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Preface

On September 3-7, 2012, as part of the activities of the Mathematics
Research Center “Ennio De Giorgi” and on the invitation of its director
prof. Mariano Giaquinta, we organized the Workshop “Geometry, Struc-
ture and Randomness in Combinatorics™ at Scuola Normale Superiore in
Pisa. The workshop was organized by Jiii Matousek, Jaroslav NeSetfil
(Charles University, Prague) and Marco Pellegrini (CNR, Pisa) and has
been supported jointly by SNS and CRM Pisa and DIMATIA centre in
Prague.

This workshop intended to reflect some key recent advances in combi-
natorics, particularly in the area of extremal theory and Ramsey theory.
It also aimed to demonstrate the broad spectrum of techniques and its re-
lationship to other fields of mathematics, particularly to geometry, logic
and number theory.

Invited speakers included ten of the leading experts. We had the plea-
sure to invite Prof. Endre Szemerédi, the winner of the Abel Prize in
2012 for his fundamental contributions in the field of discrete mathemat-
ics and theoretical computer science. The workshop attracted 48 partici-
pants both from Italy and abroad.

The following list is that of the invited lectures at the workshop:

IMRE BARANY, Tensors, colours, and octahedral

BELA BOLLOBAS, Extremal and probabilistic results on bootstrap per-
colation

MARIA CHUDNOVSKY, Extending the Gyarfas-Sumner conjecture

ZEEV DVIR, Configurations of points with many collinear triples: going
beyond Sylvester-Gallai

ZOLTAN FUREDI, Binary codes versus hypergraphs
JAROSLAV NESETRIL, A unifying approach to graph limits II
PATRICE OSSONA DE MENDEZ, A unifying approach to graph limits 1



xii

ALEX SCOTT, Discrepancy in graphs, hypergraphs and tournaments
and (second talk)
Szemerédi regularity lemma for sparse graphs

JOZSEF SOLYMOSI, Sums vs. products
and (second talk)

The (7 4)-conjecture for finite groups
ENDRE SZEMEREDI, On subset sums

Given the success of both scientific and public workshops, at the end of
the event, at the suggestion of Professor Mariano Giaquinta, it has been
proposed to organize a volume dedicated to this meeting. This proposal
was welcomed by all the speakers. The present volume has been edited
for the “CRM Series”, with the title “Geometry, Structure and Random-
ness in Combinatorics” and includes both original scientific articles in
extended form or survey articles on results and problems inherent in the
themes presented at the workshop. Each article submitted was reviewed.

We thank all the authors for their contribution and again Scuola Nor-
male Superiore and its Centro di Ricerca Matematica Ennio De Giorgi
and to DIMATIA Centre of Charles University for their generous sup-
port.

Pisa/Prague
Jifi Matousek, Jaroslav NeSettil, Marco Pellegrini
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Tensors, colours, octahedra

Imre Barany

Abstract. Several theorems in combinatorial convexity admit colourful versions.
This survey describes old and new applications of two methods that can give such
colourful results. One is the octahedral construction, the other is Sarkaria’s tensor
method.

1 Introduction

Theorems of Carathéodory, Helly, and Tverberg are classical results in
combinatorial convexity. They all have coloured versions. Some others
involve colours directly. For instance in Kirchberger’s theorem [15], the
elements of a finite set X C RY are coloured Red and Blue, and the state-
ment is that the Red and Blue points can be separated by a hyperplane if
and only if for every ¥ C X with |Y| < d + 2, the Red and Blue points
in Y can be separated by a hyperplane.

The aim of this paper is to describe and explain old and new appli-
cations of two methods that have turned out to be useful when proving
such colourful results. One is the octahedral construction, discovered and
first used by Laszl6 Lovasz in 1991, which appeared in [4]. The other is
Karinbir Sarkaria’s tensor method, originally from [25] and developed
further in [5].

In the next section Tverberg’s theorem and its colourful version are
presented. The octahedral construction is given in Section 3 with appli-
cations followed in later sections.

2 Tverberg’s theorem and its coloured version
Tverberg’s theorem is a gem, one of my favourites. Here is what it says.

Theorem 2.1. Assumed > 1,r >2and X C R? has (r — 1)(d + 1) +
1 elements. Then X has a partition into r parts Xy, ..., X, such that
() conv X; # @.



The number (r — 1)(d + 1) + 1 is best possible here: for a general
position X with one fewer element, the affine hulls of an r-partition do
not have a common point (by counting dimensions).

The case r = 2 is Radon’s theorem from 1922 [21] that has a simple
proof: Given x € R? we write (x, 1) for the (d + 1)-dimensional vector
whose first d components are equal to those of x, and the last one is 1.
This time | X| = d+2 so the vectors (x, 1) € R?*! have a nontrivial linear
dependence ) a(x)(x, 1) = (0,0). Letting X; = {x € X : a(x) > 0}
and X, = {x € X : a(x) < 0} is the partition needed. Indeed, defining
o= ZXGXI ax)anda*(x) = a(x)/aforx € X;and a*(x) = —a(x)/«
for x € X,, we have convex combinations in

7= Z a*(x)x = Z o (x)x

xeXi xeXsp

showing that z € conv X; () conv X,.

There are several proofs of Tverberg’s theorem, for instance in Tver-
berg [29,30], Tverberg and Vrecica [31], Roudneff [23], Sarkaria [25],
Bérany and Onn [5], Zvagelskii [34], none of them easy. We will give
another proof in Section 8 which is from Arocha et al. [1].

The coloured version of Tverberg’s theorem follows now.

Theorem 2.2. For everyd > 1 andr > 2 there ist = t(r,d) with
the following property. Given sets Cy, ..., Cqr, € RY (called colours),
each of size t, there are r disjoint sets Sy, ..., S, C Uf“ C; such that
IS; NCi| = 1foreveryi, j and (), convS; # .

In other words, given colours Cy, ..., Cyy1 C R? of large enough size,
there are r disjoint and colourful sets S; whose convex hulls have a point
in common. Colourful means that §; is a transversal of the C;, that is,
S; contains one element from each C;. The need for this result emerged
in connection with the halving plane problem (c.f. [3]). It was proved
there that 7(3, 2) is finite. Shortly afterward it was proved by Béarany and
Larman [4] that #(r, 2) = r for all r, clearly the best possible result. The
same paper presents Lovasz’s proof that 7(2,d) = 2 for all d, the first
application of the octahedral method. To simplify notation we write [k]
for the set {1, 2, ..., k}.

3 The octahedral construction

Proof of 1(2,d) = 2. We have C; = {a;,b;} C R?,i € [d + 1]. Note
that we may exchange the names of a; and b; later. We want to choose
a transversal T from Cy, ..., Cy41 such that the convex hulls of 7 and



of the complementary transversal T have a point in common. For this
purpose let
Qd”rl = conv{zey, ..., tes11}

be the standard octahedron in R?*! (the e; are the usual basis vectors). We
define a map f : 90! — R? by setting f(e;) = a; and f(—e;) = b;,
and then extend f simplicially to d Q9*!, that is, to the facets of Q9*!.
Note that f maps the facets of Q¢*! to the convex hull of a transversal T
exactly, and the opposite facet is mapped to conv 7. So what we need is
a pair of opposite facets whose images intersect.

This cries out for the Borsuk-Ulam theorem: d Q¢*! is homeomorphic
to S¢ and so f is an §¢ — R? map. By a variant of Borsuk-Ulam there
are antipodal points z, —z € dQ*! with f(z) = f(—z). If z lies on a
facet F, then —z lies on the opposite facet F. For simpler writing assume
that ' = conv{ey, ..., es11}, then F = conv{—ey, ..., —eg11}, and we
see that conv{ay, ..., ay1} and conv{by, ..., by} have f(z) = f(—2)
as a common point.

Actually, more is true: if z = ‘fH y;e;, then —z = ‘f“ yi(—e;),
and the common point is Zf“ yia; = ‘f“ y;b;. Thus the common
point comes with the same coefficients in the convex combinations. [

This is the octahedral method. The basic idea is that facets of the octa-
hedron correspond to transversals of Cy, ..., Cyy 1, transversals have the
structure of Q9+, and disjoint transversals come from opposite facets,
and the next step is the use of algebraic topology like the Borsuk-Ulam
theorem above.

Unfortunately the method does not work for r > 3. It was conjectured
in [4] that t(r,d) = r for all r and d. Finiteness of ¢ (r, d) was proved
by Zivaljevi¢ and Vreéica [33] using equivariant topology. Their result is
thatz(r, d) < 2r —1if r is a prime (which implies finiteness of 7 (r, d) for
all r). The same was proved by different methods by Bjorner ez al. [8] and
by Matousek [17]. More recently Blagojevi¢, Matschke, and Ziegler [9]
showed that #(r,d) = r if r + 1 is a prime which is again best possi-
ble. The strange primality condition in all cases is needed because cyclic
groups of prime order behave better in equivariant topology. But the the-
orem is probably true for every r, the primality condition is required for
the method and not for the problem. It is however disappointing (for a
convex geometer) that a completely convex (or linear, if you wish) prob-
lem does not have a direct convex (or linear) proof, and topology seems
a necessity here. Finding a purely geometric proof remains a challenge.
The interested reader may wish to read Giinter Ziegler’s fascinating arti-
cle [32] about Tverberg’s theorem and its colourful version.



