch. 1 Introduction

Business
Modeling
View

Technological
Modeling

View

Service-Oriented Modeling Process

SOA Governance and Center of Excellence

EXHIBIT 1.3 SERVICE-ORIENTED MODELING PERSPECTIVES

BUSINESS STAKEHOLDERS MODELING VIEW. This perspective represents business personnel
who not only understand the financial implications of a project or a larger business initiative
but have mastered the various business processes of an organization. They typically elaborate
on the problem domain, present business requirements, and propose business solutions. Business
professionals, however, should be equal participants in the discovery, analysis, design, and archi-
tecture modeling sessions. They should be familiar with the service-oriented modeling language
and able to provide valuable input to the resulting modeling artifacts. The business organization
can be represented by product managers, business managers, financial analysts, business analysts,
business architects, business modelers, and even top-level executives, such as chief information
officers (CIOs) or chief technology officers (CTOs).

TECHNOLOGY STAKEHOLDERS MODELING VIEW. The IT organization is intrinsically engaged
in the technological aspects of the service-oriented modeling process. IT personnel contribute
both to the analysis and design aspects of services and to the various architecture modeling activ-
ities. These functions include the establishment of asset integration strategies, consumption and
reusability analysis, and service deployment planning. The IT organization must also ensure align-
ment with the organizational business model, business strategies, and business requirements. The
technology perspective should be represented by technical management, application architects,
system analysts, developers, service modelers, data modelers and database architects.

MODELING SERVICES INTRODUCTION: A METAMORPHOSIS EMBODIMENT
One of the most common questions people ask themselves when they are commissioned to pro-
vide a solution to an organizational problem is “What should be modeled?” The modeling world
constitutes a blend of old and new software assets, ideas, formulated concepts, processes, and even
people. Typically a remedy is being sought to an organizational concern that involves a thorough
analysis of the existing physical operating environments and also requires the integration of new
propositions to form viable business and technological solutions. This brings us to the understand-
ing that service-oriented assets—whether they are abstractions, legacy applications, middleware,
or software platforms—must be both conceived as services and categorized according to their
role in the modeling process.

Which standard should be used to classify modeling services? The answer to this question
is rooted in the necessity to establish a modeling language—a vocabulary—along with disciplines

Modeling Services Introduction: A Metamorphosis Embodiment 9

Conceptual
Service

Design
Service

Analysis
Service

EXHIBIT 1.4 MODELING SERVICES

that can be utilized to implement service-oriented modeling tasks. Thus, the service-oriented mod-
eling paradigm treats services according to their life cycle state and their corresponding disciplines.
We thus propose three distinct categories: conceptual service, analysis service, and design ser-
vice (see Exhibit 1.4). Consequently, the conceptual service originates during the service-oriented
conceptualization phase; the analysis service is treated during the service-oriented discovery and
analysis process, and the design service is employed during the service-oriented design stage. The
driving disciplines behind these modeling processes are further discussed in the Service-Oriented
Modeling Disciplines: Introduction section of this chapter.

CONCEPTUAL SERVICE: AN ABSTRACTION. A modeling process must offer a communication
language, provide a distinct vocabulary that different stakeholders can use to collaborate and
interface, to establish an organizational taxonomy that can be easily learned and enhanced as
time goes by, and to support a terminology that depicts business and technological abstractions.
These generalized idioms embody the requirements to provide solutions to an enterprise concern
while reflecting the approach to solving a problem. We conceive these abstractions as concep-
tual services that are an essential deliverable in the service-oriented conceptualization phase. For
example, the data aggregator concept can be regarded as a conceptual solution that aims to solve
information collection problems that occur in an enterprise Web portal. The commission calcula-
tor is another conceptual service that exemplifies an essential solution to a business requirement
to enable commission calculations for stockbrokers in an equity trading system.

Where does a conceptual service originate from? An undocumented idea or an informal
enterprise proposal to solve a problem can be established as a conceptual service. These con-
cepts can simply be expressed in meetings or whiteboard design sessions. A business process
can also be regarded as a conceptual service candidate. A more formalized process, however,
that takes place during service conceptualization facilitates the identification of new concepts
derived from business and technological requirements (see Chapters 4 and 5 for a complete
service conceptualization process).

Consider the following major attributes of a conceptual service: It

• Embodies business or technical context.
• Must be elastic enough to accommodate future business changes.
• Should focus on a solution rather than propose remedies to a wide range of problems,

and should avoid business or technological context ambiguity.
• Corresponds to a business or technological requirement and depicts a coherent proposition.
• Represents a business or technological abstraction that can be added to an organization’s

language dictionary.
• Contributes to an organizational business or technological taxonomy.

10 Ch. 1 Introduction

ANALYSIS SERVICE: A UNIT OF ANALYSIS. A modeling process must offer a platform on which
solution propositions to organizational concerns are verified for their viability and capacity to solve
problems; enable proper validation of the assumptions that business and technology personnel
make to address business requirements; and permit further analysis of the supporting services that
take part in a solution, a project, or a business initiative. During the service-oriented discovery and
analysis phase, we are allowed to test service collaboration and conduct further experiments in
the search for the best possible offered resolution. An analysis service is the vehicle that enables
us to reexamine these preliminary proposed remedies that were brought to the table in the first
place.

But where does an analysis service originate from? The rule of thumb suggests that all
services that participate in the analysis process should be regarded as analysis entities. In other
words, all service-oriented assets are conceived of as units of analysis because of their involvement
in a solution proposition during the analysis phase. To read more about the service-oriented
discovery and analysis process, refer to the Service-Oriented Modeling Disciplines: Introduction
section in this chapter, or the service-oriented discovery and analysis method discussed in Chapters
6, 7, and 8.

Consider the following major attributes of an analysis service. It

• Represents tangible (legacy software) or intangible (abstraction) service-oriented assets
that participate in a solution.

• Can be associated with business or technical context.
• Must present a lucid internal structure.
• Should be composed of service-oriented software assets that can be decomposed during

the service-oriented analysis modeling process to achieve a loose-coupling architectural
effect.

• Or, should have a flexible internal structure that would allow aggregation of external
services during the analysis modeling process.

DESIGN SERVICE: A LOGICAL SOLUTION PROVIDER AND A CONTRACTUAL ENTITY. All
service-oriented assets that take part in a design process can be regarded as design services. A design
service is a modeling element that enables us to visualize and plan future service behavior, structure,
and peer relationships in a production environment. This service-oriented design asset, whose
collaborators are peer services and consumers—bound by a stipulated contract—participates in
a group effort to provide a viable design solution to a business or technological problem. To
achieve this goal, we primarily focus on the message and information exchange capabilities of a
service. This would contribute to its future capacity to interact and collaborate with its surrounding
environment, and most important, to its ability to abide by the service level agreement (SLA) that
it is committed to. This scheme is called a logical solution , and the design service that participates
in this venture is known as logical solution provider .

A design service must also be a part of a service orchestration initiative, during which
we coordinate and synchronize service functionality to enable flawless message exchange and
efficient transaction execution. This logical design effort would ensure the quality of service
offerings and contribute to the creation of a harmonized interactive environment.

Consider the following major attributes of a design service; it

• Can be associated with business or technical context.
• Can represent a tangible (legacy software) or an intangible (abstraction) service-oriented

asset.
• Should be interfaceable, containing one or more interfaces to be utilized by potential

consumers.

