Albrecht Zwick Jochen Zwick Xuan Phuc Nguyen

Signal- und Rauschanalyse mit Quellenverschiebung

Elektronische Schaltungen grafisch gelöst

Signal- und Rauschanalyse mit Quellenverschiebung

Albrecht Zwick • Jochen Zwick • Xuan Phuc Nguyen

Signal- und Rauschanalyse mit Quellenverschiebung

Elektronische Schaltungen grafisch gelöst

Albrecht Zwick Fakultät Informationstechnik der Hochschule Mannheim Mannheim, Germany

Jochen Zwick Continental Markdorf, Germany Xuan Phuc Nguyen Medizinische Fakultät Mannheim der Universität Heidelberg Mannheim, Germany

ISBN 978-3-642-54036-3 DOI 10.1007/978-3-642-54037-0 ISBN 978-3-642-54037-0 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer-Verlag Berlin Heidelberg 2015

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichenund Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Berlin Heidelberg ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Vorwort

Die meisten Bücher oder Veröffentlichungen über das elektronische Rauschen sind in der Regel zu wenig auf die verschiedenen Schaltungen bezogen oder zu mathematisch, sodass sie den Studierenden entmutigen. Tatsache ist, dass die Dimensionierung und Analyse von rauscharmen elektronischen Schaltungen keine Spezialkenntnisse in Halbleiterphysik, Netzwerktheorie und Statistik erfordert. Elektronische Schaltungstechnik ist eine praktische Wissenschaft. Die Grundlagen liegen in der Transistorschaltungstechnik, die wiederum mit Kenntnissen aus den Grundlagen der Gleich- und Wechselstromtechnik erklärt werden können. Dieses Buch verfolgt einen schaltungsbezogenen Ansatz. Das Rauschen von Schaltungen und Schaltungsteilen wird mit einer äquivalenten Eingangsrauschquelle und nicht mit dem Rauschmaß betrachtet. Diese Darstellung ist übersichtlicher und näher an der Schaltungstechnik. Die in diesem Buch gezeigte grafische Methode unterstützt die Didaktik, in dem sie die äquivalente Eingangsrauschquelle grafisch weiter verarbeitet. Sehr große Genauigkeit bei der Rauschanalyse ist nicht sinnvoll, da Datenblattangaben zu Rauschquellen aktiver Bauteile sehr toleranzbehaftet sind. Deshalb ist es sinnvoll zu Gunsten der Übersichtlichkeit Vernachlässigungen vorzunehmen. Das Vorhandensein von PCs und entsprechender Simulationssoftware hat die Arbeit des Ingenieurs stark verändert. SPICE basierte Schaltungssimulationen haben die genaue Berechnungen komplexer Schaltungen per Hand ersetzt. Dagegen sind Fähigkeiten wie das überschlägige Rechnen, die Plausibilitätsprüfung von Ergebnissen und ein qualitatives Verständnis von Einflüssen einzelner Schaltungsteile immer wichtiger. Die meisten Lehrbücher tragen dem nicht Rechnung oder weichen in eine Oberflächlichkeit aus. Dieses Buch zeigt deshalb Methoden, mit denen der Sachverhalt durch vereinfachte Ersatzbilder und kleine Vernachlässigungen klar wird, ohne immer wieder in die mathematische Welt auszuweichen.

Unser Dank gilt allen Mitarbeitern, die zum Gelingen dieses Buches beigetragen haben. Im Besonderen ist hier Herr Dipl. Ing. (FH) Björn Assmann zu erwähnen, der die gesamte elektronische Darstellung betreut sowie Texte und Formeln geschrieben hat. Herr Dipl. Ing. Christian Jiménez hat die Möglichkeit geschaffen die Zeichnungen, auch mit Berechnungen, zu erzeugen und als PGF Bilder in Latex einzubinden. Er supportete die Herren BSc. Daniel Richert, BSc. Lucas Wohlhuter und BSc. Jens Fiederlein sowie MSc. Ilja Moderau, die die vielen Abbildungen der Schaltungen und Bode-Diagramme erstellt haben.

Mannheim, Germany Markdorf, Germany Mannheim, Germany 20. Oktober 2014 Albrecht Zwick Jochen Zwick Xuan Phuc Nguyen

Inhaltsverzeichnis

1	Rau	schen in elektronischen Schaltungen	1
	1.1	Rauscharten	1
	1.2	Rauschmechanismen	2
		1.2.1 Thermisches Rauschen	2
		1.2.2 Schrotrauschen	6
		1.2.3 Stromrauschen	7
	1.3	Fehler bei linearer und quadratischer Addition durch Vernachlässigung	12
		1.3.1 Vernachlässigung kleiner Rauschgrößen	12
		1.3.2 Korrelation	13
2	Met	hoden und Werkzeuge zur Rauschberechnung	15
	2.1	Quellenverschiebung	15
	2.2	Bodeverfahren	20
	2.3	Resonanz und Resonanzüberhöhung im Bode-Diagramm	27
3	Vers	stärkerrauschen	33
	3.1	Die äquivalente Eingangsrauschspannungsquelle	33
	3.2	Messung von Rauschspannung u_N und Rauschstrom i_N	35
	3.3	Parameter zur Beurteilung des Rauscheinflusses	35
		3.3.1 Rauschfaktor F	35
		3.3.2 Rauschmaß (<u>N</u> oise <u>Fig</u> ure) <i>NF</i>	35
		3.3.3 Signal-Rausch-Abstand	36
	3.4	Der optimale Quellenwiderstand	36
	3.5	Dimensionierungsvorgang	38
4	Rau	schbegrenzung durch Filter	41
	4.1	Rauschbandbreite	41
	4.2	Gesamtrauschen bei Serienschaltung mehrerer unabhängiger gleicher	
		Tiefpässe	42

	4.3	Die Ra	auschbandbreite bei Butterworth-Filtern	44
	4.4	Bereck	hnung der Ausgangsrauschspannung im gesamten Frequenzbereich	45
	4.5	Bereck	hnung der äquivalenten Eingangsrauschspannung in einem	
		definie	erten Frequenzbereich	46
	4.6	Bereck	hnung des Rauschens bei steigenden und fallenden Kennlinien	
		der Fr	equenzabhängigkeit	48
5	Ber	echnun	g der äquivalenten Eingangsrauschquellen	51
	5.1	Die äc	uivalente Eingangsrauschspannungsquelle	51
		5.1.1	Rauschen in der Schaltung mit Parallelwiderstand	51
		5.1.2	Rauschen in der Schaltung mit Parallel- und Serienwiderstand .	53
	5.2	Die äc	uivalente Eingangsrauschstromquelle	55
	5.3	Kapaz	vitive und induktive Sensoren	59
		5.3.1	Kapazitive Sensoren	59
		5.3.2	Induktive Sensoren	62
		5.3.3	Zusammenfassung	65
		5.3.4	Schaltung mit drei verschiedenen Bauteilen	68
6	Ope	erations	verstärker	71
	6.1	Ideale	r Operationsverstärker	71
		6.1.1	Invertierende Schaltung	71
		6.1.2	Nichtinvertierende Schaltung	74
		6.1.3	Spannungsfolger	75
	6.2	Rausc	hbetrachtungen bei realen Operationsverstärkern	76
		6.2.1	Verschiebung einer Rauschquelle am Ausgang des OP's	77
		6.2.2	Schaltung mit Ausgangswiderstand <i>R</i> _o	81
		6.2.3	Schaltung mit verändertem Ausgang	83
7	Rau	schmed	chanismen in Transistoren	89
	7.1	Transi	storrauschen bei mittleren Frequenzen (1 kHz1 MHz)	89
	7.2	Transi	storrauschen bei tiefen Frequenzen	95
	7.3	Transi	storrauschen bei höheren Frequenzen	97
	7.4	Transi	storrauschen im gesamten Frequenzbereich	99
	7.5	Rausc	hen bei Feldeffekttransistoren	101
	7.6	Vergle	eich Bipolar- und Feldeffekttransistor	105
	7.7	Einsat	z verschiedener aktiver Bauteile	107
8	Gru	indscha	ltungen der Elektronik	109
	8.1	Rause	hen der Arbeitspunkteinstellung	109
	8.2	Emitte	erschaltung	113
		8.2.1	Bestimmung des Gleichstrom-Arbeitspunktes I_C	113
		8.2.2	Berechnung der Kleinsignalparameter	116
		8.2.3	Rauschen der Emitterschaltung	118
	8.3	Source	eschaltung	123

9

	8.3.1	Bestimmung des Gleichstrom-Arbeitspunktes <i>I</i> _D	123
	8.3.2	Kleinsignalbetrachtung	125
	8.3.3	Rauschen der Sourceschaltung	127
8.4	Kollek	ktorschaltung	127
	8.4.1	Bestimmung des Arbeitspunktes	127
	8.4.2	Kleinsignalbetrachtung	127
	8.4.3	Rauschen der Kollektorschaltung	129
8.5	Basiss	schaltung	132
	8.5.1	Kleinsignalbetrachtung	132
	8.5.2	Rauschen der Basisschaltung	134
8.6	Kollek	ctorschaltung mit Bootstrapeffekt	135
	8.6.1	Kleinsignalbetrachtung	136
	8.6.2	Rauschen der Kollektorschaltung mit Bootstrap	140
	8.6.3	Vergleich mit Operationsverstärkerschaltung – Signal	142
	8.6.4	Vergleich mit Operationsverstärkerschaltung – Rauschen	143
8.7	Emitte	erschaltung mit Millereffekt	144
	8.7.1	Gleichstrom-Arbeitspunktes I_C	144
	8.7.2	Spannungsverstärkung	146
	8.7.3	Eingangswiderstand	147
	8.7.4	Ausgangswiderstand	147
	8.7.5	Rauschen der Emitterschaltung mit Millereffekt	148
8.8	Rausc	hen in Kaskadenschaltungen	153
	8.8.1	Emitter-Emitter-Schaltung	153
	8.8.2	Kaskode-Schaltung	154
	8.8.3	Kollektor–Emitter-Schaltung	156
	8.8.4	Kollektor–Basisschaltung (Differenzverstärker)	158
	8.8.5	Schaltungen mit Feldeffekttransistoren	158
Son	dersche	altungen	150
0.1	Ulberti	ntungen	150
9.1	Parall	el- und Serienschaltungen von elektronischen Bauteilen	159
).2	021	Widerstände	159
	922	Parallelschaltung von Transistoren	160
	9.2.2	Parallelschaltung von Feldeffekttransistoren	164
	9.2.5	Parallelschaltung von Operationsverstärkern	164
93	Rause	hen eines Transistors als Diode	165
9.4	Strom	auellen	167
2.1	941	Transistorstromquelle	167
	942	Transistorstromquelle mit Operationsverstärker	175
95	Strom	sniegel_Schaltungen	177
).5	951	Finfache Stromsniegel_Schaltung	177
	952	Wilson-Stromspiegel	179
	953	Widlar-Stromsniegel	183
	1.5.5		105

	9.5.4 Erweiterte Stromspiegelschaltungen	185
9.6	Zusammenfassung der Ergebnisse der Stromquellen und	
	Stromspiegelschaltungen	188
10 Bei	spiele	193
10.	1 Kapazitiver Sensor-Verstärker	193
	10.1.1 Schaltung 1	193
	10.1.2 Schaltung 2	200
10.	2 Impedanzwandler	207
10.	3 Brückenschaltung	210
	10.3.1 Berechnung der Spannungsverstärkung	210
	10.3.2 Berechnung der Offset-Fehlerspannung am Ausgang	212
	10.3.3 Rauschen der Brückenschaltung	215
Anhang	A Algemeines	223
A.1	Griechisches Alphabet	223
A.2	SI-Präfixe	223
A.3	Formelzeichen	224
A.4	Schaltsymbole	227
Literatu	ırverzeichnis	231
Sachver	zeichnis	233

Abkürzungen

- ESB <u>Ersatzschaub</u>ild
- HP <u>H</u>ochPass
- LND Low Noise Design
- OP Operationsverstärker
- OPV Operationsverstärker
- Tr <u>Tr</u>ansistor
- TP <u>T</u>iefpass

Abbildungsverzeichnis

Abb. 1.1	Elektronisches Rauschen	1
Abb. 1.2	Rauscharten	2
Abb. 1.3	Anpassung	2
Abb. 1.4	Stromquellen-Ersatzschaltbild	4
Abb. 1.5	Thermisches Rauschen von Widerständen	5
Abb. 1.6	Parallelschaltung rauschender Widerstände	5
Abb. 1.7	Rauschersatzbilder von Diode und Widerstand	6
Abb. 1.8	Differentielle Rausch-Spannungen	7
Abb. 1.9	Frequenzabhängigkeit des Stromrauschens	7
Abb. 1.10	Gesamtes Rauschen eines Widerstandes	10
Abb. 1.11	Beispiel Serienschaltung	11
Abb. 1.12	Unterschied zwischen 1/4 W und 1 W Widerstand	11
Abb. 1.13	Vernachlässigung kleiner Rauschgrößen	13
Abb. 1.14	Unkorrelierte Rauschspannungen	13
Abb. 1.15	Korrelierte Rauschspannungen	14
Abb. 2.1	Verschiebung einer Spannungsquelle	16
Abb. 2.2	Verschiebung einer Stromquelle	16
Abb. 2.3	Einführung des Zeichen für Verschwinden und Vernachlässigen	16
Abb. 2.4	Einführung des Zeichen für Verschwinden und Vernachlässigen (b) .	17
Abb. 2.5	Verschiebung der Stromquelle – Ausgangsbasis & Zielwunsch	18
Abb. 2.6	Verschiebung der Stromquelle – Durchführung	18
Abb. 2.7	Verschiebung der Stromquelle bis zum Ziel	18
Abb. 2.8	Verschiebung der Spannungsquelle nach vorne – Ausgangsbasis &	
	Zielwunsch	19
Abb. 2.9	Verschiebung über einen Widerstand hinweg	19
Abb. 2.10	Verschiebung von Spannungs- und Stromquelle – Ausgangsbasis &	
	Zielwunsch	19
Abb. 2.11	Verschiebung der Stromquelle – Durchführung	19

Abb. 2.12	Verschiebung der Spannungs- und Stromquelle zum Ausgang hin –	20
Abb 212	Ausgaligsbasis & Zici	20
A00. 2.15	Zwischenschritte	20
Abb 214	Verschiebung der Spannungs- und Stromquelle zum Ausgang hin _	20
AUU. 2.14	Zwischenschritt zum Ziel	20
Abb 215	$\begin{array}{c} \text{Evisciensemate zum zief} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	20
Abb 2.15	Sarian und Parallelschaltung varschiedener Bautaile	21
Abb 2.10	Die drei grundlagenden Übertregungsverbalten	22
Abb 2.17	Zusamman gasatztas Übertragungsverhalten	23
Abb 2.10	Zusammenbeng zwischen Veretörlung A und Ereguenz f_{1} (20 ^{dB})	24
A00. 2.19	Zusammennang Zwischen verstarkung A und Frequenz f , $(-20 \frac{1}{\text{Dek}})$	25
A11 0 00	und mit f_T = fransitirequenz for $A = 1$ France $G = (A \cap dB)$	25
Abb. 2.20	Zusammenhang zwischen Verstarkung A und Frequenz f ; $(-40 \frac{1}{\text{Dek}})$	25
Abb. 2.21	Zusammenhang zwischen Verstarkung A und Frequenz f ; $(-10 \frac{\text{ds}}{\text{Dek}})$	26
Abb. 2.22	Resonanzbeispiele im Bode-Diagramm	27
Abb. 2.23	Verschiedene Beispiele zur Berechnung der Resonanzüberhöhung	28
Abb. 2.24	Verschiedene Beispiele zur Berechnung der Resonanzüberhöhung	29
Abb. 2.25	Zusammensetzung der Teilquotienten im Fall 1	30
Abb. 2.26	Zusammensetzung der Teilquotienten im Fall 2	31
Abb. 3.1	Rauschersatzschaltbild eines Verstärkers	33
Abb. 3.2	Darstellung der Grundgleichung	34
Abb. 3.3	Rauschmaß in Abhängigkeit vom Quellenwiderstand	37
Abb. 4.1	Signal- und Rauschbandbreite	41
Abb. 4.2	Serienschaltung gleicher Tiefpässe	42
Abb. 4.3	Ausgangsrauschspannung	45
Abb. 4.4	Frequenzabhängigkeit der äquivalenten Eingangsrauschspannung	46
Abb. 4.5	Rauschberechnung bei verschiedenen Steigungen in dB/Dekade	49
Abb. 5.1	Rauschen in der Schaltung mit Parallelwiderstand	51
Abb. 5.2	Verschiebung der Rauschquelle u_{NR_1}	52
Abb. 5.3	Verschieben der Rauschquelle u_{NOP}	52
Abb. 5.4	Verschiebung der Rauschquelle <i>i</i> _{NOP}	53
Abb. 5.5	Schaltung mit Parallel- und Serienwiderstand	54
Abb. 5.6	Verschiebung der Rauschquelle <i>i</i> _{NOP}	54
Abb. 5.7	Rauschersatzschaltbild eines Verstärkers	55
Abb. 5.8	Verschiebung der Rauschquelle i_{NR_1}	56
Abb. 5.9	Aufteilung der Rauschquelle i_{NOP}	56
Abb. 5.10	Verschiebung der Rauschquelle i_{NOP}	57
Abb. 5.11	Verschiebung der Rauschquelle u_{NOP}	58
Abb. 5.12	Kapazitiver Sensor mit Signalspannungsquelle – Verschiebungsschritte	59
Abb. 5.13	Kapazitiver Sensor mit Signalspannungsquelle – Verschiebungsschritte	60
Abb. 5.14	Kapazitiver Sensor mit Signalstromouelle – Verschiebungsschritte	61
Abb. 5.15	Kapazitiver Sensor mit Signalstromquelle – Verschiebungsschritte	61
		.

Abb. 5.16	Induktiver Sensor mit Signalspannungsquelle – Verschiebungsschritte	62
Abb. 5.17	Induktiver Sensor mit Signalspannungsquelle – Verschiebungsschritte	63
Abb. 5.18	Induktiver Sensor mit Signalstromquelle – Verschiebungsschritte	64
Abb. 5.19	Induktiver Sensor mit Signalstromquelle – Verschiebungsschritte	65
Abb. 5.20	Zusammenfassung der verschiedenen Variationen, Duale Schaltungen	66
Abb. 5.21	Zusammenfassung der verschiedenen Variationen, Duale Schaltungen	67
Abb. 5.22	Schaltung mit drei verschiedene Bauteilen, R sei rauschfrei	68
Abb. 5.23	Äquivalente Eingangsrauschspannung ohne Resonanz	68
Abb. 5.24	Äquivalente Eingangsrauschspannung mit Resonanz	69
Abb. 6.1	Invertierender Verstärker	71
Abb. 6.2	Verrechnung der Rauschquelle u_{NR_r} zum Ausgang hin	72
Abb. 6.3	Verrechnung der Rauschquelle u_{NR_r} -1	72
Abb. 6.4	Verrechnung der Rauschquelle u_{NR_r} -2	72
Abb. 6.5	Rauschersatzschaltung	73
Abb. 6.6	Berechnung mit der Millertransformation -1	73
Abb. 6.7	Berechnung mit der Millertransformation -2	74
Abb. 6.8	Nichtinvertierender Verstärker mit Ersatzschaltbild	74
Abb. 6.9	Spannungsfolger	75
Abb. 6.10	Verschiebung und Verrechnungen beim OP	77
Abb. 6.11	Verschiebung und Verrechnungen beim OP	77
Abb. 6.12	Rauschquelle am Ausgang des OP	78
Abb. 6.13	Betrachtung mit idealem OP	78
Abb. 6.14	Verschiebung der Rauschquelle	78
Abb. 6.15	Frequenzverlauf der Spannungen u_{No} und u_{Ni}	79
Abb. 6.16	Konstruktion von u_{No} und u_{Ni} durch die Schleifenverstärkung $ \underline{A}_L $.	80
Abb. 6.17	Verstärkerschaltung mit Ausgangswiderstand R_o	81
Abb. 6.18	Konstruktion der Rauschspannungen u_{No} und u_{Ni}	82
Abb. 6.19	Bestimmung von $u_{Ni}(f \Rightarrow \infty)$	83
Abb. 6.20	OP-Schaltung mit verändertem Ausgang	83
Abb. 6.21	Bode-Diagramm der Schaltung aus Abb. 6.20	84
Abb. 6.22	Verbesserte Schaltung von Abb. 6.20: Hochpass-Filter ohne Kapazität	84
Abb. 6.23	Rauschersatzschaltbild mit allen Rauschquellen	85
Abb. 6.24	Verschiebung der Rauschquelle u_{NRr}	86
Abb. 6.25	Verschiebung der Rauschquelle u_{NOP}	86
Abb. 6.26	Verrechnung der Rauschspannung $u_{NOP}^{\prime\prime\prime}$	87
Abb. 6.27	Einfache Verrechnung von u_{NOP}	87
Abb. 6.28	Bode-Diagramm der verschiedenen Rauschspannungen	88
Abb. 7.1	Rauschen des Transistors	89
Abb. 7.2	Ersatzschaltbild zur Berechnung des Transistorrauschens	90
Abb. 7.3	Rauschspannung u_{NTr} des Transistors in Abhängigkeit von I_C	91
Abb. 7.4	Rauschstrom i_{NTr} des Transistors in Abhängigkeit von I_C	92
Abb. 7.5	Kollektorstrom I_C in Abhängigkeit vom Quellenwiderstand R_i	94

Abb. 7.6	Anstieg des Rauschstromes i_{NTr} bei tiefen Frequenzen	95
Abb. 7.7	Ersatzschaltbild zur Berechnung des Rauschens bei tiefen Frequenzen	95
Abb. 7.8	Einfluss Excessrauschen bei Transistoren	96
Abb. 7.9	Rauschberechnung bei hohen Frequenzen – ESB	97
Abb. 7.10	Frequenzabhägigkeit des Rauschstromes i_{NTr}	100
Abb. 7.11	Rauschstrom u_{NTr} im gesamten Frequenzbereich	101
Abb. 7.12	Ersatzschaltbild zur Rauschberechnung	101
Abb. 7.13	Rauschberechnung bei tiefen Frequenzen	103
Abb. 7.14	<i>u</i> _{NFet} und <i>i</i> _{NFet} bei Feldeffekttransistoren	104
Abb. 7.15	Rauschmaß beim Feldeffekttransitor	105
Abb. 7.16	Anwendungsbereiche von Bipolar- (BJT) und Feldeffekttransistoren	
	(Fet)	107
Abb. 7.17	Einsatzmöglichkeit verschiedener Operationsverstärker	108
Abb. 8.1	Normale Arbeitspunkteinstellung	109
Abb. 8.2	Ersatzschaltbild	110
Abb. 8.3	Rauschen der Arbeitspunktwiderstände	110
Abb. 8.4	Verbesserte Arbeitspunkteinstellung	112
Abb. 8.5	Vergleich der beiden Arbeitspunkteinstellungen	112
Abb. 8.6	Emitterschaltung	113
Abb. 8.7	Gleichstromersatzschaltung	114
Abb. 8.8	Gleichstromersatzschaltung – umgezeichnet	114
Abb. 8.9	Virtuelle Trennung des Basis- & Kollektorkreises; da $\beta \gg 1$ ist, wird	
	entsprechend vernachlässigt	115
Abb. 8.10	Ersatzschaltung zur Berechnung von <i>I</i> _C	115
Abb. 8.11	Kleinsignal-Ersatzschaltbild	116
Abb. 8.12	Emitterschaltung, Eingangswiderstand	117
Abb. 8.13	Emitterschaltung, Stern–Dreieck–Umwandlung	117
Abb. 8.14	Verändertes Ersatzschaltbild	118
Abb. 8.15	Rauschersatzschaltung	119
Abb. 8.16	Auftrennung der Rauschquelle i_{NTr}	119
Abb. 8.17	Verschiebung der Rauschquelle i_{NTr}	120
Abb. 8.18	Problem u_{NR_C}	121
Abb. 8.19	Ersatzschaltung zur Verschiebung der Rauschquelle u_{NR_C}	122
Abb. 8.20	Verschiebung der Rauschquelle u_{NR_C}	122
Abb. 8.21	Rauschquellen im Emitterstromkreis	122
Abb. 8.22	Ersatzschaltungen zur Verschiebung von u_{NR_C}	123
Abb. 8.23	Sourceschaltung, Ersatzschaltung Gleichstrom	124
Abb. 8.24	Zeichnerische Bestimmung des Arbeitspunktes	125
Abb. 8.25	Ersatzschaltbild der Sourceschaltung	125
Abb. 8.26	Rauschersatzschaltbild der Sourceschaltung	126
Abb. 8.27	Kollektorschaltung	128
Abb. 8.28	Ersatzschaltbild der Kollektorschaltung mit Transformationen	128

Abb. 8.29	Vereinfachte Verrechnung der Rauschspannung u_{NR_E}	129
Abb. 8.30	Rauschersatzschaltung der Kollektorschaltung	130
Abb. 8.31	Rauschersatzschaltung auf der Kollektorstromseite	131
Abb. 8.32	Basisschaltung mit Ersatzschaltung und Transformationen	132
Abb. 8.33	Stern–Dreieck–Umwandlung	133
Abb. 8.34	Rauschersatzschaltbild der Basisschaltung	134
Abb. 8.35	Kollektorschaltung mit Bootstrapeffekt; Rechts das	
	Kleinsignalersatzschaltbild	135
Abb. 8.36	Erweiterte Transformation mit virtueller Trennung	136
Abb. 8.37	Eingangswiderstand mit und ohne Bootstrap	137
Abb. 8.38	Bootstrapschaltung mit Transformation von R_i	138
Abb. 8.39	Schaltung ohne Bootstrap	139
Abb. 8.40	Schaltung mit Bootstrap	140
Abb. 8.41	Verrechnung der Rauschspannung $u_{NR_{F}^{*}}$	141
Abb. 8.42	Rauschersatzschaltbild der Bootstrapschaltung	141
Abb. 8.43	Signalvergleich Transistor und Operationsverstärker: $A' \approx 1$	142
Abb. 8.44	Rauschvergleich Transistor und Operationsverstärker	143
Abb. 8.45	Bootstraptransformation von R_B und u_{NR_B}	143
Abb. 8.46	Emitterschaltung mit Millereffekt	144
Abb. 8.47	Bestimmung des Gleichstromes I_C	145
Abb. 8.48	Emitterschaltung mit sehr stabiler Arbeitspunkt	145
Abb. 8.49	Emitterschaltung mit Millereffekt und Ersatzschaltbild	146
Abb. 8.50	Berechnung des Ausgangswiderstandes	148
Abb. 8.51	Verrechnung der Signalspannung u_{Si} an die Stelle u_{NR_B} – (a)	149
Abb. 8.52	Verrechnung der Signalspannung u_{Si} an die Stelle u_{NR_B} – (b)	150
Abb. 8.53	Berechnung der äquivalenten Eingangsrauschspannung für u_{NR_B}	151
Abb. 8.54	Vergleich Operationsverstärker – Transistor	152
Abb. 8.55	Erweiterung der Schaltung mit R_C und C_i	152
Abb. 8.56	Emitter-Emitter-Schaltung mit Ersatzschaltbild	153
Abb. 8.57	Kaskode-Schaltung mit Ersatzschaltbild	154
Abb. 8.58	Verrechnung von i'_{NTr}	155
Abb. 8.59	Verrechnung von u_{NR_C}	155
Abb. 8.60	Verrechnung von $\frac{u_{NR_C}}{R_C} \cdot r'_E$	156
Abb. 8.61	Kollektor–Emitter-	
	Schaltung mit Rauschersatzschaltbild	157
Abb. 8.62	Emitter-Basisschaltung	158
Abb. 9.1	Idealer Übertragung	159
Abb. 9.2	Schaltung mit idealem Übertrager und Ersatzschaltung	160
Abb. 9.3	Problem der Parallelschaltung von Transistoren	160
Abb. 9.4	Parallelschaltung von Transistoren	161
Abb. 9.5	Rauschspannung u_{NTr} in Abhängigkeit von I_C	161
Abb. 9.6	Parallelschaltung von Transistoren bei gleichen Gesamtstrom	162

Abb. 9.7	Parallelschaltung von Transistoren mit großen Strom I_C	162
Abb. 9.8	Parallelschaltung von Operationsverstärkern	163
Abb. 9.9	Parallelschaltung von Operationsverstärkern	164
Abb. 9.10	Transistor als Diode geschaltet	165
Abb. 9.11	Kleinsignal, Transistor als Diode geschaltet	166
Abb. 9.12	Rauschen des Transistors als Diode geschaltet	166
Abb. 9.13	Transistorstromquelle mit Ersatzschaltbild	167
Abb. 9.14	Bestimmung des Innenwiderstandes einer Transistorstromquelle	167
Abb. 9.15	Innenwiderstand in Abhängigkeit von R_E	168
Abb. 9.16	Innenwiderstand der Transistorstromquelle mit R_B	169
Abb. 9.17	Kapazität C_i der Transistorstromquelle	169
Abb. 9.18	Vergleich beider Stromquellen	170
Abb. 9.19	Rauschen der Transistorstromquelle	171
Abb. 9.20	Transformation der Bauteile	171
Abb. 9.21	Zusammensetzung der einzelnen Rauschanteile	173
Abb. 9.22	Vergleich Transistor und FET	174
Abb. 9.23	Transistorstromquelle mit Operationsverstärker	175
Abb. 9.24	Bestimmung des Innenwiderstandes	176
Abb. 9.25	Innenwiderstand der Transistorstromquelle mit OP	176
Abb. 9.26	Rauschen der Stromquelle	177
Abb. 9.27	Rauschen einer Transistorstromquelle mit Operationsverstärker	177
Abb. 9.28	Einfacher Stromspiegel mit Ersatzschaltung	178
Abb. 9.29	Kapazität der einfachen Stromspiegel–Schaltung	178
Abb. 9.30	Rauschen der einfachen Stromspiegel–Schaltung	179
Abb. 9.31	Wilson-Stromspiegel	179
Abb. 9.32	Ersatzschaltung Wilson-Stromspiegel	180
Abb. 9.33	Bestimmung des Innenwiderstandes	180
Abb. 9.34	Einfache Herleitung des Innenwiderstandes	181
Abb. 9.35	Bestimmung der Kapazität	182
Abb. 9.36	Bestimmung des Ausgangs-Rauschstromes	183
Abb. 9.37	Widlar-Stromspiegel und Innenwiderstandsbestimmung	184
Abb. 9.38	Bestimmung der Kapazität	184
Abb. 9.39	Rauschen des Widlar-Stromspiegels	185
Abb. 9.40	Erweiterter einfacher Stromspiegel	186
Abb. 9.41	Rauschersatzbild	187
Abb. 9.42	Rauschen des erweiterten Stromspiegels	187
Abb. 10.1	Kapazitiver Sensor-Verstärker, Schaltung 1	193
Abb. 10.2	Rauschersatzschaltbild der Schaltung 1 aus Abb. 10.1	195
Abb. 10.3	Verrechnung der Rauschspannung u_{NR_D}	196
Abb. 10.4	Verrechnung der Rauschspannung u_{NR_S}	196
Abb. 10.5	Frequenzabhängigkeit des Sensors	198
Abb. 10.6	Excessrauschen der Widerstände R_S und R_D	198

Abb.	10.7	Kapazitiver Sensor-Verstärker, Schaltung 2	200
Abb.	10.8	Kleinsignal-Ersatzschaltung	200
Abb.	10.9	Eingangswiderstand	201
Abb.	10.10	Ausgangwiderstände	202
Abb.	10.11	Kleinsignalersatzschaltbild mit Rauschenquellen der Schaltung 2	202
Abb.	10.12	Verrechnung der Rauschspannung u_{NR_D}	203
Abb.	10.13	Verrechnung des Rauschstromes i_{NR_G}	203
Abb.	10.14	Verrechnung der Rauschspannung u_{NR_S}	204
Abb.	10.15	Verrechnung des Rauschstromes <i>i</i> _{NFet}	205
Abb.	10.16	Impedanzwandler	207
Abb.	10.17	Ersatzschaltung Rauschen	207
Abb.	10.18	Äquivalente Eingangsrauschspannung	208
Abb.	10.19	Konstruktion von u_{No} aus u_{Ni} und $ \underline{A} $	209
Abb.	10.20	Brückenschaltung	210
Abb.	10.21	Verschiebung der Quelle u_{Si}	211
Abb.	10.22	Spannungsverstärkung der gesamten Schaltung	211
Abb.	10.23	Brückenschaltung mit Offset-Fehlern	212
Abb.	10.24	Verschiebung der Spannungsquelle U_f	213
Abb.	10.25	Brückenschaltung mit Widerstandsänderung	214
Abb.	10.26	Verrechnung der Rauschspannung u_{NOP}	215
Abb.	10.27	Verrechnung des Rauschstroms i_{NOP}	216
Abb.	10.28	Verrechnung der Rauschspannung u_{NR_3}	217
Abb.	10.29	Verrechnung des Rauschstroms i'_{NOP} und i_{NR_f}	217
Abb.	10.30	Spannungsverstärkung, äquivalente Eingangsrauschspannung und	
		Ausgangsrauschspannung	218
Abb.	10.31	Rauschen im Frequenzbereich	220
Abb.	10.32	Rauschen im Frequenzbereich	221

Tabellenverzeichnis

Tab. 1.1	Zusammenhänge bei thermischen Rauschen	4
Tab. 2.1	Formeln für Impedanzenquotienten	23
Tab. 3.1	Verbesserung gegenüber $NF = 3 \text{ dB}$	39
Tab. 4.1	Rauschbandbreite zu Signalbandbreite bei Serienschaltung mehrerer	
	unabhängiger Tiefpässen	43
Tab. 4.2	Rauschbandbreite zu Signalbandbreite bei Butterworth-Filtern	44
Tab. 7.1	Wertetabelle	105
Tab. 9.1	Zusammenfassung der Ergebnisse der Stromquellen und	
	Stromspiegelschaltungen	189
Tab. 9.2	Zusammenfassung der Ergebnisse der Stromquellen und	
	Stromspiegelschaltungen	190
Tab. 9.3	Zusammenfassung der Ergebnisse der Stromquellen und	
	Stromspiegelschaltungen	191
Tab. A.1	Das griechische Alphabet	223
Tab. A.2	SI-Präfixe	223
Tab. A.3	Formelzeichen	224
Tab. A.4	Schaltzeichen	227

Rauschen in elektronischen Schaltungen

1

1.1 Rauscharten

Eine Rauschspannung, über der Zeit betrachtet, besteht aus den verschiedensten Frequenzen, die statistisch verteilt sind. Abbildung 1.1 zeigt eine Momentaufnahme, wobei u_{NR} die Rauschspannungsdichte beschreibt. Die Rauschspannungsdichte hat hierbei die Einheit [V/ $\sqrt{\text{Hz}}$].

Ist die Rauschspannungsdichte über dem gesamten Frequenzbereich konstant, so handelt es sich um weißes Rauschen. Die Rauschdichte ist dann frequenzunabhängig. Um farbiges Rauschen handelt es sich, wenn die spektrale Rauschgröße frequenzabhängig ist. Abbildung 1.2 zeigt weißes Rauschen und als Beispiel für farbiges Rauschen sogenanntes 1/f-Rauschen.

Formell kann man das 1/f-Rauschen in Form einer Rauschspannungsdichte u_N in Abhängigkeit der Parameter u_{ND} und f_c beschreiben:

Bei der Frequenz $f = f_c$ ist

$$u_N(f_c) = u_{ND}$$

Sinnvollerweise wird u_{ND} gleich die Rauschspannungsdichte des weißen Rauschen gewählt.

1.2 Rauschmechanismen

1.2.1 Thermisches Rauschen

Thermisches Rauschen entsteht durch die Brown'sche Bewegung. Es ist ein weißes Rauschen. Die gesamte Rauschleistung ist proportional der Bandbreite und der absoluten Temperatur T. Der Term $k \cdot T$ stellt die Elementarenergie in der Wärmelehre dar; multipliziert mit der Bandbreite Δf ergibt sich die Rauschleistung P_{NR} , die ein ohmscher Widerstand R maximal an die Umgebung abgeben kann. Dies gilt für alle beliebigen Widerstände. Bei der Leistungsanpassung, Abb. 1.3 erhält man den Maximalfall [Fis93].

Abb. 1.3 Anpassung

 U_{NR} ist hierbei nicht die Rauschspannungsdichte, sondern eine effektive Rauschspannung, die in der Bandbreite Δf die Leistung abgibt und daher zur Kennzeichnung groß geschrieben wird.

Zahlenwerte:

$$k = 1,38 \cdot 10^{-23} \frac{\text{W s}}{\text{K}}$$
$$T = 300 \text{ K}$$
$$\Rightarrow k \cdot T = 4,14 \cdot 10^{-21} \text{ W s} \approx 4 \cdot 10^{-21} \text{ W s}$$
$$P_N = k \cdot T \cdot \Delta f \triangleq \frac{U_{NR}^2}{2R} \cdot \frac{1}{2}$$

Die effektive Rauschspannung:

$$U_{NR} = \sqrt{4kTR\Delta f} \tag{1.1}$$

bzw. die Rauschspannungsdichte

$$u_{NR} = \sqrt{4kTR} \tag{1.2}$$

Für $\Delta f = 1$ Hz und R = 1 k Ω ergibt sich $U_{NR} = 4,07$ nV ≈ 4 nV. Andere Werte lassen sich daraus leicht berechnen:

$$U_{NR} = 4 \text{ nV} \cdot \sqrt{\frac{R}{k\Omega} \cdot \frac{\Delta f}{\text{Hz}}}$$
(1.3)

Für die Rauschdichte folgt:

$$\frac{U_{NR}}{\sqrt{\Delta f}} = u_{NR} = 4 \frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}} \cdot \sqrt{\frac{R}{\mathrm{k}\Omega}}$$
(1.4)

Die Temperatur hat nur einen geringen Einfluss, z. B. ergibt eine Temperaturänderung von $\Delta T = 100$ °C nur eine Änderung von ca. 15 %. Interessant wird die Rauschminderung erst bei richtiger Kühlung. Der Einsatz von flüssigem Stickstoff ermöglicht eine Temperatur von 77 K (-196 °C), dass heißt, die Rauschspannung sinkt auf die Hälfte ab.

$$\sqrt{\frac{77 \text{ K}}{300 \text{ K}}} = 0,50662\ldots \approx 0,5$$

Das Rauschen eines Widerstandes kann anstelle eines Spannungsquellenersatzschaltbildes auch durch ein Stromquellenersatzschaltbild dargestellt werden (Abb. 1.4).

Abb. 1.4

Stromquellen-Ersatzschaltbild

Tab. 1.1 Zusammenhänge bei thermischen Rauschen

$U_{NR} \sim \sqrt{\Delta f} \\ I_{NR} \sim \sqrt{\Delta f}$	Man arbeitet nur mit soviel Bandbreite wie nötig. Die Bandbreitenbegrenzung sollte jedoch noch nicht in der 1. Stufe erfolgen
$U_{NR} \sim \sqrt{T}$ $I_{NR} \sim \sqrt{T}$	Kühlen vermindert das Rauschen
$U_{NR} \sim \sqrt{R}$	Niederohmige Widerstände haben in einer Serienschaltung eine geringere Rauschspannung
$I_{NR} \sim \frac{1}{\sqrt{R}}$	Hochohmige Widerstände haben in einer Parallelschaltung einen geringeren Rausch <u>strom</u>

$$I_{NR} = \frac{U_{NR}}{R} = \sqrt{\frac{4kT\Delta f}{R}}$$
(1.5)

$$I_{NR} = 4 \text{ pA} \cdot \sqrt{\frac{R}{R}}$$
(1.6)

$$u_{NR} = 4 \frac{\text{nV}}{\sqrt{\text{Hz}}} \cdot \sqrt{\frac{R}{\text{k}\Omega}}$$
$$i_{NR} = 4 \frac{\text{pA}}{\sqrt{\text{Hz}}} \cdot \sqrt{\frac{1}{\frac{R}{\text{k}\Omega}}}$$

Für das thermische Rauschen ergeben sich folgende Zusammenhänge (Tab. 1.1).

Abbildung 1.5 zeigt die Zahlenwerte der Rauschspannungs- und Rauschstromdichte u_{NR} und i_{NR} in Abhängigkeit vom Widerstand R.

Das Rechnen bei thermischem Rauschen

Die zwei thermisch rauschenden Widerstände aus Abb. 1.6 sollen in eine Ersatzschaltung mit einem einzigen thermisch rauschenden Widerstand umgerechnet werden.

Abändern in:

Für den Innenwiderstand gilt (siehe Abb. 1.6):

Abb. 1.5 Thermisches Rauschen von Widerständen

Abb. 1.6 Parallelschaltung rauschender Widerstände

 $R = R_1 \parallel R_2$

Leerlaufspannung:

$$U_{NR}^{2} = \left(U_{NR_{1}} \frac{R_{2}}{R_{1} + R_{2}}\right)^{2} + \left(U_{NR_{2}} \frac{R_{1}}{R_{1} + R_{2}}\right)^{2}$$

Da beide Widerstände R_1 und R_2 im Rauschen vollkommen voneinander unabhängige Rauschspannungen erzeugen, deren spektrale Zusammensetzung und Phase zur gleichen Zeit sich unterscheiden, kann man nur die Leistungen ($\sim U_{NR}^2$) addieren.

$$U_{NR}^{2} = 4kT\Delta f \cdot R_{1} \cdot \frac{R_{2} \cdot R_{2}}{(R_{1} + R_{2})(R_{1} + R_{2})} + 4kT\Delta f \cdot R_{2} \cdot \frac{R_{1} \cdot R_{1}}{(R_{1} + R_{2})(R_{1} + R_{2})}$$
$$U_{NR}^{2} = 4kT\Delta f \cdot R_{1} ||R_{2} \cdot \frac{R_{2} + R_{1}}{R_{1} + R_{2}}$$
$$U_{NR} = \sqrt{4kT \cdot R_{1}} ||R_{2} \cdot \Delta f$$

Bei thermischem Rauschen kann man zuerst die Widerstände zusammenfassen und dann dem resultierenden Gesamtwiderstand eine Rauschspannung zuordnen.

1.2.2 Schrotrauschen

Das Schrotrauschen (Shot-Noise) ist ein weißes Rauschen. Es tritt beim Stromfluss über eine Potentialschwelle auf, z. B. beim PN-Übergang [Amb83]. Beim ohmschem Widerstand gibt es kein Schrotrauschen. Nach Schottky gilt:

$$I_{Nsh} = \sqrt{2e \cdot I_D \cdot \Delta f} \tag{1.7}$$

Das Schrotrauschen ist von der Temperatur unabhängig. Das Kleinsignalersatzschaltbild einer Diode ist der differentielle Widerstand r_D :

$$r_D = \frac{U_T}{I_D} \quad \text{mit } U_T = \frac{k \cdot T}{e} \tag{1.8}$$

Somit können wir die Formel umrechnen:

$$I_{Nsh} = \sqrt{2 \cdot e \cdot I_D \cdot \Delta f} \quad \text{mit } r_D = \frac{k \cdot T}{e \cdot I_D} \Rightarrow e \cdot I_D = \frac{k \cdot T}{r_D}$$
$$I_{Nsh} = \sqrt{\frac{2 \cdot k \cdot T \cdot \Delta f}{r_D}} \quad \text{oder} \quad I_{Nsh} = \sqrt{\frac{4kT\Delta f}{2 \cdot r_D}}$$

Man beachte $I_{Nsh} \neq f(T)$ da $r_D \sim T$ und sich somit die Temperatur T herauskürzt.

Ebenso erhält man eine Rauschspannung U_{Nsh} :

$$U_{Nsh} = I_{Nsh} \cdot r_D = \sqrt{4kT \cdot \Delta f \cdot \frac{r_D}{2}}$$
(1.9)

Eine rauschende Diode kann somit durch 2 Ersatzschaltungen ersetzt werden (Abb. 1.7).

Abb. 1.7 Rauschersatzbilder von Diode und Widerstand

