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Geographic Information Science:
An Introduction

A. Stewart Fotheringham and John P. Wilson

GIS, the acronym for Geographic Information Systems, has been around since the
1980s. Although one can impute a number of characteristics from the use of this
acronym, at the heart of the term “systems” lies a computer software package for
storing, displaying, and analyzing spatial data. Consequently, the use of the term
GIS implies an object or tool which one can use for exploring and analyzing data
that are recorded for specific locations in geographical space (see Cowen [1988]
for an early article articulating this type of definition and Foresman [1998] for a rich
and varied account of the history of Geographic Information Systems). Conversely,
Geographic Information Science or GI Science, or more simply GISc, represents a
much broader framework or modus operandi for analyzing spatial data. The term GI
Science emphasizes more the methodology behind the analysis of spatial data (see
Burrough [1986] for what was perhaps the first GIS text to promote such a frame-
work and Chrisman [1999] for an article advocating an extended definition of GIS
along these same lines). Indeed, one could define GI Science as: any aspect of the
capture, storage, integration, management, retrieval, display, analysis, and modeling
of spatial data. Synonyms of GI Science include Geocomputation, Geolnformatics,
and GeoProcessing.'

The Breadth of Gl Science

Under this definition, GI Science is clearly an extremely broad subject and captures
any aspect connected with the process of obtaining information from spatial data.
A feeling for this breadth can be seen in Figure 0.1 which describes a schematic of
some of the elements that make up GI Science. At the top level, GI Science is con-
cerned with the collection or capture of spatial data by such methods as satellite
remotely sensed images, GPS, surveys of people and/or land, Light Detection And
Ranging (LiDAR), aerial photographs, and spatially encoded digital video.” The key
element here is to capture not only attribute information but also accurate informa-
tion on the location of each measurement of that attribute. For instance, we might
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Fig. 0.1 Geographic Information Science (GISc): An Overview

ask people some information on themselves during a survey but we would also
like to record some aspect of the location of that individual — this might be the
location at which the survey took place, or the person’s usual residence or their
workplace or some other location. Similarly, if we measure some attribute such as
the elevation above sea level and/or the precipitation at a set of points, we also need
to know the locations of these points, otherwise the elevation and precipitation
measurements are useless (see Corbett and Carter [1996] and Custer, Farnes, Wilson,
and Snyder [1996] for two examples of what can be accomplished by combining
locational information with elevations and precipitation measurements).

Once spatial data have been captured, they need to be stored and transmitted. This
can create challenges as some spatial data sets can be extremely large. A census of
population in the USA would contain, for example, records on almost 300 million
people with the locational data on each person typically being his or her residence
(hence the well-known problem of census data being a snapshot of where people
are at midnight rather than during the day). In some countries, a decennial census
has been replaced with a more continuous monitoring of the population in the form
of a register which can be updated more regularly. Satellite imagery of the Earth’s
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surface can generate terabytes of data and the move towards global data sets can lead
to even larger data sets. The data storage and transmission demands of spatially
encoded digital video have already been referred to in endnote 2 and pose challenges
to current systems. Consequently, spatial data sets can be extremely large and finding
ways to store, process, and transmit such large data sets efficiently is a major challenge
in GI Science.

The next two levels of operations in the schematic in Figure 0.1 refer to the
process of transforming data into information. We are currently living in a data-
rich world that is getting richer by the day. In many operations, large volumes of
spatial data are being collected and a major challenge in GI Science is to turn these
data into useful information. Consider, for example, the following sources of spatial
data (which are but a small sample from the complete set of sources):

e Censuses of population which typically occur every five or 10 years and which
typically record information on each individual in each household and on the
household itself;

e Customer databases held by retail-related companies which hold information
on individuals submitted in various application forms or warranty cards;

e Traffic flow monitoring along streets or at intersections;

e LiDAR - low pass fly-overs by plane generating large volumes of detailed data
on terrain features or urban areas;

e Digital Elevation Models (DEMs) captured via satellites or the US space shuttle
which can be at a global scale;

® Health records either on the location of patients with particular diseases, used
to study possible geographic influences on etiology or to assess the level of demand
for various services in particular hospitals;

e Satellite remotely-sensed images or aerial photographs used to track land use
change over time or to study the spatial impacts of various natural disasters or
for various military uses such as tracking missiles or identifying targets;

e Satellite GPS used increasingly for general data capture of vehicles and individuals.
This makes possible vehicle tracking, in-car navigation systems, precision agri-
culture, animal tracking, monitoring of individuals, and general data capture
on the location of objects via GPS receivers. It is now possible to contemplate,
as the UK is doing, tracking the movement of all vehicles and charging for
per mileage road use instead of a flat road tax. Similarly, it is now possible
via GPS to monitor a child’s movements via a GPS watch linked to a central
monitoring system that parents can access remotely via the World Wide Web
(see http://www.wherifywireless.com for additional details). The linking of GPS
to mobile phones will allow the tracking of friends so that one can query the
location of a registered friend at any moment. The use of mobile phones to locate
individuals by triangulation from mobile relay stations is already standard police
practice in the case of missing persons. Some of these uses of course immediately
raise important ethical and legal questions which need to be resolved. Just how
much spatial information on ourselves are we prepared to have captured and stored?

Most organizations simply do not have the resources (measured in terms of per-
sonnel, knowledge, and/or software) to be able to make full use of all the data
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they routinely gather. There is a growing need for techniques that allow users to
make sense out of their spatial data sets. This mirrors the general transformation
of society from one dominated by the industrial revolution with its origins in the
eighteenth and nineteenth centuries, to one dominated by the information revolu-
tion with its origins in the computer age of the late twentieth century. Two main
sets of techniques exist to turn data into information: visualization and statistical/
mathematical modeling.

There is a vast array of techniques that have been developed for visualizing
spatial data and it remains a very intense and fruitful area of research (see
Dykes, MacEachren, and Kraak [2005] for one such treatment). Spatial data lend
themselves to visualization because the data are geocoded and can therefore be
represented easily on maps and map-like objects. Simply mapping spatial data can
shed so much more light on what is being studied than if the data are presented
in tabular form.> However, maps can also deceive (see Monmonier [1991] for a
popular treatment of this topic) and there are many GI Science issues that need
to be considered if spatial data are to be displayed to provide reasonably accurate
information content. The development of algorithms for continuous cartograms,
software to create pseudo-3D virtual reality environments, and hardware that allows
digital video to be linked to a GPS is providing us with the means towards much
more sophisticated visualization of spatial data than traditional 2D maps and there
are great advances in this area yet to come. Because spatial data contain attribute
and locational information, the data can be shown together as on a simple map
of the distribution of an attribute or they can be displayed separately in different
windows. The use of multiple windows for displaying spatial data is now com-
monplace and it can sometimes provide useful information to display a map in one
window and a non-spatial display of the data (such as a histogram or scatterplot
for example) in another window and to provide a link between the two (see GeoDA™
[Anselin, Syabri, and Kho 2006] and STARS [Rey and Janikas 2006] for examples
of such systems). In this way, only data highlighted on the non-spatial display need
to be mapped to show the spatial distribution of extreme values, for example.
Alternatively, all the data can be displayed on a map and only the data points selected
on the map need to be highlighted in the non-spatial display. Finally, many spatial
data sets are multivariate and it is a major challenge to try to represent such com-
plex data in one display.

The other set of methods to turn spatial data into information are those involving
statistical analysis and mathematical modeling. Statistical analysis was traditionally
dominated by what is known as “confirmatory” analysis in which a major objective
was to examine hypotheses about relationships that were already formed. The
typical approach to confirmatory analysis would be to develop a hypothesis about
a relationship from experience or the existing literature and to use statistical tech-
niques to examine whether the data support this hypothesis or not. Confirmatory
statistical analysis generally depends on assessing the probability or likelihood that
a relationship or pattern could have arisen by chance. If this probability or likelihood
is very low, then other causes may be sought. The assessment of the role of chance
necessitates the calculation of the uncertainty of the results found in a set of data
(if we had a different data set, would the results perhaps be substantially different
or pretty much the same?). In classical statistical methods, this calculation typically



Gl SCIENCE: AN INTRODUCTION 5

assumes that the data values are independent of each other. A major problem arises
in the use of this assumption in spatial data analysis because spatial data are typic-
ally not independent of each other. Consequently, specialized statistical techniques
have been developed specifically for use with spatial data (see Bailey and Gattrell
[1995] for an informative and accessible summary of some of these techniques) and
a great deal more research is needed in this area.

More recently, and probably related to the recent explosion of data availability,
“exploratory” statistical techniques have increased in popularity. With these, the
emphasis is more on developing hypotheses from the data rather than on testing
hypotheses. That is, the data are manipulated in various ways, often resulting in
a visualization of the data, so that possible relationships between variables may
be revealed or exceptions to general trends can be displayed to highlight an area
or areas where relationships appear to be substantially different from those in the
remainder of the study region. A whole set of localized statistical techniques has
been developed to examine such issues (for example, Fotheringham, Brunsdon, and
Charlton 2000).

Finally, spatial modeling involves specifying relationships in a mathematical
model that can be used for prediction or to answer various “what if” questions.
Classical spatial models include those for modeling the movements of people, goods,
or information over space and the runoff of rainwater over a landscape. There is a
fuzzy boundary between what might be termed a mathematical model and what might
be termed a statistical model. Quite often, models are hybrids where a formulation
might be developed mathematically but the model is calibrated statistically. Where
models are calibrated statistically from spatial data, one important issue is that it
is seldom clear that all, or even most, relationships are stationary over space, usu-
ally an assumption made in the application of various modeling techniques. For
instance, the application of traditional regression modeling to spatial data assumes
that the relationships depicted by the regression model are stationary over space.
Hence, the output from a regression model is a single parameter estimate for each
relationship in the model. However, it is quite possible that some or all of the rela-
tionships in the model vary substantially over space. That is, the same stimulus
may not provoke the same response in all parts of the study region for various con-
textual, administrative or political reasons — people in different areas, for example,
might well behave differently. Consequently, specialized statistical techniques such
as Geographically Weighted Regression (GWR) have been developed recently to allow
for spatially varying relationships to be modeled and displayed (Fotheringham,
Brunsdon, and Charlton 2002).

The final layer of Figure 0.1 represents some of the application areas of geo-
computation which gives an indication of why it is such an important and rapidly
growing area of study. Spatial data can be found in most areas of study and include
many different types of data, such as:

® Geodetic — coordinate reference systems for locating objects in space;
e Elevation — recording heights of objects above mean sea level;

e Bathymetric — recording the depth of water bodies;

® Orthoimagery — georeferenced images of the earth’s surface;

e Hydrography — data on streams, rivers and other water bodies;
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e Transportation networks — roads, railways, and canals;

e Communication networks — the transmission of ideas and data across space;

e Cadastral — precise positioning of property boundaries;

e Utilities — the locations of pipes, wires and access points;

e Boundaries — electoral, administrative, school and health districts;

e Medical - the location of incidents of disease and patients with respect to the
location of services;

e Crime — the location of police incidents;

¢ Environmental — habitats, pollution, and the impacts of natural disasters;

¢ Urban - the location of areas of high priority for social and economic intervention;

¢ Planning — the spatial impacts of locational decisions;

¢ Retailing — the location of consumers with respect to the location of services;

[ ]

Biogeography — the location of one species with respect to the location of one
or more others.

We now turn to a brief discussion of the topics covered in this book. Given the
enormous breadth of GI Science, it is clear that not everything can be included in
this volume. However, in order to be as comprehensive as possible, we have tried
to solicit contributions which have a fairly general application as opposed to being
strictly about the use of GI Science in one particular field.

What Follows Next!

The remainder of this book is organized under six headings. We start each section
with a brief description of the chapters that follow and the chapters, themselves,
offer stand-alone treatments that can be read in any order the reader chooses. Each
chapter includes links to other chapters and key references in case the reader wants
to follow up specific themes in more detail.

The first group of six chapters looks at some of the recent trends and issues con-
cerned with geographic data acquisition and distribution. Separate chapters describe
how the production and distribution of geographic data has changed since the
mid-1970s, the principal sources of social data for GIS, remote sensing sources and
data, the possibilities of using spatial metaphors to represent data that may not be
inherently spatial for knowledge discovery in massive, complex, multi-disciplinary
databases, the myriad sources of uncertainty in GIS, and the assessment of spatial
data quality.

The second section of the book explores some of the important and enduring
database issues and trends. Separate chapters describe relational, object-oriented
and object-relational database management systems, the generation of regular grid
digital elevation models from a variety of data sources, the importance of time and
some of the conceptual advances that are needed to add time to GIS databases,
and new opportunities for the extraction and integration of geospatial and related
online data sources.

The third section of the book consists of seven chapters that examine some of the
recent accomplishments and outstanding challenges concerned with the visualization
of spatial data. Separate chapters describe the role of cartography and interactive
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multimedia map production, the role of generalization and scale in a digital world,
the opportunities to display and analyze a variety of geographical phenomena as
surfaces, fuzzy classification and mapping in GIS, predictive rule-based mapping,
multivariate visualization, and the ways in which digital representations of two-
dimemsional space can be enriched and augmented through interactivity with users
in the third dimension and beyond.

The fourth section of the book contains three chapters looking at the increasingly
important task of knowledge elicitation. These chapters examine the role of inference
and the difficulties of applying these ideas to spatial processes along with the pro-
cess of geographic knowledge discovery (GKD) and one of its central components,
geographic data mining, and the prospects for building the geospatial semantic web.

The next group of four chapters examines spatial analysis. The links between
quantitative analysis and GIS, spatial cluster analysis, terrain analysis, and dynamic
GIS are discussed here.

The six chapters of Part VI examine a series of broader issues that influence
the development, conduct, and impacts of geographic information technologies.
Separate chapters examine institutional GIS and GI partnering, public participation
GIS, GIS and participatory decision-making, several participatory mapping projects
from Central America to illustrate the dynamic interplay between conceptions of
people and place and the methods used to survey them, the relationship between
GIS, personal privacy, and the law across a variety of jurisdictions, and the major
developments and opportunities for educating oneself in GIS.

Finally, Part VII examines future trends and challenges. Separate chapters examine
the role of the World Wide Web in moving GIS out from their organization- and
project-based roles to meet people’s personal needs for geographic information, the
emergence of location-based services (LBS) as an important new application of GIS,
and two views of the challenges and issues that are likely to guide GI Science research
for the next decade or more.

Closing Comments

This handbook seeks to identify and describe some of the ways in which the rapidly
increasing volumes of geographic information might be turned into useful informa-
tion. The brief introductions to topics offered in the previous section give some clues
as to what we think is important here — the rapid growth in the number and variety
of geographic data sets, finding new ways to store, process, and transmit these
data sets, new forms of visualization and statistical/mathematical modeling, etc.
To the extent that this book has helped to clarify the current state of knowledge
and indicate profitable avenues for future research, it will have helped to educate and
inform the next generation of geographic information scientists and practitioners.
This generation will need to be more nimble than its predecessors given the rapid
rate of technological change (innovation) and the tremendous growth of geographic
information science, geographic information systems, and geographic information
services that is anticipated in the years ahead. With this in mind, we hope the reader
will tackle the remainder of the book with an opportunistic and forward-looking
view of the world around them.
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ENDNOTES

1 In some circumstances, Geomatics also is used synonymously with GI Science as in Geo-
matics for Informed Decisions (GEOIDE), the Canadian Network Centre of Excellence
headquartered at Laval University (www.geoide.ulaval.ca). However, in other circumstances,
such as in the naming of academic departments in the UK, the term Geomatics has been
used to “re-brand” Departments of Surveying where its scope and purpose are much more
restricted.

2 While we are used to seeing orthophotographs, photographs with associated files giving
information on the location of each pixel so that operations can be carried out on the
spatial relationships within the photograph, spatially encoded digital video allows the user
to perform spatial queries and spatial analysis on video images. As one can imagine, the
volumes of such data that need to be stored and transmitted create special challenges.

3 See Ian McHarg’s 1969 book entitled “Design with Nature” for an influential book that
documented how maps could be overlaid and used to evaluate the social and environ-
mental costs of land use change. This book has been reprinted many times and still serves
as an important text in many landscape architecture courses and programs.
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Part | Data Issues

This first group of chapters looks at some of the recent trends and issues concerned
with geographic data acquisition and distribution. The first of these chapters, by
David J. Cowen, describes how the production and distribution of geographic data
has changed in the past three decades. This chapter walks the reader through the over-
lapping worlds of the National Spatial Data Infrastructure, Federal Geographic Data
Committee (FGDC), framework data, metadata, standards, FGDC clearinghouses,
Geospatial One-Stop, and the National Map, and thereby offers a summary of recent
developments in the United States where publicly funded geographic data sets have
been distributed at little or no cost to potential users for many years.

The second chapter in this group, by David J. Martin, reviews the principal sources
of social data for Geographic Information Systems (GIS). The examples demonstrate
how conventional administrative, survey, and census-based data sources are becom-
ing increasingly integrated as national statistical organizations look towards data
collection strategies that combine elements of each. This integration will probably
produce higher spatial and temporal resolution and cross-scale data sets in future
years that will, in turn, require entirely new geocomputational tools for effective
visualization and/or analysis.

The third of the chapters, by Brian G. Lees, describes the remote sensing sources
and data that are commonly used as inputs to GIS. The opportunities for extract-
ing and updating spatial and attribute information in geographic databases from
remotely sensed data are examined in some detail, and special attention is paid
to the role of error within remote sensing and how insights about the behavior of
spatial data in GIS and spatial statistics are feeding back into remote sensing and
driving innovation in these rapidly evolving fields.

In the fourth chapter André Skupin and Sara 1. Fabrikant explore the possibilities
of using spatial metaphors to represent data that may not be inherently spatial for
knowledge discovery in massive, complex, multi-disciplinary databases. This area
of research is termed “spatialization” and the chapter discusses what kinds of data
can be used for spatialization and how spatialization can be achieved. The authors
conclude their chapter by noting that spatialization is a new and exciting area in
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which GI Science is challenged to address important cognitive and computational
issues when dealing with both geographic and non-geographic data.

Ashley Morris starts out the fifth chapter by noting that uncertainty permeates
every aspect of spatial data (including the assimilation and storage of geospatial
features, operations on those features, and the representation of the results of these
operations) and goes on to explain why fuzzy object-oriented databases provide
a viable and attractive option for modeling uncertainty in spatial databases. These
databases provide membership functions that aid in the storage and representation
of objects with uncertain boundaries and the focus on features means that they are
able to store and represent both vector- and raster-based objects. These features
coupled with the use of multiple alpha-cuts provide extensible systems that can sup-
port objects with either crisp or ill-defined boundaries at any desired level of detail.
The chapter concludes by noting that the storage, manipulation, and representation
of objects with uncertain boundaries is likely to become more important as users
become more sophisticated.

The final chapter in this group of six, by James D. Brown and Gerald B. M.
Heuvelink, focuses on geographic data, it complements the previous chapter and
deals with the assessment of spatial data quality. This information is essential if
we are to manage social and environmental systems effectively and more generally,
for encouraging responsible use of spatial data where knowledge is limited and
priorities are varied. This chapter offers an overview of data quality and measures
of data quality, the sources of uncertainty in spatial data, and some probabilistic
methods for quantifying the uncertainties in spatial attributes. The conclusion notes
several challenges that must be overcome if we are to estimate and use information
on spatial data quality more effectively in the future.



