Martin Schaeper

Mehrdimensionale Ortsfiltertechnik

Mehrdimensionale Ortsfiltertechnik

Martin Schaeper

Mehrdimensionale Ortsfiltertechnik

Dr.-Ing. Martin Schaeper Rostock, Deutschland

Zugl.: Dissertation, Universität Rostock, 2013

ISBN 978-3-658-04943-0 DOI 10.1007/978-3-658-04944-7 ISBN 978-3-658-04944-7 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden 2014

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist eine Marke von Springer DE. Springer DE ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.springer-vieweg.de

Vorwort

Während meiner Tätigkeit am Institut für Allgemeine Elektrotechnik der Fakultät für Informatik und Elektrotechnik der Universität Rostock entstand in Hinblick auf die Weiterentwicklung der Ortsfiltermesstechnik die vorliegende Arbeit.

Ein besonderer Dank gebührt Herrn Prof. Dr.-Ing. Nils Damaschke, dem Institutsdirektor und Leiter des Lehrstuhls für Optoelektronik und Photonische Systeme, der mir die Möglichkeiten gab, mich in die Lehre der Grundlagen der Elektrotechnik einzuarbeiten, die Lasermesstechnik und die Technische Optik zu begleiten, im Bereich der ortsfilterbasierten Messtechnik Weiterentwicklungen vorzunehmen und mich persönlich weiter entwickeln zu dürfen. Dabei sind die Offenheit zu neuen Ideen und die stete Unterstützung meiner Arbeit hervorzuheben.

Der Arbeitsgruppe, vertreten durch Dr.-Ing. Willfried Kröger, Dr. Stefan Borchert, Dipl.-Ing. Stephan Höhne, Dr.-Ing. Andre Kleinwächter, Dipl.-Ing. Eric Ebert und Dipl.-Ing. Robert Kostbade, möchte ich für ihre Hilfsbereitschaft, gewinnbringenden Diskussionen, angenehmen Gespräche und besonders für ihren Zuspruch zum Entstehen der vorliegenden Arbeit danken.

Den vielen Mitarbeitern des Instituts für Allgemeine Elektrotechnik, besonders denjenigen, mit denen ich näher zusammengearbeitet habe, danke ich für die angenehme Atmosphäre und ihre Hilfe. Weiterhin möchte ich den vielen Belegbearbeitern, Diplomanden, Bachelor- und Masterstudenten für die Bearbeitung der mitunter von mir betreuten Arbeiten danken.

Meiner Frau danke ich für ihre liebevolle Art ihrer Unterstützung und die Schaffung von zeitlichen Freiräumen zur Erstellung dieser Arbeit. Unsere kleine Familie mit unserer Tochter Sophie gibt mir sehr viel Kraft.

 $Martin\ Schaeper$

Inhaltsverzeichnis

1	Einleitung	1
2	Signalentstehung mehrdimensionaler Ortsfilterkonzepte	5
	2.1 Das Ortsfiltermessprinzip	5
	2.2 Realisierungen in der optischen ortsfilterbasierten Velocimetrie	
	2.3 Signalentstehung bei Ortsfiltermesssystemen (1C)	10
	2.4 Verwendung strukturierter Array-Detektoren zur 2C Messung	20
	2.5 Einfluss der Pixelapertur eines Sensorchips	28
3	Verfahren zur Schätzung der Signalfrequenz	
	3.1 Auswerteverfahren	33
	3.1.1 Nulldurchgangsdetektion (Periodendauermessung)	33
	3.1.2 Leistungsdichtespektrum	35
	3.1.3 Drehzeigerverfahren	37
	3.1.4 Autokorrelation / Autokorrelationsphase	39
	3.2 Vergleich der Verfahren anhand von Testsignalen	
	3.2.1 Die Cramér-Rao Schranke (Cramér-Rao Lower Bound)	43
	3.2.2 Verwendung eines harmonischen Modellsignals	45
	3.2.3 Überlagerung zweier Modellsignale für gezielte Phasensprünge	
	3.2.4 Vergleich der ermittelten Erwartungswerte	49
	3.2.5 Diskussion zur Erstellung eines verbesserten Modellsignals	
	3.2.6 Vergleich anhand realer Signale	56
4	Mehrdimensionale ortsfilterbasierte Konzepte	59
	4.1 Betrachtungen zu mehrdimensionalen Aufnahmemethoden	59
	4.2 Vorverarbeitungen für mögliche echtzeitfähige Messsysteme	60
	4.3 DSP basiertes Messsystem zur zweikomponentigen Messung	63
	4.3.1 Skalierbarkeit des Messsystems	67
	4.3.2 Messergebnisse zur Charakterisierung des Messsystems	68
	4.4 Ortsfilter basierte Offlineauswertung zur Particle Image Velocimetry	
	4.4.1 Messung von Blasen eines Ausströmers	76
	4.4.2 Messung an einem Kavitationskanal	81
	4.5 Sensor-Array zur 2D/2C Messung	82
	4.5.1 Testmessungen mit dem Sensor-Array	
	4.5.2 Messung der Strömung aufsteigender Blasen	86
	4 6 Spiegel-Array zur Signalbildung im optischen Pfad	86

VIII Inhaltsverzeichnis

5 Zusammenfassung und Ausblick	91
5.1 Ergebnisse der Arbeit	91
5.2 Ausblick zu ortsfilterbasierten Konzepten	93
Literaturverzeichnis	95
Anhang A: Weiterführende mathematische Zusammenhänge	105
A.1 Berechnung des Vergrößerungsmaßstabes	105
A.2 Vergleich der Überlagerung mit der Kreuzkorrelation	106
A.3 Vergleich der Ortsfilterbeschreibung mittels Faltung und Kreuzkorrelat	ion 106
A.4 Korrektur der Signale aus nicht-Phasen-orthogonalen Gitterfunktionen	108
A.5 Shift-Korrektur bei sequenziell ausgelesenen Array-Sensoren	109
Anhang B: Beschreibung zu entwickelten Analyseprogrammen	111
B.1 Programm zur Signalanalyse	111
B.2 Programmmodule der Auswerteverfahren	114
B.3 Programm zur Erstellung von Modellsignalen	119
Anhang C: Daten und Angaben zur Messwertgewinnung mit dem DSP basie	rten
2C Messsystem	121
C.1 Daten des Sensors S9132	121
C.2 Daten und Angaben zum DSP-Board TMDSDSK6455	122
C.3 Abbildungen zur Hardware des DSP basierten 2C Messsystems	123
C.4 Benutzeroberfläche zur Kommunikation mit dem DSP basierten 2C-	
Geschwindigkeitsmesssystem	124
C.5 Riemenaufbau zur Erzeugung einer längenreferenzierten	
Strukturbewegung	129
C.5.1 Genauigkeit der Referenz anhand des Streifenmusters	129
C.5.2 Erreichbare Genauigkeit des Messsystems anhand der Korrelation o	der
beobachteten Oberflächenstruktur	131
C.5.3 Programm zur Untersuchung der erreichbaren Genauigkeit	132
C.6 Testsignal für theoretische Betrachtungen	133
Anhang D: Daten und Angaben zum Sensor-Array	137
D.1 Daten und Angaben zu FPGA-Board (USB-FPGA Module 1.11c)	137
D.2 Weitere Abbildungen des Sensor-Arrays	138

Abbildungsverzeichnis

Abbildung 2.1:	Aufbau eines optischen Ortsfiltermesssystems nach Ator (1963) 5
Abbildung 2.2:	Realisierungen in der optischen Ortsfiltermesstechnik, vorrangig
	zur Geschwindigkeitsbestimmung (Auswahl), angeordnet an
	einem Zeitpfeil8
Abbildung 2.3:	Überlagerung einer um Δx verschobenen Intensitätsverteilung
	i_B mit einer Gitterfunktion $g(x)$
Abbildung 2.4:	Beispiel einer rechteckförmigen Gitterfunktion und das
	dazugehörige Betragsspektrum14
Abbildung 2.5:	Beispiel zur Signalentstehung bei vorgegebener Gitterfunktion
	$g\left(x\right)$ und Verschiebung der Intensitätsverteilung $i_{\scriptscriptstyle B}$ in positive
	<i>x</i> -Richtung
Abbildung 2.6:	Zeitlicher Verlauf ausgewählter $a(k=2\pi\mu)$ -Koeffizienten der
	Diskreten-Fourier-Transformation des Beispielsignals17
Abbildung 2.7:	$\Delta \varphi$ -Verläufe ausgewählter Koeffizienten der zeitlich abhängigen
	Fourier-Transformierten $\underline{I}_{B}(t)$
Abbildung 2.8:	Spektrale Charakteristik unterschiedlicher
	Intensitätsverteilungen
Abbildung 2.9:	Realisierung der räumlich orthogonalen Gitterfunktionen in x -
	und y -Richtung am Beispiel eines Einfach-Differenzgitters21
Abbildung 2.10:	Versatzbestimmung anhand einer Bildfolge, Vergleich von
	Kreuzkorrelation, Überlagerung und Gittergewichtung der
	Einzelbilder
Abbildung 2.11:	Bildung des Ortsfilter-Gitters mittels Vorgabe des
	Ortskreisfrequenzvektors k im Bildbereich
Abbildung 2.12:	Bildung des Ortsfilter-Gitters durch eine Linie von Koeffizienten . 27
Abbildung 2.13:	Einfluss der Pixelapertur bei der Verwendung der Pixelapertur 29
Abbildung 2.14:	Vergleich des Einflusses der Pixelapertur bei der Verwendung
	eines Rechteckgitters und eines Kosinusgitters31
Abbildung 3.1:	Nulldurchgangsdetektion mit "Plausibilitätstest" anhand des
	Beispielsignals aus Anhang C.6
Abbildung 3.2:	Auswertung des Leistungsdichtespektrums des Beispielsignals
	aus Anhang C.6

Abbildung 3.3:	Auswertung des Beispielsignals aus Anhang C.6 mittels des
	Drehzeigerverfahrens
Abbildung 3.4:	Auswertung des Beispielsignals aus Anhang C.6 mittels der
	Autokorrelationsfunktion
Abbildung 3.5:	Strategie zum Vergleich der Auswerteverfahren41
Abbildung 3.6:	Benutzeroberfläche des Programms "Main_Signalanalysis.vi"
	zur Frequenzschätzung von Signalen
Abbildung 3.7:	Signalbeispiel und Vergleich der Varianzen der betrachteten
	Auswerteverfahren
Abbildung 3.8:	Signalbeispiel und Vergleich der Varianzen der betrachteten
	Auswerteverfahren mit Phasensprüngen
Abbildung 3.9:	Mittelwerte der Ergebnisse und einfache Standardabweichung
	zur Frequenzschätzung aus den Modellsignalen50
Abbildung 3.10:	Beispiele für Modellsignale mittels Überlagerung gefensterter
	Einzelsignale
Abbildung 3.11:	Beispiel einer Modellsignalrealisierung und Vergleich der
	Unsicherheiten der betrachteten Auswerteverfahren mit der
	Cramér-Rao Schranken der Realisierungen und des Sinussignals 55
Abbildung 3.12:	Vergleichsergebnisse der Auswerteverfahren anhand des
	Testsignals aus Anhang C.6
Abbildung 4.1:	Prinzipzeichnung eines Messaufbaus zur planaren
	zweidimensionalen Particle-Image-Velocimetry ${\it 59}$
Abbildung 4.2:	Funktionsweise des Positionssensors
Abbildung 4.3:	DSP-basiertes Messsystem mit einen Smart-Pixel-Sensor zur 2C
	Geschwindigkeitsmessung
Abbildung 4.4:	Benutzeroberfläche zur Kommunikation mit dem DSP-basierten
	Messsystem
Abbildung 4.5:	Skalierbarkeit des Messsystems zur Anpassung an die
	Geschwindigkeit und die Strukturgröße des vorliegenden
	Prozesses
Abbildung 4.6:	Messaufbau zur Charakterisierung des Messsystems69
Abbildung 4.7:	Ergebnisse bei der Änderung des Abstandes der Sensoreinheit
	zur Oberfläche
Abbildung 4.8:	Ergebnisse bei Verdrehung der Sensoreinheit,
	Auswerteverfahren: Leistungsdichtespektrum.
Abbildung 4.9:	Ergebnisse bei Verdrehung der Sensoreinheit, Vergleich der
	Auswerteverfahren

Abbildung 4.10:	Längenreferenzierte Ergebnisse bei verschiedenen
	Geschwindigkeiten, Auswerteverfahren:
	Leistungsdichtespektrum
Abbildung 4.11:	Auswerteprogramm zur ortsfilterbasierten Analyse von
	Bildfolgen
Abbildung 4.12:	Messaufbau zur ortsfilterbasierten 2D/2C Messung
Abbildung 4.13:	Ortsfilterbasierte Auswertung zur 2D/2C Messung
Abbildung 4.14:	Ergebnis der ortsfilterbasierten offline 2D/2C Messung am
	Blasenausströmer
Abbildung 4.15:	Unsicherheiten der Geschwindigkeitsschätzung bei der
	ortsfilterbasierten 2D/2C offline Messung an einem
	Blasenausströmer
Abbildung 4.16:	Ortsfilterbasierte Auswertung von Bildfolgen zur Partikel Image
	Velocimetry (PIV) an einem Kavitationskanal
Abbildung 4.17:	Sensor-Array zur 2C/2D Geschwindigkeitsmessung
Abbildung 4.18:	Justage der Einzellinsen des Sensor-Arrays
Abbildung 4.19:	Messaufbau für Testmessungen an einer strukturierten
	Oberfläche für das Sensor-Array
Abbildung 4.20 :	Messaufbau zur Messung der Geschwindigkeit aufsteigender
	Luftblasen in Wasser
Abbildung 4.21:	Aufbau des Spiegel-Array-basierten Prototypen zur inhärenten
	Signalbildung im optischen Pfad
Abbildung 4.22 :	Ausgangsignal einer Photodiode während einer Testmessung am
	Riemenaufbau
Abbildung A.1:	Abbildung bei einer dünnen Linse
Abbildung A.2:	Vergleich der Faltung und der Kreuzkorrelation
Abbildung A.3:	Beispiel zur Phasenkorrektur zweier Signale aus nicht-phasen-
	orthogonalen Gitterfunktionen
Abbildung A.4:	Beispiel einer sequenziell ausgelesenen Pixelzeile eines Array-
	Detektors
Abbildung B.1:	Karteikarte "Calculation v,s " des Signalanalyseprogramms 111
Abbildung B.2:	Karteikarte "Comparison" des Signalanalyseprogramms
Abbildung B.3:	Karteikarte "Cycle" des Signalanalyseprogramms
Abbildung B.4:	Das Softwaremodul "ZeroCross"
Abbildung B.5:	Das Softwaremodul "PWR-Spec"
Abbildung B.6:	Das Softwaremodul "RotPointer"
Abbildung B.7:	Das Softwaremodul "CorrPhase"

Abbildung B.8:	Programmoberfläche zur Generierung von Modellsignalen 119
Abbildung C.1:	Bilder des DSP basierten Messsystems zur 2C Messung von
	Bewegungsgeschwindigkeiten
Abbildung C.2:	Karteikarte "Offline test" der Benutzeroberfläche zur
	Ansteuerung des DSP-basierten 2C Messsystems
Abbildung C.3:	Karteikarte "Offline processing" der Benutzeroberfläche zur
	Ansteuerung des DSP-basierten 2C-Messsystems
Abbildung C.4:	Karteikarte "Online measure" der Benutzeroberfläche zur
	Ansteuerung des DSP-basierten 2C Messsystems
Abbildung C.5:	Karteikarte "Online results DSP" der Benutzeroberfläche zur
	Ansteuerung des DSP-basierten 2C Messsystems
Abbildung C.6:	Riemenaufbau zur Erzeugung einer längenreferenzierten
	Strukturbewegung
Abbildung C.7:	Bestimmung der Längenreferenz anhand der Beobachtung des
	Streifenmusters
Abbildung C.8:	Bestimmung der Zielgenauigkeit des Messsystems anhand der
	Beobachtung der Oberflächenstruktur
Abbildung C.9:	Programm zur Untersuchung der aufgenommenen Full Frames
	des 2C Messsystem zur Untersuchung der erreichbaren
	Genauigkeit des Messsystems
Abbildung C.10:	Verwendeter Datensatz als Intensitätsverteilung $i_{\!\scriptscriptstyle B}$ für die
	theoretischen Betrachtungen in Kapitel 2
Abbildung C.11:	Ausschnitt des errechneten Ortsfiltersignals mittels der Gitter-
	periode $g_p = x_B/4$ und der Intensitätsverteilung i_B aus
	Abbildung C.10
Abbildung D.1:	Frontansicht und Rückansicht des Sensor-Arrays

Tabellenverzeichnis

Tabelle	C.1:	Überblick 2	zu den	Sensordaten	121
Tabelle	C.2:	Überblick z	zu den	Daten des DSP - Boards	122
Tabelle	D.1:	Daten des	FPGA	- Boards	137

Abkürzungen und Symbole

Abkürzung	Bedeutung	
1C	einkomponentig	
2C	zweikomponentig	
3C	dreikomponentig	
2D	zweidimensional	
3D	dreidimensional	
AKF	Auto-Korrelations-Funktion	
CCD	Charge Coupled Device	
CCS	Code Composer Studio	
CMOS	Complementary Metal Oxide Semiconductor	
DFT	Diskrete Fourier-Transformation	
DMD	Digital Mirror Device	
DLP	Digital Light Processing	
DSP	Digital Signal Processor	
FFT	Fast-Fourier-Transformation	
FPGA	Field Programmable Gate Array	
FT	Fourier-Transformation	
HDMI	High Definition Multimedia Interface	
HVGA	Half Video Graphics Array	
LED	Light Emitting Diode	
LCD	Liquid Crystal Display	
LDA	Laser-Doppler-Anemometrie	
PIV	Particle Image Velocimetry	
PSF	Punkt-Verwaschungs-Funktion (engl. point spread function)	
ROI	Region of Interest	
USB	Universal Serial Bus	

Symbole

A Amplitude

a(k) Realteil des k-ten Fourier-Koeffizienten

 $egin{array}{ll} B & & \mbox{Bildgröße} \\ b & & \mbox{Bildweite} \end{array}$

b(k) Imaginärteil des k-ten Fourier-Koeffizienten

 \underline{c} komplexer Fourier - Koeffizient

f allg. Frequenz

 f_0 Trägerfrequenz eines Signals

 $g_{\scriptscriptstyle p}$ Gitterperiode eines optischen Gitters bzw. einer Gitterfunktion

q(x) von x anhängige Gitterfunktion

 i_{B} Intensitätsverteilung in der Bildebene

 $I_{R}(t)$ komplexes zeitabhängiges Spektrum der —

J Fisher Informationsmatrix

 $\begin{array}{lll} k & & \text{Ortskreisfrequenz} \\ k_x & & --\text{in } x\text{-Richtung} \\ k_y & & --\text{in } y\text{-Richtung} \\ \mathbf{k} \,, \, \vec{k} & & --\text{Vektor} \end{array}$

 $K_{{\scriptscriptstyle i_o q}}$ Kreuzkorrelation zwischen der Intensitätsverteilung und der

Gitterfunktion

M Vergrößerung (engl. Magnification)

 m_i abgetastetes Modellsignal

N Gesamtanzahl

n Zählvariable (des n-ten Bildes)

n_i Rauschen (engl. noise) welches einem Modell überlagert wird

 P_0 Ausgangsleistung

p	Ortsvektor
$ riangle\mathbf{p}$	Schrittweite des —
$p\left(s_{i},\theta\right)$	Wahrscheinlichkeitsdichtefunktion
s	Signal (eines Ortsfilters)
s_x	— in x -Richtung
s_y	— in y -Richtung
s(t)	zeitabhängiges —
<u>s</u>	komplexes —
t	Zeit
t_{0}	Anfangszeitpunkt
$\triangle t$	Zeitdifferenz
v	Geschwindigkeit
v_x	— in x -Richtung
v_{y}	— in y -Richtung
x	kartesische Koordinate
x_B	Bildausdehnung in Richtung der x -Koordinate
$\triangle x$	Verschiebung in x -Richtung
y	kartesische Koordinate
$y_{\scriptscriptstyle B}$	Bildausdehnung in Richtung der y -Koordinate
$\triangle y$	Verschiebung in y -Richtung
z	kartesische Koordinate
φ	allgemeine Phase
$arphi_{Ort}$	örtliche Phase
$arphi_v$	Winkel / Richtung der Geschwindigkeit bezogen auf die $x{\raisebox{1pt}{}}$
	Richtung (mathematisch positiv)
λ	Wellenlänge
μ	Ortsfrequenz in x -Richtung
ν	Ortsfrequenz in y -Richtung
θ	Parameter eines Modells
σ	einfache Standardabweichung
σ^2	Varianz

Indizes

i Zählvariable j Zählvariable k Zählvariable n Zählvariable

Operatoren

| | Betrag

 $E\{\}$ Erwartungswert (engl. expectation)

 \$\{\}\$
 Fourier-Transformation

Im { } Imaginärteil

j Indikator des Imaginärteils

* konjugiert komplex

– Mittelwert aus Einzelwerten

Re { } Realteil