Server Component Patterns

Component Infrastructures Illustrated with EJB

Markus Volter, Alexander Schmid and Eberhard Wolff

%)

JOHN WILEY & SONS, LTD

Innodata
0470855894.jpg

Server Component Patterns

Server Component Patterns

Component Infrastructures Illustrated with EJB

Markus Volter, Alexander Schmid and Eberhard Wolff

%)

JOHN WILEY & SONS, LTD

Copyright © 2002 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q, England

Telephone (+44) 1243 779777

E-mail (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in
writing of the Publisher, with the exception of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the publication. Requests to the
Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern
Gate, Chichester, West Sussex PO19 85Q, England, or e-mailed to permreq@wiley.co.uk, or faxed to (+44) 1243
770571.

Neither the authors nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or damage
occasioned to any person or property through using the material, instructions, methods or ideas contained
herein, or acting or refraining from acting as a result of such use. The authors and publisher expressly disclaim
all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on
the authors or publisher to correct any errors or defects in the software.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances
where John Wiley & Sons, Ltd is aware of a claim, the product names appear in capital or all capital letters.
Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Library of Congress Cataloging-in-Publication Data (to follow)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0470 84319 5

Typeset in Book Antiqua by WordMongers Ltd, Treen, Cornwall TR19 6LG, England
Printed and bound in Great Britain by Biddles Ltd., Guildford and Kings Lynn

This book is printed on acid-free paper responsibly manufactured from sustainable forestry,
in which at least two trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com

Contents

Preface Xi
Foreword by Frank Buschmann xXi
Foreword by Clemens Szyperski XXV
Foundations 1
What is a component? 1
Patterns and pattern languages 5
Principles for component architectures 12
Components: a silver bullet? 24
Part | A Server Component Patterns Language 27
Language map 28
Sequences through the language 29
A conversation 31
1 Core Infrastructure Elements 37
Component 38
Container 43
Service Component 48
Entity Component 52
Session Component 56
Summary 59
2 Component Implementation Building Blocks 63
Component Interface 64
Component Implementation 70
Implementation Restrictions 75
Lifecycle Callback 79
Annotations 83

Summary 87

3 Container Implementation Basics

Virtual Instance
Instance Pooling
Passivation
Component Proxy
Glue-Code Layer
Summary

4 A Component and its Environment

Component Context

Naming

Component-Local Naming Context
Managed Resource

Pluggable Resources
Configuration Parameters
Required Interfaces

Summary

5 ldentifying and Managing Instances

Component Home
Primary Key
Handle

Summary

6 Remote Access to Components

Component Bus

Invocation Context
Client-Side Proxy

Client Library

Client Reference Cooperation
Summary

7 More Container Implementation

System Errors
Component Introspection
Implementation Plug-In
Summary

Contents

91

92
95
100
104
108
111

115

117
121
125
128
133
136
139
141

147

148
153
157
160

167

169
174
178
182
185
188

191

192
196
199
202

Contents

8 Component Deployment

Component Installation
Component Package
Assembly Package
Application Server
Summary

Part Il The Patterns lllustrated with EJB

9 EJB Core Infrastructure Elements

Component

Container

Managing resources
Persistence

Security

Transactions

Other features

Service Component
Message-Driven Beans
Entity Component

What is an Entity Bean?
The technical perspective
Session Component

10 EJB Component Implementation Building Blocks

Component Interface
Component Implementation
Implementation Restrictions
Lifecycle Callback
Annotations

11 EJB Container Implementation Basics

Virtual Instance
Instance Pooling
Passivation
Component Proxy
Glue-Code Layer

vii

203

204
208
211
214
217

219

221

222
223
224
224
225
225
226
227
229
231
231
232
239

243

244
254
258
262
282

289

290
291
297
301
304

viii

Contents

12 A Bean and its Environment 307
Component Context 308
Naming 315
Component-Local Naming Context 319
Managed Resource 321
Pluggable Resources 328
Configuration Parameters 332
Required Interfaces 333
13 Identifying and Managing Bean Instances 337
Component Home 338
Primary Key 348
Handle 353
14 Remote Access to Beans 357
Component Bus 358
Invocation Context 365
Client-Side Proxy 367
Client Library 369
Client Reference Cooperation 371
15 More EJB Container Implementation 373
System Errors 374
Component Introspection 380
Implementation Plug-In 382
16 Bean Deployment 385
Component Installation 386
Component Packaging 388
Assembly Package 390

Application Server 392

Contents

Part lll A Story
Literature and Online Resources
Glossary

Index

ix

393
443
453
458

Preface

What this book is about

This book is about component-based development on the server. Exam-
ples for such technologies are Enterprise JavaBeans (E]JB), CORBA
Components (CCM) or Microsoft's COM+, which have all gained
widespread use recently. To build successful applications based on
these technologies, the developer should have an understanding of the
workings of such a component architecture - things the specification
and most books don’t talk about very much. Part I of this book contains
a pattern language that describes these architectures conceptually. To
provide ‘grounding in the real world’, Part II contains extensive exam-
ples of these patterns using the EJB technology. Lastly, Part III shows
the benefits of the patterns for a real application.

Who should read this book

Distributed components, and specifically EJB, are ‘complex technolo-
gies with a friendly face’. This means that a lot of the complexity is
hidden behind simple interfaces or implemented with wizards et
cetera. However, to create efficient and maintainable applications
based on these technologies, we think it is necessary to understand how
these architectures actually work and how some specific design tech-
niques must be used. These techniques are very different from object
orientation - trying to use OO techniques for components can result in
very inefficient systems.

This book consists of three separate parts. Part I is intended for devel-
opers or architects who want to learn about the basic principles and
concepts used in any of the mainstream component technologies. We
use the form of a pattern language for this task. Because each pattern
comprises a short example in EJB, CCM and COM+, you can also use
this section to understand the differences between these technologies.

xii

Preface

Part I can also help you to create your own specialized component
architectures because the concepts are described in a very general way.

Part II serves two main purposes. First, it illustrates the patterns from
Part I with more concrete, extensive examples. Since EJB is used for the
examples, this section is most useful for EJB developers, although
COM+ and CCM users can also learn a lot about the details how the
patterns are implemented. You can also regard this part as a concise
tutorial for E]JB although we assume some basic understanding of EJB.

Part III shows finally what the patterns provide for a developer of an
application. It illustrates the benefits of a component-based develop-
ment approach over a ‘normal” approach, using the example of an
Internet shopping system developed using E]Bs. This part is written as
a dialogue between a component ‘newbie’ and an experienced
consultant. It shows how the patterns influence the day-to-day work of
an EJB developer.

The structure of the book

This book contains patterns about server-side components. It has three
main parts, the purposes of which are outlined below:

* Foundations provides an introduction for the book. It first defines
the term component in the context of this book and distinguishes it
from other kinds of components. Secondly, it introduces patterns
and pattern languages and explains how they are used in the book.

Thirdly, it includes four principles. Every technology is based on a
set of principles - guidelines the developers of the technology had
in mind when they designed it. It is important to understand these
principles to understand why the technology is as it is. This is also
true for component architectures.

* Partl, A Server Component Patterns Language, describes a pattern
language that ‘generates’ a server-side component architecture.
Because a fundamental principle of patterns is that they are proven
solutions, known uses are important. We use the three most impor-
tant component models as examples, namely Enterprise JavaBeans
(EJB), CORBA Components (CCM) and COM+. These examples
are just conceptual in nature, and introduced only briefly.

Preface

xiii

» PartII, The Patterns Illustrated with E]JB, presents extensive exam-
ples of the patterns in Part I using the Enterprise Java Beans
technology. It illustrates how the patterns have been applied in this
case, thereby explaining the E]JB architecture. This part contains
EJB source code and UML diagrams.

* PartIII, A Story, contains a dialogue between two people who
discuss the design and implementation of an e-commerce applica-
tion based on E]B. This provides another way of looking at the
patterns.

Example technologies

Patterns can only be considered patterns if they have actually been
applied or used. The usual process of pattern writing therefore starts by
‘finding’ relevant patterns in concrete systems and abstracting the core
pattern from such uses.

In the case of the technical patterns in Part I of this book, these concrete
systems are the three most popular server-side component architec-
tures, Enterprise Java Beans, CORBA Components and COM+. This
section provides a very brief introduction to these technologies and
provides references to further reading.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) is a server-side component architecture
defined by Sun Microsystems. It targets enterprise business solutions,
with a strong focus on web-based applications and integration with
legacy systems. EJB is part of a larger server-side architecture called the
Java 2 Enterprise Edition (J2EE).

EJB and J2EE are all-Java solutions, although it is possible to access EJB
components (Beans') from other programming languages, because a
mapping to CORBA and IIOP, CORBA’s TCP/IP-based transport
protocol, is defined. E]B is not an official standard, it is Sun’s property.
However, many other companies have taken part in the creation of the
architecture and many implementations of the standard exist on the

1. In the context of this book, Bean always denotes an Enterprise JavaBean compo-
nent, not a normal JavaBean.

xiv

Preface

market, from open source servers to very expensive commercial
applications.

A good introduction to EJB is Monson-Haefel’s Enterprise Java Beans
[MHO0]. Sun’s EJB Specification [SUNE]B] is also worth reading. Java
Server Programming [SUO1] gives a broader look at J2EE, including EJB.

The current version of EJB is 2.0. However, EJB 2.0 did not introduce
many new features from the viewpoint of pattern language. It does
improve significantly in some areas, mainly in persistence and local
access to components using Local Interfaces. But from a conceptual
point of view not much has changed - for example, Local Interfaces are
still interfaces. As a consequence, this book does not go into very much
detail about these new features.

The CORBA Component Model

CORBA (Common Object Request Broker Architecture) is a standard
for distributed object infrastructures, a kind of object-oriented RPC
(Remote Procedure Call). The standard is defined by the Object
Management Group (OMG), a non-profit organization involving many
important companies within the IT industry. CORBA is an operating-
system independent programming language, and implementations of
the standard are provided by many vendors. In addition to low-level
remote object communication, CORBA defines additional services
known as Common Object Services (COS) that take care of transactions,
asynchronous events, persistence, trading, naming, and many other
less well-known functionalities.

CORBA Components form a component architecture built on top of the
CORBA communication infrastructure. The specification is part of
CORBA 3.0. Although the specification is finished, there are no
commercial implementations available at the time of writing, but
several companies have announced products and are working on CCM
implementations. Nevertheless, experimental implementations are in
progress and early results are available [OPENCCM].

The CORBA Component Model (CCM) shares many properties with
EJB: it is actually upward-compatible, and in the future it is expected
that the two architectures will merge.

As mentioned before, CCM is still quite new, therefore not much has
yet been written about it. The Specification by the OMG [OMGCCM] is

Preface

COomM+

XV

of course worth reading, while Jon Siegel’s CORBA 3 book [SI00] also
contains a chapter on CCM.

COM+ is Microsoft’s implementation of a component infrastructure. It
is tightly integrated with the Windows family of operating systems and
is not available for other operating systems'. COM+ is language-inde-
pendent on the Windows platform.

COM+ is basically the new name for DCOM integrated with the Micro-
soft Transaction Server (MTS), which is, contrary to what its name
implies, a run-time environment for components. Transactions are
managed by DTG, the distributed transaction coordinator. DCOM itself
is a distributed version of Microsoft’s desktop component technology
COM (Component Object Model). So, in contrast to the other example
technologies, COM+ has a relatively long history. On one hand this
means it is a proven technology, on the other, it has some rather odd
features for reasons of compatibility.

The book market is full of titles about this topic. We found Alan
Gordon’s COM+ Primer [GOO00] to be a good introduction.

Book companion web site

Using a book as a means to communicate knowledge is not without
liabilities.
There are two main drawbacks:

* Books take a very long time to prepare. This means that by the
time the book is published, some of the information in the book
might be outdated, or at least incomplete.

* Abook is a one-way vehicle. There are no direct means by which
readers can give us feedback or start a discussion.

To overcome these deficiencies, we have created a web site at
www.servercomponentpatterns.org. It contains source code for the
book, links to interesting web sites, a means to contact the authors and

1. COM and DCOM have been ported to Unix by Software AG under the name
entireX. To our knowledge, COM+ has not been ported yet, and we don’t know
of any attempts to do so, currently.

xvi

Preface

other useful stuff. We will also use the site to publish errata and newly-
mined patterns. Take a look at it.

Contacting the authors

We'd like to receive your opinions on this book or any other comments
you might have.

The authors can be reached at

* voelter@acm.org

* alex.schmid@t-online.de

* ewolff@mac.com

* Asa group, at scp-book@yahoogroups.de

Stefan Schulz, the artist who drew the cartoons, can be reached at
sn.schulz@gmx.de.

The cover picture

It is not easy to design a cover for a book. In our case the problem was
simplified, because we could use the design and layout of the series, so
we only had to find an inset picture to use in the top right corner of the
cover. After long discussions we decided to use a picture of a city. Why?
Because a city provides an environment, an infrastructure for build-
ings, just as a container provides an infrastructure for components. In
both cases you have to provide or implement some standardized inter-
faces - in a city it is providing connections for the water and plugs for
the power supply lines. Maybe you can find further analogies when
reading through the book.

The cartoons

While writing the book, we made a presentation of its patterns at a
conference. We wanted to make this entertaining, so we asked a
freelance consultant who works for our company whether he could
draw some cartoons to illustrate it, one for each pattern. He did, and
they were a huge success. We then convinced him that he should draw
a cartoon for each pattern in the book.

Preface

Xvii

We think that these aid remembering the patterns because they capture
the essence of each pattern in a single illustration. In addition, they
make a huge difference to the book in general. We hope you like them
as much as we do. You can reach the artist Stefan ‘Schulzki” Schulz at
sn.schulz@gmx.de.

Notations and conventions

Normal text

As with any other book, this book uses a set of notations and conven-
tions. We think it is helpful to understand these conventions in
advance.

For normal text, we use Book Antiqua 11 point. Patterns use special
formatting, using bold font for problem and solution sections. Refer-
ences to other patterns in the book are made using the pattern name in
SMALL CAPS. References to patterns outside this book are written in
italics, together with the [Reference] to where the pattern can be found.

Variable references in source code or any other names, tags, or types are
placed in italics to help differentiate them from normal text and to avoid
ambiguities (for example: ‘In line 3 you can find the variable name’ is
different from “this is the variable name”).

Source code

Diagrams

For source code, we use fixed-width fonts. We do not claim that the
source code in the examples is complete and can be compiled. For
reasons of brevity, we leave out any unnecessary detail. Such detail can
be import statements, error handling and any other code we don’t
consider essential - we use the ellipsis (...) to mark such missing code.
We also use comments or pseudocode to simplify the code examples.

Diagrams are a bit more complex, because we use different notations
throughout the book. For structural diagrams, we use UML whenever
applicable. For example, a component is usually rendered as a “class

xviii

Preface

rectangle’” with attached interfaces. For example, the following illustra-
tion shows a Component A with two interfaces, IF51 and IF 5.

IFA:1

O_

A2

COMPONENT A

IF

For many of the structural diagrams, especially in Part I, we use non-
UML notations, because UML does not provide very much help here,
and forcing everything to be UML by using stereotypes and comments
does not help either. The next illustration shows a typical example:

~/7 COMPONENT | \\ Instance Pool
0 L \ LIFECYCLE
_ o~ — _| caeack (O COMPONENT
Client [~==- P N COMPONENT INTERFACE
\\\ |________I O_ o |
N | COMPONENT - | COMPONENT
~ %, COMPONENT *,4 A _ — _|
- 1
B e H
o '\\0 O component
~ COMPONENT ‘o

l Database I

This notation requires some explanation. Basically, the illustrations
show UML-like collaboration diagrams, albeit with aggregation shown
by real containment and other details. The following legend explains
the symbols used - the rest will become clear when you look at the
illustrations in the context of their patterns.

O— comMPONENT Component —» Method invocation
O— component | COmponent Instance Q sequence number
O Component Instance that is movement or state

COMPONENT | cyrrently passivated, pooled, or change of an entity

otherwise not actually available

To illustrate interactions, we usually use UML sequence diagrams.

Preface xix

Components and instances

To avoid misunderstanding, we have to clarify an important issue
about our ‘component-speak’. In our terminology, a component is the
artifact that is developed and deployed, whereas a component instance
(or instance for short) denotes a specific run-time instantiation of the
component. Compared to OO terminology, a component corresponds
to a class, and a component instance corresponds to an object (which is
called a class instance in some languages). In the EJB-specific parts we
use Bean and Bean instance respectively.

Acknowledgements

As with any other book, there are more people involved in its creation
than are mentioned on the cover. This even more true for a patterns
book. So we’d like to say “thanks” to the following people.

First, we’d like thank Frank Buschmann, who played a double role in
the creation of the book. Firstly, he is the series editor of the Wiley
patterns series and also approached us to write the book. Secondly, he
was our shepherd, supplying us with many useful comments - being
an experienced pattern and book author, and understanding the tech-
nology we cover in the book, his comments were really helpful.

Second, we’d like to thank our employer, MATHEMA AG, and partic-
ularly Hans-Joachim Heins and Michael Wiedeking, for their support
of the project.

The patterns in Part I have been (partly) submitted to the EuroPLoP
2001 conference. We received many useful comments from the work-
shop there, but we’d like to thank particularly Klaus Marquardt, who
was our shepherd at the conference and who provided many useful
comments on early versions of the patterns.

Of course, Stefan Schulz deserves special thanks, because without his
cartoons this book would definitely not be the same. We pressurized
him rather highly to meet the book’s deadlines, and we’re really happy
that it worked out.

We'd also like to thank Peter Sommerlad, who, playing Devil's Advo-
cate, challenged us with several critical questions about component-
based development in general. Also thanks to Matjaz Juric, who

XX

Preface

reviewed the EJB-specific parts rather late in the process and found
several glitches and issues, especially regarding the then brand-new
EJB 2.0.

We have received comments from many other people, and we’d also
like to thank them for their work. These include Jim Coplien, Costin
Cozianu, Kristijan Cvetkovic, Jutta Eckstein, Erwin Hoesch, Matthias
Hessler, Markus Schiller, Michael Kircher, Jan Materne, Markus Spath,
Thomas Neumann, Francis Pouatcha, Stephan Preis, Michael
Schneider and Oliver Vogel.

Very special thanks go to Steve Rickaby of WordMongers for the copy-
editing and typesetting of the book. Steve did a wonderful job of
adjusting language, formatting and layout - after working with the
material for a really long time, we would not have had the patience to
do that ourselves. Thank you very much!

Last but not least, we’d like to thank Gaynor Redvers-Mutton of John
Wiley & Sons, who helped us through all the organizational ‘stuff” and
the coordination with Wiley’s. After all, you don’t write a book every
day, especially your first one, so it was a great help to have somebody
who really cared for all the technical and administrative issues.

Alexander Schmid would like to thank Gudrun Hauk for her patience
and support. His contribution to this book wouldn’t have been the
same without her encouragement.

Eberhard Wolff would like to thank Tanja Maritzen and his family for
the support and backup. Without their support and patience, his work
for this book would have never been possible.

Markus Volter
Alexander Schmid
Eberhard Wolff

Foreword by Frank Buschmann

The book you are holding is about a very important and “hot” software
engineering topic: components. However, it is not “yet another compo-
nent book’, of which you can find so many on bookshelves these days.
This book is the fourth volume of the Wiley series on software design
patterns: as such you can expect something special and unique from it.

What makes this book unique in the field of component-based software
development is that it intentionally avoids focusing on the presentation
and explanation of a particular component platform and its APIs.
Instead it focuses on mining the common wisdom that underlies the
design and implementation of every successful component, regardless
of platform or container. Documented as patterns, this wisdom is
presented in a readily-usable form for everybody interested in compo-
nent-based development.

You can use these patterns, for example, to learn why components and
containers are designed and implemented as they are, so that you can
understand their underlying vision. Or, with help of examples from the
CORBA Component Model (CCM), the Microsoft Component Object
Model (COM+), and specifically with the extensive and detailed exam-
ples from the Enterprise JavaBeans (EJB) environment in Part II, you
can see how these platforms work and why they work as they do. This
enables you to use them more effectively.

The “big picture’, which forms the essential core of the component idea,
is often not visible explicitly in books that are about only one of these
environments. Even if the full picture is presented in such books, it is
often buried deep inside endless descriptions of container-specific
implementation and API details. In this book the component vision is
presented in expressive, bite-sized chunks of information. It therefore
complements every other book about components, whether it be a
general survey of the discipline, a reference or a programming guide
for a specific container or component platform.

xxii

Foreword by Frank Buschmann

The patterns in this book can also, of course, help you to build compo-
nents that actually provide the benefits that component-based
development promises: better modularity, adaptability, configurability
and reusability. Even if it does not appear so in theory, in practice this
is a challenging and non-trivial task. Not many books provide you with
useful guidelines for mastering these challenges - this book does.

The many examples from all major component platforms demonstrate
that the patterns in this book are not just about component theory, but
also capture the wisdom that experienced practitioners apply when
building component-based systems. My personal favorite is Part III.
This presents a dialogue between a component novice who wants to
use EJB in a new project and an experienced consultant who, with help
of the patterns presented in this book, demonstrates to the novice how
he developed an E]JB-based e-commerce application. The novice asks
all those questions that every ‘newbie’ to components has in their
minds, but which are seldom answered in the contemporary body of
component literature. Here they are.

The greatest value of this book is, however, less obvious: you can use it
to design and implement your own custom component platform. In the
presence of CCM, COM+, EJB, and other common ‘off the shelf’
component environments, this may sound silly at a first glance.
However, I mean it very seriously!

Consider, for example, an embedded or mobile system. Such a system
endures stringent constraints: limited memory, CPU power, specialized
hardware are just a few. Yet it should benefit from components, as
enterprise systems already do. For some systems, such as applications
for mobile phones, designing with components is the only way to
ensure a reasonable profit. Unfortunately, available component envi-
ronments are either too heavyweight for today’s embedded and mobile
systems, or are not available at all for the hardware and operating
system employed. Consequently, you can be forced to build your own
platform and container tuned to the specific requirements and
constraints of the system under development.

Even for enterprise systems, the traditional playing field for compo-
nent platforms such as CCM, COM+, and EJB, a trend towards custom
containers is beginning to emerge. Developers complain that the
containers available ‘off the shelf’ either do not provide what they

Foreword by Frank Buschmann xxiii

need, or implement the required functionality in a way they cannot use.
As a result, developers may need to implement their own containers,
which requires relevant and appropriate guidance. They can find such
guidance in this book.

The trend towards custom containers for enterprise systems is not only
fuelled by frustrated developers, however. Academia and industrial
research have already initiated discussions and research on the look-
and-feel of the next generation of containers. These will be very
different from the ‘one-size-fits-all’ philosophy of the containers of
today. Instead, new approaches require the assembly, integration and
customization of small building blocks to create a component platform
that is optimally tuned for its specific application. This requires deep
knowledge and understanding about components and how they work.
Yet despite the differences between the containers of today and those of
tomorrow, their underlying ideas will still be the same, as presented by
the patterns in this book. This book is therefore timeless and should
survive on your bookshelf while the whole component world around
you changes.

I hope you enjoy reading this book as much as I did.

Frank Buschmann
Siemens AG, Corporate Technology

Foreword by Clemens Szyperski

Composing new systems from components, and decomposing archi-
tectures and designs to enable components, are at the same time both
the greatest promises and the greatest challenges in modern enterprise
application engineering. Three-tier approaches have become best prac-
tice for many such applications, and application-specific complexity is
often concentrated at the application-server tier. Component technolo-
gies focusing on application servers are reaching maturity and it is thus
mandatory to wonder how to best map future enterprise applications
to this form. This book promises to provide guidance here - guidance
on how to use best component and application server technologies to
construct enterprise applications.

Combining the words “server’, ‘component” and “pattern” into a single
book title is already a feat. Going further and contributing useful
patterns that actually help harness much of the complexity and subtlety
of component technologies for server-side (mostly middle tier) systems
is a significant contribution. This book delivers on its title and will help
architects and designers of enterprise solutions get more out of the
powerful middle-tier component technologies we see today.

The authors present a pattern language targeting three audience
groups: architects, component implementers and container imple-
menters. With a total of thirty patterns the pattern language is quite
rich, covering the ground from the fundamental (component, compo-
nent interface, component implementation, container, deployment)
through subtle detail (identity, persistence, lifetime, remoting, pack-
aging) to the almost esoteric (container implementation).

While some top-level discussion of the CORBA Component Model
(CCM) and Microsoft COM+ is presented, the bulk of the text focuses
on Enterprise JavaBeans (EJB). Covering the entire pattern language,
which itself is more technology-neutral, the authors explain in detail
how the pattern language maps to the EJB architecture and design. The
mapping begins with the detailed EJB landscape of Stateful and State-

XxXvi

Foreword by Clemens Szyperski

less Session Beans on one hand and Persistent Entity Beans on the
other. Zooming in, the authors then describe how to implement such
EJB components in some detail, including lifecycle and Deployment
Descriptor issues. A discussion of the client side helps an under-
standing of aspects of remote access, as well an appreciation of the
difference from local access, as supported as of EJB 2.0. Concrete advice
on design trade-offs affecting performance or scalability is given.

The discussion of container implementation issues is possibly less rele-
vant to most readers as such. However, taking the time to explore the
innards of a container actually helps develop a more solid under-
standing. It is the first duty of any engineer to stay grounded - to
understand enough of what’s happening in the platform to make
educated decisions.

The authors carefully present technical detail where it helps under-
standing, but avoid drowning the reader in endless tedious detail.
Despite the sometimes daunting nature of server-side component tech-
nology, the book remains refreshingly readable and easy-going.
Especially as a stepping-stone to the deeper literature on various
subtopics, this book provides a helpful overview.

Clemens Szyperski
Redmond, March 2002

Foundations

Before actually delving into the ins and outs of patterns, a set of foun-
dations has to be put in place. These foundations include the following;:

* A definition of the term component. The word has been used in
many contexts, and we must make sure that you have the same
understanding of the term as we had when we wrote the book.

* Pattern and pattern languages are introduced. While it is not
necessary to be a pattern expert to read this book, some back-
ground on the purpose of patterns and their form, as well as on the
structure of pattern languages, is very useful.

* Last but not least, we want to introduce a set of principles. These
principles underlie the design of the mainstream component archi-
tectures and serve as guidelines for their structure. Understanding
these principles helps significantly in understanding component
architectures.

What is a component?

Many definitions of the term component exist, and even more informal
(ab-)uses of the term are common today. We do not attempt to give yet
another definition for the term - however, we want to make clear what
we understand by the term in the context of this book.

A component definition

Clemens Szyperski [SZ99] proposed a definition for component. We will
use it as a starting point for further discussion:

A software component is a unit of composition with contractually-
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition
by third parties.

Foundations

Let’s consider some parts of this definition in detail:

A unit of composition. Calling a component a unit of composition
actually means that the purpose of components is to be composed
together with other components. A component-based application
is thus assembled from a set of components.

Contractually-specified interfaces. To be able to compose components
into applications, each component must provide one or more inter-
faces. These interfaces form a contract between the component and
its environment. The interface clearly defines the services the
component provides - it defines its responsibilities.

Explicit context dependencies only. Software usually depends on a
specific context, such as the availability of database connections or
other system resources. One particularly interesting context is the
set of other components that must be available for a specific
component to collaborate with. To support the composability of
components, such dependencies must be explicitly specified.

Can be deployed independently. A component is self-contained.
Changes to the implementation of a component do not require
changes (or a reinstallation) to other components. Of course, this is

only true as long as the interface remains compatible’.

Third parties. The engineers who assemble applications from
components are not necessarily the same as those who created the
components. Components are intended to be reused - the goal is a
kind of component marketplace in which people buy components
and use them to compose their own applications.

This definition of the term component is very generic, and thus it is not
surprising that the term is used to mean rather different concepts.
While this is acceptable in general, we must make sure that we -
meaning you, the reader and us, the authors - have the same under-
standing of the term in the context of the book. The following are
examples of uses of the term component.

1.

The meaning of compatible in this context is not completely agreed upon. In
general it means that if interface A is compatible with interface B, then A as to
provide the same set of operations as B, or more. Whether this requires some
form of explicit subtyping depends on the component architecture.

Note that in current practice the semantics of operations is not specified in inter-
faces - so no guarantees can be made regarding semantic interface compatibility.

