Steffen Kaufmann

Instrumentierung der Bioimpedanzmessung

Optimierung mit Fokus auf die Elektroimpedanztomographie (EIT)

Aktuelle Forschung Medizintechnik – Latest Research in Medical Engineering

Editor-in-Chief:

Th. M. Buzug, Lübeck, Deutschland

Unter den Zukunftstechnologien mit hohem Innovationspotenzial ist die Medizintechnik in Wissenschaft und Wirtschaft hervorragend aufgestellt, erzielt überdurchschnittliche Wachstumsraten und gilt als krisensichere Branche. Wesentliche Trends der Medizintechnik sind die Computerisierung, Miniaturisierung und Molekularisierung. Die Computerisierung stellt beispielsweise die Grundlage für die medizinische Bildgebung, Bildverarbeitung und bildgeführte Chirurgie dar. Die Miniaturisierung spielt bei intelligenten Implantaten, der minimalinvasiven Chirurgie, aber auch bei der Entwicklung von neuen nanostrukturierten Materialien eine wichtige Rolle in der Medizin. Die Molekularisierung ist unter anderem in der regenerativen Medizin, aber auch im Rahmen der sogenannten molekularen Bildgebung ein entscheidender Aspekt. Disziplinen übergreifend sind daher Querschnittstechnologien wie die Nano- und Mikrosystemtechnik, optische Technologien und Softwaresysteme von großem Interesse.

Diese Schriftenreihe für herausragende Dissertationen und Habilitationsschriften aus dem Themengebiet Medizintechnik spannt den Bogen vom Klinikingenieurwesen und der Medizinischen Informatik bis hin zur Medizinischen Physik, Biomedizintechnik und Medizinischen Ingenieurwissenschaft.

Editor-in-Chief:

Prof. Dr. Thorsten M. Buzug Institut für Medizintechnik, Universität zu Lübeck

Editorial Board:

Prof. Dr. Olaf Dössel Institut für Biomedizinische Technik, Karlsruhe Institute for Technology

Prof. Dr. Heinz Handels Institut für Medizinische Informatik, Universität zu Lübeck

Prof. Dr.-Ing. Joachim Hornegger Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg

Prof. Dr. Marc Kachelrieß German Cancer Research Center, Heidelberg

Prof. Dr. Edmund Koch Klinisches Sensoring und Monitoring, TU Dresden Prof. Dr.-Ing. Tim C. Lüth Micro Technology and Medical Device Technology, TU München

Prof. Dr.-Ing. Dietrich Paulus Institut für Computervisualistik, Universität Koblenz-Landau

Prof. Dr.-Ing. Bernhard Preim Institut für Simulation und Graphik, Universität Magdeburg

Prof. Dr.-Ing. Georg Schmitz Lehrstuhl für Medizintechnik, Universität Bochum

Steffen Kaufmann

Instrumentierung der Bioimpedanzmessung

Optimierung mit Fokus auf die Elektroimpedanztomographie (EIT)

Mit einem Geleitwort von Prof. Dr. Martin Ryschka

Steffen Kaufmann Universität zu Lübeck, Deutschland

Dissertation Universität zu Lübeck, 2014

Aktuelle Forschung Medizintechnik – Latest Research in Medical Engineering ISBN 978-3-658-09770-7 ISBN 978-3-658-09771-4 (eBook) DOI 10.1007/978-3-658-09771-4

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden 2015

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Fachmedien Wiesbaden ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Vorwort des Reihenherausgebers

Das Werk Instrumentierung der Bioimpedanzmessung. Optimierung mit Fokus auf die Elektroimpedanztomographie (EIT) von Dr. Steffen Kaufmann ist der 19. Band der Reihe exzellenter Dissertationen des Forschungsbereiches Medizintechnik im Springer Vieweg Verlag. Die Arbeit von Dr. Kaufmann wurde durch einen hochrangigen wissenschaftlichen Beirat dieser Reihe ausgewählt. Springer Vieweg verfolgt mit dieser Reihe das Ziel, für den Bereich Medizintechnik eine Plattform für junge Wissenschaftlerinnen und Wissenschaftler zur Verfügung zu stellen, auf der ihre Ergebnisse schnell eine breite Öffentlichkeit erreichen.

Autorinnen und Autoren von Dissertationen mit exzellentem Ergebnis können sich bei Interesse an einer Veröffentlichung ihrer Arbeit in dieser Reihe direkt an den Herausgeber wenden:

> Prof. Dr. Thorsten M. Buzug Reihenherausgeber Medizintechnik

> > Institut für Medizintechnik Universität zu Lübeck Ratzeburger Allee 160 23562 Lübeck

Web: www.imt.uni-luebeck.de Email: buzug@imt.uni-luebeck.de

Geleitwort

Die elektrischen Eigenschaften von lebendem Gewebe werden wesentlich durch die intra- und extrazellulären Flüssigkeiten und die Doppellipidschicht der Zellmembranen bestimmt. Während die Zellflüssigkeiten hohe Ionenkonzentrationen und damit gute elektrische Leitfähigkeiten besitzen, stellen die Zellmembranen wegen der schlecht leitenden Doppellipidschicht eine Art Isolator dar. In Folge dieser Kombination hat Gewebe eine zum Teil kapazitive und damit frequenzabhängige Leitfähigkeit, die üblicherweise durch ihre reziproke Größe, die komplexe elektrische Bioimpedanz dargestellt wird. Aus der gemessenen Bioimpedanz können Gewebearten und Gewebezustände unterschieden werden. Für die eigentliche Messung genügt es, einen kleinen bekannten Wechselstrom über Elektroden in das zu untersuchende Gewebe einzuleiten und die dabei abfallende Spannung zu messen. Der komplexe Quotient aus Spannung und Strom stellt die Bioimpedanz dar. Dabei kann der Erregungsstrom nach Amplitude und Frequenz so gewählt werden, dass er auch bei längerer Anwendung keine Gefährdung oder Beeinträchtigung für das Messobjekt oder den Patienten darstellt.

Erfolgt die Bioimpedanzmessung an einem Körperteil, wie z. B. dem menschlichen Thorax, mit mehreren gleichmäßig auf dem Umfang verteilten Elektroden, dann kann aus den gemessenen Impedanzen die räumliche Verteilung der Gewebearten in dem von den Elektroden aufgespannten Querschnitt berechnet werden. So entsteht ein zeitaufgelöstes funktionelles Schnittbild des Thorax, mit dem z. B. die Beatmung eines Patienten kontrolliert werden kann. In der von Steffen Kaufmann vorgelegten Dissertation "Instrumentierung der Bioimpedanzmessung. Optimierung der Messverfahren mit Fokus auf die Elektroimpedanztomographie (EIT)" werden die Entwicklungen von einem Bioimpedanzmesssystem und einem Elektroimpedanztomographiesystem bezüglich der Hardund Softwarearchitektur sowie der wesentlichen Auswertealgorithmen

viii Geleitwort

dargestellt. Hierbei wird die klassische Systematik aus Anforderungsanalyse, Design und Systemverifikation konsequent angewendet, um die Optimierung der Messsysteme zu ermöglichen und schließlich nachzuweisen.

Nach der Darlegung der physikalisch technischen Grundlagen und dem Stand der Technik der Bioimpedanzmessung werden zunächst die grundlegenden Anforderungen an die Instrumentierung erarbeitet. Dazu gehört die Erörterung des Einflusses, den die Elektroden und die typischen elektrischen Störgrößen auf die Messung haben, sowie die Diskussion der Anforderungen bezüglich der Messwertabtastung und der Wahl der Stromanregungsform. Schließlich wird die Auswahl der Schaltungstopologien für Stromeinspeisung und Spannungsmessung diskutiert und die grundlegenden Einflüsse auf die Messunsicherheit der Bioimpedanzbestimmung abgeschätzt.

In einem weiteren Kapitel werden die Grundlagen der Elektroimpedanztomographie systematisch zusammengefasst und mit dem Blick auf die Verifizierbarkeit der Anforderungen Kriterien für die Leistungsbewertung solcher Systeme abgeleitet. Obwohl der erklärte Schwerpunkt der Arbeit auf der Optimierung der Instrumentierung liegt, werden die für die Systemverifikation und für die Durchführung der Anwendungsbeispiele notwendigen Rekonstruktionsalgorithmen eingehend beschrieben.

Zur Gestaltung der Systemarchitektur des Bioimpedanzmesssystems wählt Steffen Kaufmann a priori zunächst eine FPGA-basierte digitale Signalverarbeitung und Steuerung aus und konstruiert dann, den Anforderungen folgend, das analoge Frontend. Durch die gewählte softwarebasierte Signalformgenerierung können beliebige Anregungsstromformen erzeugt werden. Dazu gehört auch die Chirp-Anregung, über deren Anwendung in der Elektroimpedanztomographie in dieser Arbeit zum ersten Mal berichtet wird.

Geleitwort ix

Nach der umfassenden Verifizierung des Bioimpedanzmesssystems durch Messungen an bekannten Impedanzen wird eine kleine Palette von Anwendungsmessungen vorgestellt, die sehr eindrucksvoll die Leistungsfähigkeit und den Abstand zum Stand der Technik des von Steffen Kaufmann entwickelten Systems belegen.

Auf Grundlage dieser Erfahrungen wird ein Anforderungsprofil für ein Mehrfrequenz-Elektroimpedanztomographiesystem aufgestellt, das als Novität die zeitaufgelöste simultane Messung von Betrag und Phase kompletter Impedanzspektren ermöglicht. Bei der Implementierung wird die Architektur des vorher entwickelten Bioimpedanzmesssystems wiederverwendet und um eine Multiplexerstufe für 16 Elektroden erweitert. Die notwendigen Entwicklungsschritte werden von Steffen Kaufmann nachvollziehbar dargestellt und die gewählten und potentiellen Optimierungen klar aufgezeigt. In einer umfassenden theoretischen und messtechnischen Systemverifikation wird die Leistungsfähigkeit des entwickelten Tomographiesystems nachgewiesen. Schon das anschließend vorgestellte kleine Portfolio von Anwendungsmessungen zeigt die Vielseitigkeit und Mächtigkeit der in dieser Arbeit vorgelegten Entwicklung.

Abschließend nutzt Steffen Kaufmann das theoretische und messtechnische Fundament der beiden ausgeführten Entwicklungen, um ein zukunftweisendes, weiter optimiertes Elektroimpedanztomographiesystem zu entwerfen, das auf Aktivelektroden basiert. Die systembedingten Beschränkungen einer zentralen Multiplexerstufe bezüglich der Elektrodenkombinationen können hierdurch vermieden und ein digitales Bussystem zwischen den Elektroden ermöglicht werden.

Lübeck, 11.03.2015

Prof. Dr. Martin Ryschka Labor für Medizinische Elektronik Fachhochschule Lübeck

Zusammenfassung

Die Elektroimpedanztomographie (EIT) ist ein funktionales Bildgebungsverfahren, welches für die Rohdatenerzeugung kleine bekannte Wechselströme über Oberflächenelektroden in das zu untersuchende Testobjekt einspeist und entstehende Randspannungen ableitet. Durch Permutation der Stromeinspeiseorte bei gleichzeitiger Messung der Spannungen lassen sich verschiedene Transferimpedanzen ermitteln, auf deren Basis sich mithilfe von speziellen Rekonstruktionsalgorithmen näherungsweise die dreidimensionale Leitwertverteilung des Testobjekts rekonstruieren und bildlich darstellen lässt.

Bei Anwendung der EIT am Menschen lassen sich aus der Leitwertverteilung und deren zeitlicher Änderung Rückschlüsse auf verschiedene Körperfunktionen, wie z. B. Lungenventilation, Magen- und Darmentleerung oder auch auf Teile der Gehirnfunktion, ziehen. Durch die Echtzeitfähigkeit, die Abwesenheit ionisierender Strahlung sowie durch die Schmerz- und Nebenwirkungsfreiheit ist die EIT trotz mangelnder Eignung, detaillierte morphologische Informationen zu liefern, ein vielversprechendes Bildgebungsverfahren für medizinische Anwendungen. Die EIT hat darüber hinaus vergleichsweise geringe Hardwarekosten bei kompakter Baugröße, was eine bettseitige Anwendung möglich macht. Bis jetzt ist die EIT hauptsächlich für die Visualisierung der Atmung bekannt und wurde für diese Anwendung erfolgreich gegen die Einzelphotonen-Emissionscomputertomographie (engl. Single Photon Emission Computed Tomography (SPECT)), die Positronen-Emissions-Tomographie (PET) und die Computertomographie (CT) validiert.

Ziel dieser Arbeit ist die Verbesserung der Instrumentierung der Transferimpedanzmessung mit Fokus auf der Anwendung in der EIT. Dieses Ziel soll durch eine Erhöhung des Signal-Rauschabstandes, bei gleichzeitiger Ermöglichung von spektroskopischen Mehrfrequenz-Mes-

sungen, mit einer Auflösung nach Betrag und Phase erreicht werden. Zu diesem Zweck wird zunächst ein hochauflösendes Mehrfreguenz-Messgerät für zeitlich aufgelöste Bioimpedanzmessungen entwickelt, verifiziert und für Phantom- und Probandenmessungen verwendet. Während dieses Entwicklungsprozesses werden verschiedene Systemkomponenten evaluiert und weiterentwickelt. Anschließend wird das Bioimpedanzmesssystem zu einem Mehrfrequenz-EIT-System erweitert und für unterschiedliche Messungen an Widerstands- und Tankphantomen sowie zur Visualisierung der Atmung eingesetzt. Den Abschluss dieser Arbeit bildet die Konzeption eines parallelen Mehrfrequenz-Aktivelektroden-EIT-Systems. Dabei liegt der Fokus dieser Arbeit auf der Instrumentierung. Das Gebiet der Bildrekonstruktion wird bewusst nur soweit bearbeitet, dass auf den Stand der Technik zurückgegriffen werden kann. Auch wenn diese Arbeit auf die medizinische Anwendung der Bioimpedanzmessung und der Elektroimpedanztomographie (EIT) ausgerichtet ist, können die Ergebnisse auch auf andere Anwendungsgebiete übertragen werden.

Inhaltsverzeichnis

Abkürzungsverzeichnis							
1	Einführung						
	1.1	•	rgrund und Stand der Technik	2			
	1.2		fentlichungen	5			
	1.3		erung	6			
2	Bioimpedanzmessungen						
	2.1		rische Impedanz	7			
	2.2		pedanz und der Elektroden-Hautübergang	8			
		2.2.1	Zwei-Elektroden-Messung	14			
		2.2.2	Vier-Elektroden-Messung	15			
		2.2.3	Gleichtaktspannungen	16			
	2.3	Messy	wertaufnahme	17			
		2.3.1	Abtastung	18			
		2.3.2	Monofrequente Anregungen	20			
		2.3.3	Breitbandanregungen	20			
		2.3.4	Einfrequenz-Demodulation	23			
		2.3.5	Mehrfrequenz-Demodulation auf Basis der Dis-				
			kreten Fouriertransformation (DFT)	25			
		2.3.6	Digital-Analog- / Analog-Digital-Umsetzung	27			
	2.4	Mögli	che Messprinzipien	29			
		2.4.1	Strom- oder Spannungsanregung	30			
		2.4.2	Messung des Anregungsstroms	31			
		2.4.3	Vier-Elektroden-Bioimpedanzmessung mit asym-				
			metrischer Stromeinspeisung und -Messung	32			
		2.4.4	Gleichtaktfreie Strom- und Spannungsmessung .	33			
		2.4.5	Symmetrische Stromeinspeisung zur gleichtakt-				
			freien Spannungsmessung	34			
		2.4.6	Symmetrische Stromeinspeisung mit Transformator	35			
	2.5	Einflü	sse auf die Messunsicherheit	36			
		2.5.1	Abschätzung der Messunsicherheit der Vier-				
			Elektroden-Messung	37			
		2.5.2	Abschätzung des Gleichtaktfehlers	38			
		2.5.3	Ouantisierungsrauschen	39			

		2.5.4 2.5.5 2.5.6	Überabtastung	42 44
	2.6	Regul	Messergebnis	45 47
3	Elek	ctroim	pedanztomographie (EIT)	49
	3.1		kalische Modellierung	49
	3.2		strategien	50
		3.2.1	Statische und Differenzbildgebung	51
		3.2.2	Messprotokolle und die Anzahl der möglichen	
			Transferimpedanzen	52
	3.3	Messy	wertaufnahme	55
		3.3.1		56
		3.3.2	Vereinfachtes Ersatzschaltbild eines seriellen EIT-	
			Systems	58
		3.3.3	Benötigte Messzeit	59
		3.3.4	Leistungsbewertung	61
	3.4	Rekor	nstruktion der Leitwertverteilung	63
		3.4.1	Vorwärtsproblem	66
		3.4.2	Inverses Problem	68
4	Bioi	mpeda	anzmesssystem (BMS)	73
	4.1		derungsanalyse	73
	4.2		dlegende Systemarchitektur	75
	4.3		gungsgenerierung	80
		4.3.1	Generierung des digitalen Anregungssignals	81
		4.3.2		82
		4.3.3	· · · · · · · · · · · · · · · · · · ·	
			Impedanzen	87
	4.4	Messy	wertaufnahme	88
	4.5		ebener Kabelschirm	90
	4.6		vare und Interface-Software	92
	4.7		mverifikation	96
		4.7.1	Elektrisches Ersatzschaltbild	97
		4.7.2	Theoretische und messtechnische Abschätzung	
			des Signal-Rausch-Abstandes	101
		4.7.3	Der Einfluss des FIR-Filters vor der FFT	

Inhaltsverzeichnis xv

		4.7.4	Kalibrierung	105	
		4.7.5	Verbesserung der Schirmung	106	
		4.7.6	Langzeitstabilität und Standardabweichungen	108	
	4.8	e e			
		4.8.1	$R + R \mid C - Phantom \dots$	110	
		4.8.2	Bioimpedanzmessung an einer Kartoffel	111	
		4.8.3	Messungen zur zeitlich veränderlichen Bioimpe-		
			danz	113	
		4.8.4	Erfassung von realen Elektroden-Haut-Über-		
			gangsimpedanzen (ESI)	117	
	4.9	Absch	ließende Bewertung	123	
5	Meh	rfreque	enz-EIT-System	125	
	5.1		derungsanalyse	125	
	5.2	Grund	llegende Systemarchitektur	126	
	5.3		plexing	130	
	5.4	Systen	nverifikation	133	
		5.4.1	Theoretische und messtechnische Abschätzung		
			des Signal-Rausch-Abstandes	135	
		5.4.2	Abschätzungen zur Genauigkeit	136	
		5.4.3	Messung der Kanalabweichungen	139	
		5.4.4	Messtechnische Verifizierung der Genauigkeit	140	
	5.5		ıngen	144	
		5.5.1	Aufbau und Messung eines Mikrotankphantoms	144	
		5.5.2	Aufbau und Adaption eines Tankphantoms	147	
		5.5.3	Signalqualität am Tankphantom mit 16 Elektroden	151	
		5.5.4	Signalqualität am Tankphantom mit 32 Elektroden	155	
		5.5.5	Differenzbildgebung am Tankphantom	157	
		5.5.6	Messungen am Thorax	160	
	5.6	Absch	ließende Bewertung	166	
6	EIT-	System	n basierend auf Aktivelektroden	171	
	6.1	Anford	derungsanalyse	171	
	6.2		narchitektur	172	
		6.2.1	Aktivelektrode	175	
		6.2.2	Aktivelektroden-Controller und Bussystem	177	
	6.3	Absch	ließende Bewertung	180	

xvi	Inhaltsverzeichnis	
7 Zusammenfassung und Ausblick	183	
Literaturverzeichnis	187	

Abkürzungsverzeichnis

ADC Analog to Digital Converter **ASIC** Application Specific Integrated Circuit

BMS Bioimpedanzmesssystem

CMRR Common Mode Rejection Ratio

CMV Common Mode Voltage CPE Constant-Phase Element CT Computertomographie

DAC Digital to Analog Converter
DDS Direkte Digitale Synthese
DFT Diskrete Fouriertransformation
DLL Dynamic-Link-Library
DSP Digitaler Signalprozessor

ECT Electrical Capacitance Tomography

EIDORS Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software
EIT Elektroimpedanztomographie
EKG Elektrokardiogramm
EMI Electromagnetic Interference
ENOB Effective Number of Bits
ESI Electrode Skin Impedance

FAE Field Application Enginner FEM Finite-Elemente-Methode FFT Fast Fourier Transformation FIFO First In First Out FIR Finite Impulse Response FPGA Field Programmable Gate Array
FPS Frames per Second

GREIT Graz consensus Reconstruction Algorithm for EIT **GSPS** Giga Sample per Second

IKG Impedanzkardiografie
ISPS Impedanzspektren pro Sekunde

KSPS kilo Sample per Second

LSB Least Significant Bit

MDAC Multiplying DAC
MIT Magnetic Induction Tomography
MSPS Mega Sample per Second

PCB Printed Circuit Board
PET Positronen-Emissions-Tomographie

PGA Programmable Gain Amplifier PLL Phase Locked Loop PPG Photoplethysmographie

RA Reciprocity Accuracy **RMS** Root Means Square

SAR-ADC Successive-Approximation-Register-ADC
SFDR Spurious-free Dynamic Range
SINAD Signal to Noise and Distortion
Ratio
SMD Surface Mounted Device

SNR Signal to Noise Ratio

SPECT Single Photon Emission Com-

puted Tomography

SPI Serial Peripheral Interface

THD Total Harmonic Distortion
THD+N Total Harmonic Distortion +

Noise

USB Universal Serial Bus

VCCS Voltage Controlled Current

Source

VHDL Very High Speed Integrated

Circuit Hardware Description Lan-

guage

1 Einführung

Die EIT ist ein funktionales Bildgebungsverfahren, welches für die Rohdatenerzeugung kleine bekannte Wechselströme über Oberflächenelektroden in das zu untersuchende Testobjekt einspeist und entstehende Randspannungen ableitet. Durch Permutation der Stromeinspeiseorte bei gleichzeitiger Messung der Spannungen lassen sich verschiedene Transferimpedanzen ermitteln, auf deren Basis sich mithilfe von speziellen Rekonstruktionsalgorithmen näherungsweise die dreidimensionale Leitwertverteilung des Testobjekts rekonstruieren und bildlich darstellen lässt [17, 18, 49, 55]. Abbildung 1.1 zeigt das Grundprinzip der Messdatenerfassung der EIT.

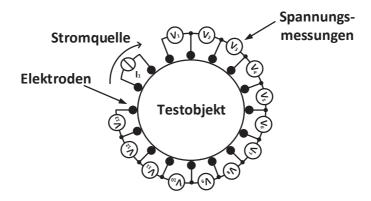


Abbildung 1.1: Prinzip der Messdatenerfassung für die EIT- die Stromquelle speist über Oberflächenelektroden einen bekannten Anregungswechselstrom mit konstanter Amplitude in das Messobjekt ein. Auf den übrigen Elektroden werden parallel dazu die entstehenden Spannungen gemessen, um entsprechende Transferimpedanzen berechnen zu können. Durch Permutation können anschließend weitere Transferimpedanzmessungen durchgeführt werden.

Bei Anwendung der EIT am Menschen lassen sich aus der Leitwertverteilung und deren zeitlicher Änderung Rückschlüsse in Bezug

2 1 Einführung

auf verschiedene Körperfunktionen, wie z. B. Lungenventilation, Magen- und Darmentleerung oder auch auf Teile der Gehirnfunktion ziehen und bildlich darstellen [49]. Durch die Echtzeitfähigkeit, die Abwesenheit ionisierender Strahlung sowie durch die Schmerz- und Nebenwirkungsfreiheit ist die EIT trotz mangelnder Eignung, detaillierte morphologische Informationen zu liefern, ein vielversprechendes Bildgebungsverfahren für medizinische Anwendungen [27, 48]. Die EIT hat darüber hinaus vergleichsweise geringe Hardwarekosten bei kompakter Baugröße, was eine bettseitige Anwendung möglich macht. Bis jetzt ist die EIT hauptsächlich für die Visualisierung der Atmung bekannt und wurde für diese Anwendung erfolgreich gegen die Einzelphotonen-Emissionscomputertomographie (engl. Single Photon Emission Computed Tomography (SPECT)), die Positronen-Emissions-Tomographie (PET) und die Computertomographie (CT) validiert [40].

1.1 Hintergrund und Stand der Technik

Die EIT ist im Vergleich mit anderen Bildgebungsverfahren ein relativ junges Verfahren. Die Funktionsweise basiert auf der Ausnutzung des komplexen elektrischen Wechselstromverhaltens von unterschiedlichen Gewebekompartimenten, Bioimpedanz genannt. Die erste bekannte Veröffentlichung der Messidee stammt aus dem Jahr 1978 von Henderson und Webster [45]. Erste tomographische EIT-Aufnahmen wurden von Barber und Brown 1984 veröffentlicht [7]. Das erste kommerzielle EIT-System für den medizinisch-klinischen Alltag wurde 2011 unter dem Namen Pulmovista 500 von der Firma Drägerwerk AG & Co. KGaA auf den Markt gebracht [23,86]. Im Jahr 2014 kam mit der Swisstom AG ein weiterer Hersteller eines medizinischen EIT-Systems auf den Markt [19]. Einen wesentlichen Beitrag zur Weiterentwicklung der EIT hat dabei sicherlich die immer leistungsfähiger werdende EDV geleistet, mit deren Hilfe wesentlich aufwendigere digitale Signalaufbe-

reitungen und Bildrekonstruktionen in Echtzeit durchgeführt werden können.

Aktuell wird die EIT vor allem in folgenden medizinische Anwendungen evaluiert: Brustkrebserkennung [42], Visualisierung der Magenund Darmfunktion [49] sowie zur Visualisierung der Gehirnfunktion [24,50] und insbesondere zur Visualisierung der Atmung [22,27,48].

Den Stand der Technik stellen EIT-Systeme mit 16 bis 128 Elektroden – abhängig von der Anwendung – dar. Die meisten Systeme beschränken sich auf eine Ebene (2D-Systeme) und auf eine feste Anregungsfrequenz von ca. 50 kHz. Die Elektroden sind dabei für die Messung äquidistant um das Messobjekt verteilt. Der Anregungsstrom wird aus historischen Gründen meist über unmittelbar benachbarte Elektroden eingespeist (engl. adjacent current pattern) [2]. Die übrigen Elektroden werden zur Spannungsmessung benutzt. Die Spannungsmessung erfolgt dabei meist sequentiell über einen durch Multiplexer verbundenen Spannungsmesser. Einige Systeme versuchen durch Parallelisierung die Geschwindigkeit zu erhöhen und verwenden mehr als einen Spannungsmesser [18] oder speisen Strom über mehrere Stromquellen ein, um so die Stromverteilung und damit die Sensitivität zu optimieren [88]. Eine Auswertung des Imaginärteils der Bioimpedanz (Phaseninformationen) findet dabei in der Regel nicht statt, stattdessen wird nur der Betrag gemessen. Typische Bildwechselfrequenzen von EIT-Systemen liegen zwischen 8 Hz und 25 Hz [10, 49]. Für die Rekonstruktion der Leitwertverteilung nutzen nahezu alle Systeme den Ansatz der Zeitdifferenzbildgebung, bei der der Leitwertverteilungsunterschied von einem Referenzzustand abgebildet wird [49].

Neben der klassischen EIT mit Oberflächenelektroden gibt es auch Versuche, kontaktlos induktiv (engl. Magnetic Induction Tomography (MIT)) bzw. kontaktlos kapazitiv (engl. Electrical Capacitance Tomography (ECT)) zu messen. Nach derzeitigem Veröffentlichungsstand erreichen diese Verfahren allerdings eine ähnlich schlechte räumliche

4 1 Einführung

Auflösung mit gleichzeitig deutlich gesteigertem Instrumentierungsaufwand. Darüber hinaus führt die benötige Größe der ECT-Elektroden zu einer Nichteignung für medizinische Anwendungen und bleibt daher weitestgehend auf Industrieanwendungen beschränkt [10,18,49].

Zusammenfassend kann gesagt werden, dass die EIT funktioniert und bereits vielversprechende Ergebnisse erzielt hat. Dennoch gibt es nur wenige Systeme, die über das Forschungsstadium hinaus in den klinischen Alltag vorgedrungen sind. Trotz aller Verbesserungen der Instrumentierung beträgt die derzeitige Auflösung von EIT-Aufnahmen meist 32 × 32 Pixel [23]. Die Auflösungsgenauigkeit bei Lungenanwendungen liegt in der Größenordnung von 10% bis 20% des mittleren Thoraxdurchmessers [23, 49]. Dabei wird die Auflösung hauptsächlich von zwei Aspekten limitiert: durch den Signal-Rausch-Abstand (engl. Signal to Noise Ratio (SNR)) und durch die Anzahl der unabhängigen Messungen, welche hauptsächlich durch die Anzahl der Elektroden bestimmt sind [18, 49]. Für die Erhöhung des SNR wurden mehrere Ansätze vorgeschlagen, wie z. B. die Messelektronik in die unmittelbare Nähe zu den Elektroden zu bringen [18], den Aufbau der Mulitplexer mittels Relais [118], nicht massebezogende Stromguellen [30] oder den Austausch der Stromguellen durch Spannungsquellen [37]. Weiterhin sind die Verbindungskabel zwischen Elektrode und Instrument von entscheidender Bedeutung, da sie durch die bewegungsabhängigen Streukapaziäten und Leitungsimpedanzen zusätzliche Messunsicherheiten einbringen. Zudem spannen die Verbindungskabel eine zusätzliche Fläche für elektromagnetische Einstrahlungen auf, welche selbst durch getriebene Kabelschirme nicht vollständig eliminiert werden können [18, 26, 87]. Bereits 2001 hat Brown drei wichtige zukünftig anzugehende Entwicklungen der EIT beschrieben: (1) Verbesserung der Messhardware, (2) die Einführung einer Mehrfrequenz-Datenerfassung, (3) Erweiterung der EIT für dreidimensionale Messungen [18].

Ziel dieser Arbeit ist die Erhöhung des SNR durch Verbesserung der Messhardware bei gleichzeitiger Ermöglichung der Mehrfrequenz-Datenerfassung. Die Messhardware soll zudem in die Lage gebracht werden, neben der Aufnahme des Betrags auch die Phase messen zu können, um so die Möglichkeit der Gewebeerkennung durch Frequenzdifferenzmessungen zu ermöglichen. Zu diesem Zweck wird zunächst ein hochauflösendes Mehrfrequenz-Messgerät für zeitlich aufgelöste Bioimpedanzmessungen entwickelt, verifiziert und für Phantom- und Probandenmessungen verwendet. Anschließend wird dieses Messsystem zu einem Mehrfrequenz-EIT-System erweitert und für verschiedene Messungen an Widerstands- und Tankphantomen sowie zur Visualisierung der Atmung eingesetzt. Auf Basis der gewonnen Erkenntnisse wird abschließend ein Konzept für ein Aktivelektroden-EIT-Systems abgleitet. Dabei liegt der Fokus dieser Arbeit auf der Instrumentierung, das Gebiet der Bildrekonstruktion wird hier bewusst nur soweit bearbeitet, dass auf den Stand der Technik zurückgegriffen werden kann. Auch wenn diese Arbeit auf die medizinische Anwendung der Bioimpedanzmessung und der EIT ausgerichtet ist, können die Ergebnisse auch auf andere Anwendungsgebiete übertragen werden.

1.2 Veröffentlichungen

Der wissenschaftliche Fortschritt dieser Arbeit ist in zahlreichen Veröffentlichungen dokumentiert. Ausgehend von der Entwicklung des Bioimpedanzmessystems für zeitlich aufgelöste, hochgenaue Messungen [56,61] wurden Untersuchungen zu verschiedenen Mehrfrequenz-Stromquellen durchgeführt [125] und der Elektroden-Haut-Übergang mit Kunststoffelektroden untersucht [66]. Spätere Versuche der Bestimmung des Herzzeitvolumens sind in [68,73,82] dokumentiert. Es war zudem möglich, die Ergebnisse dieser Arbeit auch für Untersuchungen zur arteriellen Gefäßsteifigkeit zu nutzen [60,65] und den Hardwarekern auf anderen Gebieten weiterzuverwenden [57,84].