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Preface

Huge amount of information is available as time series in many scientific fields:
geophysics, astronomy, biophysics, quantitative finance, Internet traffic, etc. Pro-
cessing so many time series is possible only by means of automatic algorithms
usually designed in data mining. One of the critical tasks which has to be achieved
by these algorithms is the automatic estimation of the trend contained in an
arbitrary noisy time series. The aim of our book is to provide several automatic
algorithms for nonmonotonic trend estimation. We do not intend to review the
existing automatic trend estimation algorithms, but to present a thorough analysis
for those presented in this book.

Obviously, an automatic algorithm is not able to work for all imaginable time
series. By its automatic feature we mean that, without any subjective intervention,
it efficiently processes time series of a well-defined type. The greater the diversity
of the time series types, the more ‘‘automatic’’ the algorithm is. Therefore in
designing a trend estimation algorithm an essential component is the method to
evaluate its accuracy for a large diversity of time series. However, the algorithms
are very often tested under unrealistic conditions and on too small number of time
series. One reason for this situation is that the time series theory is dominated by
stationary stochastic processes. The theoretical results for nonstationary time series
containing a trend hold only under restrictive conditions, seldom satisfied by the
real time series.

When the statistical theory is not applicable, Monte Carlo experiments can be
used to evaluate the accuracy of the automatic algorithms. Even then the results
are useful only if the members of the statistical ensemble have a diversity com-
parable with that of the real time series. The main difficulty is to generate realistic
nonmonotonic trends. Usually, Monte Carlo simulations are performed on artificial
time series much simpler than those encountered in practice, with monotonic
(linear, power-law, exponential, and logarithmic) or periodic (sinusoidal) trends.
The approach based on numerical Monte Carlo experiments in our book is much
more general and the trends generated by our original algorithm are meaningful for
real time series.
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Chapter 1 contains fundamentals in probability theory, statistics, and time series
theory which are used in the rest of the book. We analyze the autoregressive noise
of order one denoted AR(1), which is a simple model depending only on two
parameters: the variance and the constant of the serial correlation. Even for more
complex noises an AR(1) model is a zero order approximation capturing their most
important features. The noise serial correlation essentially influences the accuracy
of the estimated trend because when it increases, the large-scale fluctuations of the
noise cannot be distinguished from the trend variations.

In Chap. 2 we construct the statistical ensemble on which the Monte Carlo
experiments are performed. There is no rigorous mathematical method to dem-
onstrate that the variability of the obtained artificial time series is rich enough to
simulate the variability of the real time series. In fact we construct an independent
‘‘numerical reality’’ on which we perform numerical experiments. Therefore, our
approach is more typical to computational physics than to data mining or math-
ematical statistics. As examples of Monte Carlo experiments we evaluate the
confidence interval for a method to estimate the serial correlation parameter of an
AR(1) noise and we present a numerical method for testing if a time series is
uncorrelated.

In Chaps. 3 and 4 we analyze in detail the accuracy of the classical algorithms
of polynomial fitting and moving average in the case of arbitrary nonmonotonic
trends. The quality of the estimated trend depends mainly on three parameters: the
number of the time series values, the ratio between the amplitudes of the trend
variations and the noise fluctuations, and the serial correlation of the noise. Our
analysis shows that even in the case of the simplest trend estimation algorithms,
due to the many parameters on which the artificial time series depend, a realistic
evaluation of their performances is difficult and laborious.

In the last three chapters we present our original automatic algorithms for
processing nonstationary time series containing a stationary noise superposed over
a nonmonotonic trend. Their performances are tested by means of numerical
experiments of the same type as those used in the previous chapters. The algo-
rithms are designed to work on any time series, even if it has only a few values.
Obviously, the best results are obtained for an AR(1) noise superposed over a
deterministic trend with at least several hundreds of values. For other types of time
series the outcomes of the algorithms have to be statistically analyzed by Monte
Carlo experiments.

In Chap. 5 we design an automatic algorithm, called the averaged conditional
displacement (ACD), to estimate a monotonic trend as a piecewise linear curve.
The Monte Carlo experiments indicate that its accuracy is comparable with that of
the classical methods, but it has the advantage to be automatic and to describe a
much richer set of monotonic trend shapes. Applied to a time series with an
arbitrary nonmonotonic trend, the ACD algorithm extracts one of the possible
monotonic components which can be associated with the given trend. The prob-
ability that the estimated monotonic component is real can be estimated by a
method based on surrogate time series.
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In Chap. 6 we define the timescale of a local extremum of a time series such
that it allows a classification of the local extrema with respect to their importance
for the global shape of the time series. The local extrema with scales greater than a
given value provide a partition of a noisy time series in segments which
approximate the monotonic parts of the trend from a time series. The quality of
this approximation is improved by first applying a moving average to the noisy
time series. We use the monotonic component estimated by the ACD algorithm as
a reference to measure the magnitude of the nonmonotonic variations of a time
series. In this way we can build a criterion to stop the partition of a time series
when the resulting segments may be considered monotonic.

In the last chapter we give an automatic form to the repeated central moving
average (RCMA) analyzed in Chap. 4. In order to adjust the parameters of the
RCMA algorithm to the characteristics of the processed time series, we have
designed two simple statistical methods to estimate the noise serial correlation and
the ratio between the amplitudes of the trend variations and of the noise fluctua-
tions. The partitioning algorithm presented in Chap. 6 is used now to determine the
local extrema of the estimated trend which corresponds to the real trend and not to
the smoothed noise.

We illustrate the functioning of the analyzed algorithms by processing time
series from astrophysics, finance, biophysics, and paleoclimatology. The examples
of real time series are typical to the complex situations encountered in practice:
data missing from the time series, superposition of several types of noises, long
time series with tens of thousands of values, non-Gaussian probability distributions
with fat tails, repeated values of the time series, additional conditions imposed on
time series by the physical laws governing the studied phenomenon.

Our analysis is restricted to AR(1) noises superposed over nonmonotonic
trends, but our methods can be applied to study other noise models. Such new
applications could be: autoregressive noise of higher orders, long-range correlated
noises, unevenly sampled time series, asymmetric probability distribution of the
time series values. Obviously, the number of parameters could increase and the
analysis of the accuracy of the estimated trend would become more burdensome.

We have limited our analysis to four methods of trend estimation: two classical
(polynomial fitting and moving average) and two original and automatic (one for
monotonic trends and the other for arbitrary nonmonotonic trends). Other trend
estimation methods can be analyzed using the same type of Monte Carlo experi-
ments. In order to obtain significant results, it is essential to use a statistical
ensemble of artificial time series with a variety of trend shapes at least as rich as
that generated by our algorithm presented in Chap. 2.

Even if the main definitions and theorems used in the book are briefly pre-
sented, nevertheless it is recommended that the reader has the knowledge of basic
notions in probability, mathematical statistics, and time series theory. This book is
of interest for researchers who need to process nonstationary time series. Detailed
descriptions of all the numerical methods presented in the book allow the reader to
reproduce the original automatic algorithms for trend estimation and time series
partitioning. In addition, the source codes in MATLAB of the computer programs

Preface vii

http://dx.doi.org/10.1007/978-94-007-4825-5_6
http://dx.doi.org/10.1007/978-94-007-4825-5_4
http://dx.doi.org/10.1007/978-94-007-4825-5_6
http://dx.doi.org/10.1007/978-94-007-4825-5_2


implementing them are freely available on the web so that the researchers who
merely apply trend estimation algorithms could successfully use them.

Cluj-Napoca, April 2012 Călin Vamos�
Maria Crăciun
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Chapter 1
Introduction

A complete presentation of the theory of stochastic processes can be found in any
treatise on the probability theory, e.g., [18] and for time series theory one can use
[4]. In this introductory chapter we briefly present some basic notions which are
used in the rest of the book. The main methods to estimate trends from noisy time
series are introduced in Sect. 1.2. In the last section we discuss the properties of the
order one autoregressive stochastic process AR(1) which has the serial correlation
described by a single parameter and which is a good first approximation for many
noises encountered in real phenomena.

1.1 Discrete Stochastic Processes and Time Series

At the occurrence of an event ω the random variable X takes the value X (ω) = x .
We follow the practice of denoting by small letters the realizations of the random
variable denoted by the corresponding capital letters. Throughout this book we con-
sider only continuous random variables with real values. If the random variable is
absolutely continuous, then it has a probability density function (pdf) denoted p(x).
The cumulative distribution function (cdf) F(x) = P(X ≤ x) is the probability that
the random variable X takes on a value less than or equal to x . We denote the mean
of the random variable by μ = 〈X〉 and its variance by σ 2 = 〈(X − 〈X〉)2〉.

The evolution in time of a random phenomenon is modeled by a stochastic process,
i.e., a family of random variables {X (t), t ∈ I ⊂ R} defined on the same probability
space and indexed by a set of real numbers I . In this book we study only discrete sto-
chastic processes for which I contains equidistant sampling moments. The observa-
tions are made at discrete time moments tn = t0+(n−1)�t , where n = 1, 2, . . . , N ,
�t is the sampling interval, and t0 is the initial time. The observed values xn ≡ x(tn)

are realizations of the corresponding random variables Xn ≡ X (tn). Although the
number of observations is always finite, we assume that there is an infinite stochastic
process {Xn, n = 0,±1,±2, . . .} whose realizations for n < 1 and n > N have not

C. Vamoş and M. Crăciun, Automatic Trend Estimation, SpringerBriefs in Physics, 1
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2 1 Introduction

been observed. To distinguish between the infinite stochastic process which models
the time evolution of the natural phenomenon and its measurements, we call time
series the finite sequence of real numbers {xn, n = 1, 2, ..., N }.

The joint cdf of the random variables Xn1, Xn2 , . . . , Xnm is the probability that
their values are smaller than some given values

Fn(x) = P(Xn1 ≤ x1, . . . , Xnm ≤ xm),

where n = (n1, . . . , nm) and x = (x1, . . . , xm). For absolutely continuous random
variables there exists the joint pdf pn(x). A stochastic process is (strictly) stationary
if for every index vector n and integer d we have Fn+d1 = Fn or pn+d1 = pn,
where 1 = (1, 1, . . . , 1), i.e., its joint probabilities do not change under temporal
translations. From this definition, for m = 1 it follows that all the components of
a stationary process have the same probability distribution pn(x) = p(x) for all
integers n. Such a stochastic process is called identically distributed.

The autocovariance function of a stochastic process with finite variance for all its
components (σ 2

n < ∞) is defined as

γ (n, m) = 〈(Xn − 〈Xn〉)(Xm − 〈Xm〉)〉. (1.1)

Obviously γ (n, n) = σ 2
n . If the stochastic process is stationary, then

γ (n + d, m + d) = γ (n, m), (1.2)

for all n, m, d integers and the autocovariance function depends only on the lag
h = n − m so that γ (h) ≡ γ (h, 0). It is easy to show that γ (0) ≥ 0, γ (h) = γ (−h),
and |γ (h)| ≤ γ (0) for any h. The autocorrelation function of a stationary stochastic
process is defined as ρ(h) = γ (h)/γ (0) and then ρ(0) = 1.

Usually the observed time series do not satisfy the condition imposed to strictly
stationary stochastic processes. Furthermore, the analysis of time series is often
reduced only to the statistical moments of second order. Therefore one defines a
subclass of the stationary process more suitable for modeling of real phenomena.
A stochastic process is weak-stationary if 〈|X2

n|〉 < ∞, 〈Xn〉 = μ for all integers
n and satisfies Eq. (1.2). A special weak-stationary process is the white noise, for
which the components are uncorrelated γ (h) = σ 2δh0, where δnm is the Kronecker
delta. Such a stochastic process is denoted by Xn ∼ W N (μ, σ 2).

Another subclass of stationary processes contains the independent and identically
distributed (i.i.d.) stochastic processes. The components of an i.i.d. process are mutu-
ally independent pn(x) = pn1(x1)pn2(x2) . . . pnm (xm). They are also identically
distributed pni (xi ) = p(xi ) and then pn+h1(x) = p(x1)p(x2) . . . p(xm) = pn(x) so
that, if the stochastic process is infinite, the stationarity condition (1.2) is satisfied.

If the properties of the components of a stochastic process vary in time, then
the stochastic process is nonstationary. As an example of nonstationary stochastic
process we consider the random walk {Xn, n = 0, 1, 2, . . .} defined as
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Xn = Xn−1 + Zn for n > 0, (1.3)

where {Zn} is an i.i.d. stochastic process with zero mean, variance σ 2, and X0 = Z0.
Obviously 〈Xn〉 = 0 and for n ≤ m the autocovariance function given by Eq. (1.1)
becomes

γ (n, m) = 〈Xn Xm〉 = 〈Xn(Xn + Zn+1 + · · · + Zm)〉 = 〈X2
n〉

because Xn depends only on Z0, Z1, . . . , Zn which are independent of Zn+1, . . . ,

Zm . Because

〈X2
n〉 =

n∑

k=0

〈Z2
k 〉 +

n∑

k �=l

〈Zk Zl〉 = (n + 1)σ 2

we have
γ (n, m) = (1 + min{n, m})σ 2. (1.4)

Hence the autocovariance function of the random walk is not invariant to temporal
translations and {Xn} is a nonstationary process.

In practice we do not have access to random variables or stochastic processes
but only to their realizations and we have to use the methods of the mathematical
statistics in order to estimate the parameters of the observed phenomena. Let us
consider a random variable X and one of its realizations x (s).1 The set formed by
S independent realizations {x (1), x (2), . . . , x (S)} is called sample of volume S and
it allows the estimation of the parameters of X . For instance the mean μ = 〈X〉 is
approximated by the sample mean

μest ≡ μ̂ = 1

S

S∑

s=1

x (s). (1.5)

We make the convention that the quantities computed by means of a sample are
denoted by a hat or with the superscript ‘est’. By means of the law of large numbers
one proves under rather general conditions that μ̂ tends to μ when S tends to infinity.
In the same way we define the sample variance

σ̂ 2 = 1

S

S∑

s=1

(
x (s) − μ̂

)2
. (1.6)

Analogous relations can be used for a stationary time series {x1, x2, . . . , xN }.
Instead of the sample mean (1.5) we define the temporal mean

1 We have changed the usual notation xs in order to avoid the confusion with the terms of a time
series.
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x = 1

N

N∑

n=1

xn . (1.7)

Since the associated stochastic process {Xn} is stationary, all the terms in the sum
have identical pdfs and x tends to its theoretical mean μ when N tends to infinity.
A similar analogy can be made for the sample variance (1.6). The serial correlation
of a time series is characterized by the sample autocovariance function

γ̂ (h) = 1

N

N−h∑

n=1

(xn+h − x)(xn − x), 0 ≤ h < N . (1.8)

For −N < h ≤ 0, we have γ̂ (h) = γ̂ (−h). If Xn is a linear combination of
the components of an i.i.d. stochastic process with finite fourth order moment and
the sum of the absolute values of the linear combination coefficients is finite, then
the estimator (1.8) is biased, but its asymptotic distribution has the mean equal to
the theoretical autocovariance function ([4], Chap. 7). The sample autocorrelation
function is given by

ρ̂(h) = γ̂ (h)/γ̂ (0), |h| < N . (1.9)

1.2 Trend Definition and Estimation

Stochastic processes model the random phenomena as opposed to the deterministic
phenomena which are modeled by numerical functions of time. There are many situ-
ations when different random and deterministic phenomena overlap. In the simplest
case, a deterministic and a random phenomenon, mutually independent, are super-
posed (for example the instrumental noise affecting a measured physical quantity).
The most frequently used model is the stochastic process

Xn = fn + Zn, (1.10)

where {Zn} is a stationary stochastic process with zero mean 〈Zn〉 = 0 named addi-
tive noise and fn = f (tn) are the values at the sampling moments of the deterministic
function named trend.

We denote by pZ (z) the pdf of Zn and by pX (x, n) that of Xn . Because {Zn}
is stationary, pZ does not depend on n. According to Eq. (1.10), pX is equal to pZ

translated by fn

pX (x, n) = pZ (x − fn). (1.11)

The explicit dependence of pX on the time index n indicates that {Xn} is a nonsta-
tionary process with the mean varying in time
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