Medicinal Chemistry

Second Edition

Gareth Thomas

University of Portsmouth

John Wiley & Sons, Ltd

Medicinal Chemistry

Second Edition

Medicinal Chemistry

Second Edition

Gareth Thomas

University of Portsmouth

John Wiley & Sons, Ltd

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+ 44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Anniversary Logo Design: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data

Thomas, Gareth, Dr. Medicinal chemistry : an introduction / Gareth Thomas. – 2nd ed. p. ; cm. Includes bibliographical references and index. ISBN 978-0-470-02597-0 (cloth : alk. paper) – ISBN 978-0-470-02598-7 (pbk. : alk. paper)
Pharmaceutical chemistry. I. Title. [DNLM: 1. Chemistry, Pharmaceutical. 2. Drug Design. 3. Drug Evaluation. 4. Pharmacokinetics. QV 744 T4567m 2007] RS403.T447 2007 615'.19–dc22

2007026412

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-02597-0 (HB) 978-0-470-02598-7 (PB)

Typeset in 10.5/13pt Times Roman by Thomson Digital Printed and bound in Great Britain by Antony Rowe Ltd., Chippenham., Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Pr	eface	e to the First Edition	xv
Pr	eface	e to the Second Edition	xvii
Ac	xix		
Ab	xxi		
1	An	introduction to drugs, their action and discove	ry 1
	1.1	Introduction	1
	1.2	What are drugs and why do we need new ones?	1
	1.3	Drug discovery and design: a historical outline	3
		1.3.1 The general stages in modern-day drug discovery	
		and design	7
	1.4	Leads and analogues: some desirable properties	9
		1.4.1 Bioavailability	9
		1.4.2 Solubility	10
		1.4.3 Structure	10
		1.4.4 Stability	11
	1.5	Sources of leads and drugs	14
		1.5.1 Ethnopharmaceutical sources	15
		1.5.2 Plant sources	15
		1.5.3 Marine sources	17
		1.5.4 Microorganisms	18
		1.5.5 Animal sources1.5.6 Compound collections, data bases and synthesis	20 20
		1.5.7 The pathology of the diseased state	20
		1.5.8 Market forces and 'me-too drugs'	21
	16	Methods and routes of administration: the pharmaceutical p	
	1.7		24
	1.7	1.7.1 The pharmacokinetic phase (ADME)	25
		1.7.2 The pharmacodynamic phase	32
	1.8		33
	1.0	1.8.1 Chemical structure	33
		1.8.2 Pharmacological action	33
		1.8.3 Physiological classification	34
		1.8.4 Prodrugs	35
	1.9		35
	±.,	444444	55

2	Drug	y structure and solubility	37
	2.1	Introduction	37
	2.2	Structure37	
	2.3	Stereochemistry and drug design	38
		2.3.1 Structurally rigid groups	38
		2.3.2 Conformation	39
		2.3.3 Configuration	41
	2.4	Solubility	44
		2.4.1 Solubility and the physical nature of the solute	44
	2.5	Solutions	46
	2.6	The importance of water solubility	47
	2.7	Solubility and the structure of the solute	49
	2.8	Salt formation	50
	2.9	The incorporation of water solubilising groups in a structure	52
		2.9.1 The type of group	52
		2.9.2 Reversible and irreversible groups	53
		2.9.3 The position of the water solubilising group	53
		2.9.4 Methods of introduction	54
		2.9.5 Improving lipid solubility	59
	2.10	Formulation methods of improving water solubility	59
		2.10.1 Cosolvents	59
		2.10.2 Colloidal solutions 2.10.3 Emulsions	59
	0 1 1		60 61
		The effect of pH on the solubility of acidic and basic drugs	61
	2.12	Partition	63
		2.12.1 Practical determination of partition coefficients2.12.2 Theoretical determination of partition coefficients	65 66
	2 1 2	Surfactants and amphiphiles	66
	2.15	2.13.1 Drug solubilisation	69
		2.13.2 Mixed micelles as drug delivery systems	71
		2.13.3 Vesicles and liposomes	71
	2.14	Questions	72
3	Stru	cture–activity and quantitative structure relationships	75
	3.1	Introduction	75
	3.2	Structure-activity relationship (SAR)	76
	3.3	Changing size and shape	77
		3.3.1 Changing the number of methylene groups in chains and rings	77
		3.3.2 Changing the degree of unsaturation	78
		3.3.3 Introduction or removal of a ring system	78
	3.4	Introduction of new substituents	80
		3.4.1 Methyl groups	81
		3.4.2 Halogen groups	83
		3.4.3 Hydroxy groups	84
		3.4.4 Basic groups	84
		3.4.5 Carboxylic and sulphonic acid groups	85
	2 5	3.4.6 Thiols, sulphides and other sulphur groups	85
	3.5	Changing the existing substituents of a lead	86
	3.6	Case study: a SAR investigation to discover potent geminal bisphosphonates	87
	3.7	Quantitative structure-activity relationship (QSAR)	90
		3.7.1 Regression analysis	93
		3.7.2 The lipophilic parameters	94

vi

CO	NIT	F E M	١т	C
ιu	111	ᄂ	11	э

		3.7.3 Electronic parameters	99
	3.8	3.7.4 Steric parameters Questions	102 110
4	Com	puter-aided drug design	113
	4.1	Introduction	113
		4.1.1 Models	114
		4.1.2 Molecular modelling methods	115
		4.1.3 Computer graphics	116
	4.2	Molecular mechanics	117
		4.2.1 Creating a molecular model using molecular mechanics	120
	4.3	Molecular dynamics	123
		4.3.1 Conformational analysis	124
	4.4	Quantum mechanics	124
	4.5	Docking	127
		4.5.1 De novo design	128
	4.6	Comparing three-dimensional structures by the use of overlays	130
		4.6.1 An example of the use of overlays	132
	4.7	Pharmacophores and some of their uses	133
		4.7.1 High-resolution X-ray crystallography or NMR	133
	(0	4.7.2 Analysis of the structures of different ligands	134
	4.8	Modelling protein structures	135
	4.9	Three-dimensional QSAR	136
	(10	4.9.1 Advantages and disadvantages	140
		Other uses of computers in drug discovery	141
	4.11	Questions	143
5	Com	binatorial chemistry	145
	5.1	Introduction	145
		5.1.1 The design of combinatorial syntheses	147
		5.1.2 The general techniques used in combinatorial synthesis	148
	5.2	The solid support method	148
		5.2.1 General methods in solid support combinatorial chemistry	150
		5.2.2 Parallel synthesis	152
	г 2	5.2.3 Furka's mix and split technique	155
	5.3	Encoding methods 5.3.1 Seguential chemical tagging	157 157
		5.3.2 Still's binary code tag system	160
		5.3.3 Computerised tagging	160
	5.4	Combinatorial synthesis in solution	161
	5.4	5.4.1 Parallel synthesis in solution	162
		5.4.2 The formation of libraries of mixtures	162
		5.4.3 Libraries formed using monomethyl polyethylene glycol (OMe-PEG)	164
		5.4.4 Libraries produced using dendrimers as soluble supports	164
		5.4.5 Libraries formed using fluorocarbon reagents	165
		5.4.6 Libraries produced using resin-bound scavenging agents	166
		5.4.7 Libraries produced using resin-bound reagents	168
		5.4.8 Resin capture of products	168
	5.5	Deconvolution	169
	5.6	High-throughput screening (HTS)	170
		5.6.1 Biochemical assays	171
			1/1
		5.6.2 Whole cell assays 5.6.3 Hits and hit rates	171 173 173

vii

CON	ΤF	ΝТ	S
CON	ᄂ	111	J

	5.7	Automatic methods of library generation and analysis	174
	5.8	Questions	175
6	Dru	gs from natural sources	177
•		Introduction	177
		Bioassays	179
	0.2	6.2.1 Screening tests	180
		6.2.2 Monitoring tests	183
	63	Dereplication	185
		Structural analysis of the isolated substance	186
		Active compound development	188
		Extraction procedures	189
	0.0	6.6.1 General considerations	190
		6.6.2 Commonly used methods of extraction	190
		6.6.3 Cleaning up procedures	195
	6.7		195
		6.7.1 Liquid-liquid partition	196
		6.7.2 Chromatographic methods	199
		6.7.3 Precipitation	200
		6.7.4 Distillation	200
		6.7.5 Dialysis	202
		6.7.6 Electrophoresis	202
	6.8	Case history: the story of Taxol	202
	6.9	Questions	206
7	Bio	logical membranes	207
•		Introduction	207
		The plasma membrane	208
	1.2	7.2.1 Lipid components	209
		7.2.2 Protein components	211
		7.2.3 The carbohydrate component	213
		7.2.4 Similarities and differences between plasma membranes in	
		different cells	213
		7.2.5 Cell walls	214
		7.2.6 Bacterial cell exterior surfaces	217
		7.2.7 Animal cell exterior surfaces	218
		7.2.8 Virus	218
		7.2.9 Tissue	219
		7.2.10 Human skin	219
	7.3	The transfer of species through cell membranes	220
		7.3.1 Osmosis	220
		7.3.2 Filtration7.3.3 Passive diffusion	221 221
		7.3.4 Facilitated diffusion	223
		7.3.5 Active transport	223
		7.3.6 Endocytosis	224
		7.3.7 Exocytosis	225
	7.4	Drug action that affects the structure of cell membranes	223
		and walls	225
		7.4.1 Antifungal agents	226
		7.4.2 Antibacterial agents (antibiotics)	230
		7.4.3 Local anaesthetics	244
	7.5	Questions	249

viii

1	X	

8		eptors and messengers	251
	8.1	Introduction	251
	8.2	The chemical nature of the binding of ligands to receptors	252
	8.3	Structure and classification of receptors	254
	8.4	General mode of operation	256
		8.4.1 Superfamily Type 1	259
		8.4.2 Superfamily Type 2	260
		8.4.3 Superfamily Type 3	263
		8.4.4 Superfamily Type 4	264
	8.5	Ligand-response relationships	265
		8.5.1 Experimental determination of ligand concentration-response curves	266
		8.5.2 Agonist concentration-response relationships	267
		8.5.3 Antagonist concentration-receptor relationships	268
		8.5.4 Partial agonists	271
		8.5.5 Desensitisation	272
	8.6	Ligand-receptor theories	272
		8.6.1 Clark's occupancy theory	272
		8.6.2 The rate theory	277
		8.6.3 The two-state model	278
	8.7	Drug action and design	279
		8.7.1 Agonists	279
		8.7.2 Antagonists	281
		8.7.3 Citalopram, an antagonist antidepressant discovered by a rational approach	282
	0.0	8.7.4 β-Blockers Questions	285
	8.8	questions	289
9	Enz∖	/mes	291
			291
	9.1	Introduction	
	9.1 9.2	Introduction Classification and nomenclature	291
	9.2	Classification and nomenclature	291 293
		Classification and nomenclature Active sites and catalytic action	291 293 295
	9.2 9.3	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation	291 293 295 297
	9.2	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity	291 293 295 297 298
	9.2 9.3	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification	291 293 295 297 298 298
	9.2 9.3	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control	291 293 295 297 298 298 298
	9.2 9.3 9.4	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control	291 293 295 297 298 298 298 300
	9.2 9.3 9.4 9.5	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action	291 293 295 297 298 298 298 300 300
	9.2 9.3 9.4 9.5 9.6	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action	291 293 295 297 298 298 298 300 300 300
	 9.2 9.3 9.4 9.5 9.6 9.7 	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action	291 293 295 297 298 298 298 300 300 300 302 302
	9.2 9.3 9.4 9.5 9.6	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics	291 293 295 297 298 298 298 300 300 300 302 302 302
	 9.2 9.3 9.4 9.5 9.6 9.7 	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions	291 293 295 297 298 298 298 300 300 300 302 302 303 303
	9.2 9.3 9.4 9.5 9.6 9.7 9.8	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions	291 293 295 297 298 298 298 300 300 300 302 302 303 303 303 305
	 9.2 9.3 9.4 9.5 9.6 9.7 	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions Enzyme inhibitors	291 293 295 297 298 298 298 300 300 300 302 302 303 303 303 305 306
	9.2 9.3 9.4 9.5 9.6 9.7 9.8	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions	291 293 295 297 298 298 298 300 300 300 302 302 303 303 305 306 307
	 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions Enzyme inhibitors 9.9.1 Reversible inhibitors	291 293 295 297 298 298 298 300 300 300 302 302 303 303 303 305 306
	 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions Enzyme inhibitors 9.9.1 Reversible inhibitors 9.9.2 Irreversible inhibitors	291 293 295 297 298 298 298 300 300 302 302 303 303 305 306 307 312 318
	9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions Enzyme inhibitors 9.9.1 Reversible inhibitors 9.9.2 Irreversible inhibitors 9.9.2 Irreversible inhibitors Enzymes and drug design: some general considerations	291 293 295 297 298 298 298 300 300 302 302 303 303 303 305 306 307 312 318 320
	9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions Enzyme inhibitors 9.9.1 Reversible inhibitors 9.9.2 Irreversible inhibitors 9.9.2 Irreversible inhibitors Enzymes and drug design: some general considerations Examples of drugs used as enzyme inhibitors	291 293 295 297 298 298 298 300 300 302 302 303 303 305 306 307 312 318
	9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions Enzyme inhibitors 9.9.1 Reversible inhibitors 9.9.2 Irreversible inhibitors 9.9.2 Irreversible inhibitors Enzymes and drug design: some general considerations Examples of drugs used as enzyme inhibitors 9.12.1 Sulphonamides	291 293 295 297 298 298 298 300 300 302 302 303 303 305 306 307 312 318 320 321
	9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions Enzyme inhibitors 9.9.1 Reversible inhibitors 9.9.2 Irreversible inhibitors 9.9.2 Irreversible inhibitors Enzymes and drug design: some general considerations Examples of drugs used as enzyme inhibitors	291 293 295 297 298 298 298 300 300 302 302 303 303 305 306 307 312 318 320 321 321
	9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12	Classification and nomenclature Active sites and catalytic action 9.3.1 Allosteric activation Regulation of enzyme activity 9.4.1 Covalent modification 9.4.2 Allosteric control 9.4.3 Proenzyme control The specific nature of enzyme action The mechanisms of enzyme action The general physical factors affecting enzyme action Enzyme kinetics 9.8.1 Single substrate reactions 9.8.2 Multiple substrate reactions Enzyme inhibitors 9.9.1 Reversible inhibitors 9.9.2 Irreversible inhibitors Enzymes and drug design: some general considerations Examples of drugs used as enzyme inhibitors 9.12.1 Sulphonamides 9.12.2 Captopril and related drugs	291 293 295 297 298 298 298 300 300 302 302 303 303 303 305 306 307 312 318 320 321 321 323

		9.13.2 An increase in the production of the substrate	331
		9.13.3 Changes in the structure of the enzyme	331
		9.13.4 The use of an alternative metabolic pathway	332
	9.14	Ribozymes	332
	9.15	Questions	332
10	Nucle	eic acids	335
	10.1	Introduction	335
	10.2	Deoxyribonucleic acid (DNA)	336
		10.2.1 Structure	337
	10.3	The general functions of DNA	338
	10.4	Genes	339
	10.5	Replication	340
	10.6	Ribonucleic acid (RNA)	341
	10.7	Messenger RNA (mRNA)	342
	10.8	Transfer RNA (tRNA)	343
	10.9	Ribosomal RNA (rRNA)	345
	10.9		345
	10.10	10.10.1 Activation	345
		10.10.1 Activation 10.10.2 Initiation	345
		10.10.2 Elongation	340
		10.10.4 Termination	348
	10 11	Protein synthesis in prokaryotic and eukaryotic cells	348
	10.11	10.11.1 Prokaryotic cells	348
		10.11.2 Eukaryotic cells	350
	10.12		350
	10.12	10.12.1 Aminoglycosides	351
		10.12.2 Chloramphenicol	355
		10.12.3 Tetracyclines	356
		10.12.4 Macrolides	359
		10.12.5 Lincomycins	360
	10.13		362
		10.13.1 Antimetabolites	362
		10.13.2 Enzyme inhibitors	368
		10.13.3 Intercalating agents	372
		10.13.4 Alkylating agents	374
		10.13.5 Antisense drugs	377
		10.13.6 Chain cleaving agents	379
	10.14	Viruses	380
		10.14.1 Structure and replication	380
		10.14.2 Classification	381
		10.14.3 Viral diseases	383
		10.14.4 Antiviral drugs	384
	10.15	55 (5 5 5)	389
		10.15.1 Gene cloning	389
		10.15.2 Medical applications	392
	10.16	Questions	401
11	Phar	macokinetics	403
	11.1	Introduction	403
		11.1.1 General classification of pharmacokinetic properties	405
		11.1.2 Drug regimens	405
		11.1.3 The importance of pharmacokinetics in drug discovery	406
	11.2	Drug concentration analysis and its therapeutic significance	407

х

Pharmacokinetic models

11.3

	11.4	Intravascular administration	411
		11.4.1 Distribution	412
	11.5	Extravascular administration	425
		11.5.1 Dissolution	428
		11.5.2 Absorption 11.5.3 Single oral dose	429 430
		11.5.5 Single of a dose t_{max} and C_{max}	430
		11.5.5 Repeated oral doses	434
	11.6	The use of pharmacokinetics in drug design	435
	11.7	Extrapolation of animal experiments to humans	435
	11.8	Questions	436
12	-	metabolism	439
	12.1	Introduction	439
		12.1.1 The stereochemistry of drug metabolism	439
		12.1.2 Biological factors affecting metabolism	440
		12.1.3 Environmental factors affecting metabolism12.1.4 Species and metabolism	443 443
		12.1.5 Enzymes and metabolism	443
	12.2	Secondary pharmacological implications of metabolism	443
	12.2	12.2.1 Inactive metabolites	444
		12.2.2 Metabolites with a similar activity to the drug	444
		12.2.3 Metabolites with a dissimilar activity to the drug	444
		12.2.4 Toxic metabolites	445
	12.3	Sites of action	445
	12.4	Phase I metabolic reactions	446
		12.4.1 Oxidation	446
		12.4.2 Reduction	448
		12.4.3 Hydrolysis	448
		12.4.4 Hydration	449
	10 F	12.4.5 Other Phase I reactions	449
	12.5	Examples of Phase I metabolic reactions	449
	12.6	Phase II metabolic routes	454
	12.7	Pharmacokinetics of metabolites	457
	12.8	Drug metabolism and drug design	458
	12.9	Prodrugs	460
		12.9.1 Bioprecursor prodrugs	461
		12.9.2 Carrier prodrugs 12.9.3 Photoactivated prodrugs	462 464
		12.9.4 The design of carrier prodrug systems for specific purposes	465
	12.10	Questions	475
12	Comn	loves and cholating agents	
13		lexes and chelating agents	477
	13.1	Introduction	477
	13.2	The shapes and structures of complexes 13.2.1 Ligands	478
		13.2.2 Bridging ligands	479 483
		13.2.3 Metal-metal bonds	483
		13.2.4 Metal clusters	483
	13.3	Metal-ligand affinities	485
		13.3.1 Affinity and equilibrium constants	485
		13.3.2 Hard and soft acids and bases	487

xi

409

		13.3.3	The general medical significance of complex stability	488
	13.4		neral roles of metal complexes in biological processes	488
	13.5	Therape	eutic uses	491
			Metal poisoning	491
		13.5.2	Anticancer agents	494
		13.5.3	Antiarthritics	497
			Antimicrobial complexes	498
			Photoactivated metal complexes	499
		•	ction and metal chelation	501
	13.7	Questic	ons	501
14	Nitr	ic oxic	de la constant de la	503
	14.1	Introdu	uction	503
	14.2	The str	ucture of nitric oxide	503
	14.3	The che	emical properties of nitric oxide	504
			Oxidation	505
		14.3.2	Salt formation	506
			Reaction as an electrophile	507
			Reaction as an oxidising agent	507
			Complex formation	508
			Nitric oxide complexes with iron	508
			The chemical properties of nitric oxide complexes	510
			The chemistry of related compounds	512
	14.4		Ilular production and role of nitric oxide	514
			General mode of action	516 518
			Suitability of nitric oxide as a chemical messenger Metabolism	518
	14.5		e of nitric oxide in physiological and pathophysiological states	519
	14.5		The role of nitric oxide in the cardiovascular system	519
			The role of nitric oxide in the nervous system	520
		14.5.3	5	522
		14.5.4	Nitric oxide and impotence	522
		14.5.5	Nitric oxide and the immune system	523
	14.6	Therape	eutic possibilities	524
		14.6.1	Compounds that reduce nitric oxide generation	524
		14.6.2	Compounds that supply nitric oxide	526
			The genetic approach	529
	14.7	Questic	ons	529
15	An i	introdu	uction to drug and analogue synthesis	531
-		Introdu		531
			jeneral considerations	532
	13.6	15.2.1		532
			Practical considerations	532
		15.2.3	The overall design	532
		15.2.4	The use of protecting groups	533
	15.3	Asymm	etry in syntheses	534
			The use of non-stereoselective reactions to produce stereospecific centres	535
		15.3.2	The use of stereoselective reactions to produce stereogenetic centres	535
			General methods of asymmetric synthesis	541
			Methods of assessing the purity of stereoisomers	547
	15.4		ing organic syntheses	548
		15.4.1	An introduction to the disconnection approach	548

• •	Designi	ng organic syncheses	J-
	15.4.1	An introduction to the disconnection approach	5

		15.4.2 Convergent synthesis	554
	15.5	Partial organic synthesis of xenobiotics	556
	15.6	Questions	557
16	Drug	g development and production	559
	16.1	Introduction	559
	16.2	Chemical development	560
		16.2.1 Chemical engineering issues	561
		16.2.2 Chemical plant: health and safety considerations	562
		16.2.3 Synthesis quality control	563
		16.2.4 A case study	563
		Pharmacological and toxicological testing	565
	16.4	Drug metabolism and pharmacokinetics	569
	16.5	Formulation development	570
	16.6	Production and quality control	570
	16.7	Patent protection	571
	16.8	Regulation	572
	16.9	Questions	573
Sel	ected	l further reading	575
Answers to questions			579
Ind	ex		601

xiii

Preface to the First Edition

This book is written for second, and subsequent, year undergraduates studying for degrees in medicinal chemistry, pharmaceutical chemistry, pharmacy, pharmacology and other related degrees. It assumes that the reader has a knowledge of chemistry at level one of a university life sciences degree. The text discusses the chemical principles used for drug discovery and design with relevant physiology and biology introduced as required. Readers do not need any previous knowledge of biological subjects.

Chapter 1 is intended to give an overview of the subject and also includes some topics of peripheral interest to medicinal chemists that are not discussed further in the text. Chapter 2 discusses the approaches used to discover and design drugs. The remaining chapters cover the major areas that have a direct bearing on the discovery and design of drugs. These chapters are arranged, as far as is possible, in a logical succession.

The approach to medicinal chemistry is kept as simple as possible. Each chapter has a summary of its contents in which the key words are printed in bold type. The text is also supported by a set of questions at the end of each chapter. Answers, sometimes in the form of references to sections of the book, are listed separately. A list of recommended further reading, classified according to subject, is also included.

Gareth Thomas

Preface to the Second Edition

This book is written for second and subsequent year undergraduates studying for degrees in medicinal chemistry, pharmaceutical chemistry, pharmacy, pharmacology and other related degrees. It assumes that the reader has a knowledge of chemistry at Level 1 of a university life science degree. The text discusses the chemical principles used for drug discovery and design with relevant physiology and biology introduced as required. Readers do not need any previous knowledge of biological subjects.

The second edition of *Medicinal Chemistry, an Introduction* has a new layout that I hope presents the subject in a more logical form. The main changes are that Chapter 2 has been rewritten as three separate chapters, namely, structure–activity and quantitative structure relationships, computer-aided drug design and combinatorial chemistry. Two new chapters entitled Drugs from Natural Sources and Drug Development and Production have been added. The text has been simplified and extended where appropriate with a number of case histories, new examples and topics. Among the new topics are a discussion of monoclonal antibodies and photodynamic drugs. The inclusion of the new chapters and new material has necessitated a reduction in the biological and chemical introductions to some topics and the omission of some material included in the first edition. Furthermore, the reader should be aware that there are many more drugs and targets than those discussed in this text.

Chapter 1 introduces and gives an overview of medicinal chemistry. This is followed by chapters that discuss the principal methods used in drug design and the isolation of drugs from natural sources. Chapters 7–14 are concerned with a discussion of more specialised aspects of medicinal chemistry. The final two chapters outline drug and analogue synthesis, development and production. Appropriate chapters have an outline introduction to the relevant biology. Each chapter is supported by a set of questions. Answers to these questions, sometimes in the form of references to sections and figures in the book, are listed separately. An updated list of further reading, classified according to subject, is also included.

Gareth Thomas

Acknowledgements

I wish to thank all my colleagues and students, past and present, whose help enabled this second edition of my book to be written. In particular I would like to rethank all those who helped me with the first edition. I would like particularly to thank the following for their help with the second edition: Dr L. Banting; Dr J. Brown for once again acting as my living pharmacology dictionary; Dr P. Cox for his advice on molecular modelling; Dr J. Gray for proofreading the sections on monoclonal antibodies; Dr P. Howard for bringing me up to date with advances in combinatorial chemistry and allowing me to use his lecture notes; Dr Tim Mason, Mr A. Barrow and Dr D. Brimage; Dr A. Sautreau for proofreading and correcting Chapter 6; Robin Usher and his colleagues at Mobile Library Link One for their help in obtaining research papers; Dr. G. White; and Professor D. Thurston for his support. My thanks are also due to Dr J. Fetzer of Tecan Deutschland GmbH, Crailsheim, Germany for the pictures of the equipment used in high-throughput screening. I also wish to acknowledge that the main source of the historical information given in the text is *Drug Discovery, a History*, by W. Sneader, published by John Wiley and Sons Ltd.

I would like to offer a very special thanks to the dedicated NHS medical teams who have treated my myeloma over the past years. Without their excellent care I would not have been here to have written this book. I would particularly like to thank Dr R. Corser, Dr T. Cranfield and the other doctors of the Haematology Department at the Queen Alexandra Hospital, Portsmouth, the nurses and ancillary staff of Ward D16, Queen Alexandra Hospital, Portsmouth, Dr K. Orchard, Dr C. Ottensmier and their respective staff at Southampton General Hospital and the nurses and ancillary staff of Wards C3 and C6 at Southampton General Hospital.

Finally, I would like to thank my wife for the cover design for the first Edition and the sketches included in this text. Her support through the years has been an essential contribution to my completing the text.

Abbreviations

А	Adenine
Abe	Abequose
AC	Adenylate cyclase
ACE	Angiotensin-converting enzymes
ACh	Acetyl choline
ADAPT	Antibody-directed abzyme prodrug therapy
ADEPT	Antibody-directed enzyme prodrug therapy
ADME	Absorption, distribution, metabolism and elimination
ADR	Adverse drug reaction
AIDS	Acquired immuno deficiency syndrome
Ala	Alanine
AMP	Adenosine monophosphate
Arg	Arginine
Asp	Aspartate
ATP	Adenosine triphosphate
AUC	Area under the curve
AZT	Zidovudine
BAL	British anti-Lewisite
BESOD	Bovine erythrocyte superoxide dismutase
С	Cytosine
CaM	Calmodulin
cAMP	Cyclic adenosine monophosphate
Cbz	N-(Benzyloxycarbonyloxy)succinamide
Cl	Clearance
CNS	Central nervous system
CoA	Coenzyme A
CoMFA	Comparative molecular field analysis
CYP-450	Cytochrome P-450 family
Cys	Cysteine
C_x	Concentration of x
dATP	Deoxyadenosine triphosphate
d.e.	Diastereoisomeric excess
DHF	Dihydrofolic acid
DHFR	Dihydrofolate reductase
DMPK	Drug metabolism and pharmacokinetics
DNA	Deoxyribonucleic acid
dTMP	Deoxythymidylate-5'-monophosphate
dUMP	Deoxyuridylate-5'-monophosphate
EC	Enzyme Commission
EDRF	Endothelium-derived relaxing factor
	6

EDTA	Ethylenediaminotetraacetic acid
e.e.	Enantiomeric excess
ELF	Effluent load factor
EMEA	European Medicines Evaluation Agency
EPC	European Patent Convention
EPO	European Patent Office
EI O E _s	Taft steric parameter
E _s F	Bioavailability
FAD	Flavin adenine dinucleotide
FDA	Food and Drug Administration (USA)
FdUMP	5-Fluoro-2'-deoxyuridyline monophosphate
FGI	Functional group interconversion
FH ₄	Tetrahydrofolate
FMO	Flavin monooxygenases
Fmoc	9-Fluorenylmethoxychloroformyl group
FUdRP	5-Fluoro-2'-deoxyuridylic acid
G	Guanine
GABA	
	γ-Aminobutyric acid
GC	Guanylyl cyclase
GDEPT	Gene-directed enzyme prodrug therapy
GDP	Guanosine diphosphate
GI	Gastrointestinal
Gln	Glutamine
Glu	Glutamatic acid
Gly	Glycine
5'-GMP	Guanosine 5'-monophosphate
GSH	Glutathione
GTP	Guanosine triphosphate
HAMA	Human anti-mouse antibodies
Hb	Haemoglobin
HbS	Sickle cell haemoglobin
His	Histidine
HIV	Human immunodeficiency disease
hnRNA	Heterogeneous nuclear RNA
HTS	High-throughput screening
IDDM	Insulin-dependent diabetes mellitus
Ig	Immunoglobins
Ile	Isoleucine
IP_3	Inositol-1,4,5-triphosphate
IV	Intravenous
IM	Intramuscular
KDO	2-Keto-3-deoxyoctanoate
k_x	Reaction rate constant for reaction x
LDA	Lithium diisopropylamide

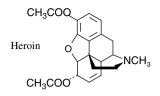
LeuLeucineLysLysineMA(A)Marketing authorisation (application)MabMonoclonal antibodymAChMuscarinic cholinergic receptorMAOMonoamine oxidaseMCAMedicines Control AgencyMESNA2-MercaptoethanesulphonateMetMethoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinacide denine dinucleotide (oxidised form)NAD ⁺ Nicotinamide adenine dinucleotide (reduced form)NADF ⁺ Nicotinamide dinucleotide phosphate (oxidised form)NADP ⁺ Nicotinamide dinucleotide phosphate (oxidised form)NADP ⁺ Nicotinamide dinucleotide phosphate (reduced form)NADP ⁺ Nicotinamide dinucleotide phosphate (reduced form)NADPNicotinamide dinucleotide phosphate (reduced form)NADBNicotinamide dinucleotide phosphate (reduced form)NAGβ-N-AcetylglucosamineNAMβ-N-AcetylglucosamineNAMβ-N-AcetylglucosamineNAMβ-N-AcetylglucosamineNAMβ-N-AcetylglucosamineNAMβ-N-AcetylglucosamineNAMβ-N-AcetylglucosamineNAMβ-N-AcetylglucosamineNAGPolyethyene glycolPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPrimary transcript RNAQs <th>LDH</th> <th>Lactose dehydrogenase</th>	LDH	Lactose dehydrogenase
$MA(A)$ Marketing authorisation (application)MabMonoclonal antibodymAChMuscarinic cholinergic receptorMAOMonoamine oxidaseMCAMedicines Control AgencyMESNA2-MercaptoethanesulphonateMetMethionineMoMolecular orbitalMoz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinaride adenine dinucleotide (oxidised form)NAD ⁺ Nicotinamide adenine dinucleotide (reduced form)NAD ⁺ Nicotinamide dinucleotide phosphate (reduced form)NADP ⁺ Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNOSNitric oxide synthasePotine	Leu	
MabMonoclonal antibodymAChMuscarinic cholinergic receptorMAOMonoamine oxidaseMCAMedicines Control AgencyMESNA2-MercaptoethanesulphonateMetMethionineMOMolecular orbitalMoz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD +Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide adenine dinucleotide (reduced form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNARelative molecular massRNARibonucleic a	Lys	Lysine
mAChMuscarinic cholinergic receptorMAOMonoamine oxidaseMCAMedicines Control AgencyMESNA2-MercaptoethanesulphonateMetMethionineMOMolecular orbitalMoz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD+Nicotinamide adenine dinucleotide (oxidised form)NADP+Nicotinamide dinucleotide phosphate (oxidised form)NAGβ-N-AcetylglucosamineNAMβ-N-AcetylglucosamineNAMβ-N-Acetylmuramic acidNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABAp-Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAQuantitative structure-activity relationshipQxRate of blood flow for xRMMRelative molecular massRNAS-AdenosylmethionineSAMS-Adenosylmethionine <td>MA(A)</td> <td>Marketing authorisation (application)</td>	MA(A)	Marketing authorisation (application)
MAOMonoamine oxidaseMCAMedicines Control AgencyMESNA2-MercaptoethanesulphonateMetMethionineMOMolecular orbitalMoz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD ⁺ Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide adenine dinucleotide (reduced form)NADPNicotinamide dinucleotide phosphate (oxidised form)NADPNicotinamide dinucleotide phosphate (reduced form)NADPNicotinamide dinucleotide phosphate (oxidised form)NADPNicotinamide dinucleotide phosphate (oxidised form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-Acetylmuramic acidNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGPer os (by mouth)pre-mRNAPremessenger RNAProPrimary transcript RNAQxRate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationship<	Mab	Monoclonal antibody
MAOMonoamine oxidaseMCAMedicines Control AgencyMESNA2-MercaptoethanesulphonateMetMethionineMOMolecular orbitalMoz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD ⁺ Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide adenine dinucleotide (reduced form)NADPNicotinamide dinucleotide phosphate (oxidised form)NADPNicotinamide dinucleotide phosphate (reduced form)NADPNicotinamide dinucleotide phosphate (oxidised form)NADPNicotinamide dinucleotide phosphate (oxidised form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-Acetylmuramic acidNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGPer os (by mouth)pre-mRNAPremessenger RNAProPrimary transcript RNAQxRate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationship<	mACh	Muscarinic cholinergic receptor
MESNA2-MercaptoethanesulphonateMetMethionineMOMolecular orbitalMoz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD +Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide adenine dinucleotide (reduced form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQsARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNAS-AdenosylmethionineSAMS-AdenosylmethionineSARStructure-activity relationshipSerineStructure-activity relationship	MAO	Monoamine oxidase
MetMethionineMOMolecular orbitalMoz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD +Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNASNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQsARQuantitative structure-activity relationship Q_x Rate of blood flow for xRMMRelative molecular massRNAS-AdenosylmethionineSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	MCA	Medicines Control Agency
MOMolecular orbitalMoz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD +Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide adenine dinucleotide (reduced form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosaminePDTPotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNA<	MESNA	2-Mercaptoethanesulphonate
Moz4-Methoxybenzyloxychloroformyl groupMRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD+Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide dinucleotide phosphate (oxidised form)NADP+Nicotinamide dinucleotide phosphate (oxidised form)NADP+Nicotinamide dinucleotide phosphate (reduced form)NADP+Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNASibonucleic acidSSvedberg units	Met	Methionine
MRMolar refractivitymRNAMessenger RNAnAChNicotinic cholinergic receptorNAD +Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNASibonucleic acidSSvedberg unitsSAMS-Adenosylme	MO	Molecular orbital
mRNAMessenger RNAnAChNicotinic cholinergic receptorNAD +Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-Acetylmuramic acidNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNAS-vedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	Moz	4-Methoxybenzyloxychloroformyl group
nAChNicotinic cholinergic receptorNAD +Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNAS'odeberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	MR	Molar refractivity
NAD +Nicotinamide adenine dinucleotide (oxidised form)NADHNicotinamide adenine dinucleotide (reduced form)NADP +Nicotinamide dinucleotide phosphate (oxidised form)NADP +Nicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-Acetylmuramic acidNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNASvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	mRNA	Messenger RNA
NADHNicotinamide adenine dinucleotide (reduced form)NADP+Nicotinamide dinucleotide phosphate (oxidised form)NADPHNicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure–activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNAS-vedberg unitsSAMS-AdenosylmethionineSARStructure–activity relationshipSerSerineSIN-13-Morpholino-sydnomine	nACh	Nicotinic cholinergic receptor
NADP+Nicotinamide dinucleotide phosphate (oxidised form)NADPHNicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-Acetylmuramic acidNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAQsARQsARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNAS-denosylmethionineSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	NAD ⁺	Nicotinamide adenine dinucleotide (oxidised form)
NADPHNicotinamide dinucleotide phosphate (reduced form)NAG β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNAM β -N-AcetylglucosamineNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNAS'vedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	NADH	Nicotinamide adenine dinucleotide (reduced form)
NAG $β$ -N-AcetylglucosamineNAM $β$ -N-Acetylmuramic acidNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNAS-AdenosylmethionineSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	NADP ⁺	Nicotinamide dinucleotide phosphate (oxidised form)
NAM β -N-Acetylmuramic acidNCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABAp-Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNASvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	NADPH	Nicotinamide dinucleotide phosphate (reduced form)
NCINational Cancer Institute (USA)NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABA p -Aminobenzoic acidPABA p -Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNASvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	NAG	β-N-Acetylglucosamine
NOSNitric oxide synthaseP-450Cytochrome P-450 oxidasePABAp-Aminobenzoic acidPABAp-Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationshipQxRate of blood flow for xRMMRelative molecular massRNASvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	NAM	β-N-Acetylmuramic acid
P-450Cytochrome P-450 oxidasePABAp-Aminobenzoic acidPABAp-Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationshipQxRate of blood flow for xRMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	NCI	National Cancer Institute (USA)
PABAp-Aminobenzoic acidPCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARSerineSIN-13-Morpholino-sydnomine	NOS	Nitric oxide synthase
PCTPatent Cooperation TreatyPDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNASvedberg unitsSAMS-AdenosylmethionineSARSerineSIN-13-Morpholino-sydnomine	P-450	Cytochrome P-450 oxidase
PDTPhotodynamic therapyPEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	PABA	p-Aminobenzoic acid
PEGPolyethyene glycolPGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	PCT	Patent Cooperation Treaty
PGProstaglandinPhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	PDT	Photodynamic therapy
PhePhenylalaninePOPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	PEG	Polyethyene glycol
POPer os (by mouth)pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	PG	Prostaglandin
pre-mRNAPremessenger RNAProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	Phe	Phenylalanine
ProProlineptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for xRMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	PO	Per os (by mouth)
ptRNAPrimary transcript RNAQSARQuantitative structure-activity relationship Q_x Rate of blood flow for x RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	pre-mRNA	Premessenger RNA
QSARQuantitative structure-activity relationship Q_x Rate of blood flow for xRMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	Pro	Proline
Q_x Rate of blood flow for xRMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure–activity relationshipSerSerineSIN-13-Morpholino-sydnomine	ptRNA	Primary transcript RNA
RMMRelative molecular massRNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure–activity relationshipSerSerineSIN-13-Morpholino-sydnomine	QSAR	Quantitative structure-activity relationship
RNARibonucleic acidSSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	Q_x	Rate of blood flow for x
SSvedberg unitsSAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	RMM	Relative molecular mass
SAMS-AdenosylmethionineSARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	RNA	Ribonucleic acid
SARStructure-activity relationshipSerSerineSIN-13-Morpholino-sydnomine	S	Svedberg units
SerSerineSIN-13-Morpholino-sydnomine	SAM	S-Adenosylmethionine
SIN-1 3-Morpholino-sydnomine	SAR	Structure-activity relationship
I I I I I I I I I I I I I I I I I I I	Ser	Serine
T Thymine	SIN-1	3-Morpholino-sydnomine
	Т	Thymine

TdRP	Deoxythymidylic acid
THF	Tetrahydrofolic acid
Thr	Threonine
tRNA	Transfer RNA
Tyr	Tyrosine
U	Uracil
UDP	Uridine diphosphate
UDPGA	Uridine diphosphate glucuronic acid
UdRP	Deoxyuridylic acid
Val	Valine
$V_{ m d}$	Volume of distribution
WHO	World Health Organization

1 An introduction to drugs, their action and discovery

1.1 Introduction

The primary objective of medicinal chemistry is the design and discovery of new compounds that are suitable for use as drugs. This process involves a *team of workers* from a wide range of disciplines such as chemistry, biology, biochemistry, pharmacology, mathematics, medicine and computing, amongst others.


The discovery or design of a new drug not only requires a discovery or design process but also the synthesis of the drug, a method of administration, the development of tests and procedures to establish how it operates in the body and a safety assessment. Drug discovery may also require fundamental research into the biological and chemical nature of the diseased state. These and other aspects of drug design and discovery require input from specialists in many other fields and so medicinal chemists need to have an outline knowledge of the relevant aspects of these fields.

1.2 What are drugs and why do we need new ones?

Drugs are strictly defined as chemical substances that are used to prevent or cure diseases in humans, animals and plants. The *activity* of a drug is its pharmaceutical effect on the subject, for example, analgesic or β -blocker, whereas its *potency* is the quantitative nature of that effect. Unfortunately the term drug is also used by the media and the general public to describe the substances taken for their psychotic rather than medicinal effects. However, this does not mean that these substances cannot be used as drugs. Heroin, for example, is a very effective painkiller and is used as such in the form of diamorphine in terminal cancer cases.

Medicinal Chemistry, Second Edition Gareth Thomas

^{© 2007} John Wiley & Sons, Ltd

Drugs act by interfering with biological processes, so no drug is completely safe. *All* drugs, including those non-prescription drugs such as aspirin and paracetamol (Fig. 1.1) that are commonly available over the counter, act as poisons if taken in excess. For example, overdoses of paracetamol can causes coma and death. Furthermore, in addition to their beneficial effects most drugs have non-beneficial biological effects. Aspirin, which is commonly used to alleviate headaches, can also cause gastric irritation and occult bleeding in some people The non-beneficial effects of some drugs, such as cocaine and heroin, are so undesirable that the use of these drugs has to be strictly controlled by legislation. These unwanted effects are commonly referred to as *side effects*. However, side effects are not always non-beneficial; the term also includes biological effects that are beneficial to the patient. For example, the antihistamine promethazine is licenced for the treatment of hayfever but also induces drowsiness, which may aid sleep.

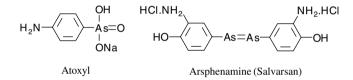
Figure 1.1 Aspirin and paracetamol

Drug resistance or tolerance (*tachyphylaxis*) occurs when a drug is no longer effective in controlling a medical condition. It arises in people for a variety of reasons. For example, the effectiveness of barbiturates often decreases with repeated use because the body develops mixed function oxidases in the liver that metabolise the drug, which reduces its effectiveness. The development of an enzyme that metabolises the drug is a relatively common reason for drug resistance. Another general reason for drug resistance is the *downregulation* of receptors (see section 8.6.1). Downregulation occurs when repeated stimulation of areceptor results in the receptor being broken down. This results in the drug being less effective because there are fewer receptors available for it to act on. However, downregulating has been utilised therapeutically in a number of cases. The continuous use of gonadotrophin releasing factor, for example, causes gonadotrophin receptors that control the menstrual cycle to be downregulated. This is why gonadotrophin-like drugs are used as contraceptives. Drug resistance may also be due to the appearance of a significantly high proportion of drug-resistant strains of microorganisms. These strains arise naturally and can rapidly multiply and become the currently predominant strain of that microorganism. Antimalarial drugs are proving less effective because of an increase in the proportion of drug-resistant strains of the malaria parasite.

New drugs are constantly required to combat drug resistance even though it can be minimised by the correct use of medicines by patients. They are also required for improving the treatment of existing diseases, the treatment of newly identified diseases and the production of safer drugs by the reduction or removal of adverse side effects.

1.3 Drug discovery and design: a historical outline

Since ancient times the peoples of the world have had a wide range of natural products that they use for medicinal purposes. These products, obtained from animal, vegetable and mineral sources, were sometimes very effective. However, many of the products were very toxic and it is interesting to note that the Greeks used the same word *pharmakon* for both poisons and medicinal products. Information about these ancient remedies was not readily available to users until the invention of the printing press in the fifteenth century. This led to the widespread publication and circulation of Herbals and Pharmacopoeias, which resulted in a rapid increase in the use, and misuse, of herbal and other remedies. Misuse of tartar emetic (antimony potassium tartrate) was the reason for its use being banned by the Paris parliament in 1566, probably the first recorded ban of its type. The usage of such remedies reached its height in the seventeenth century. However, improved communications between practitioners in the eighteenth and nineteenth centuries resulted in the progressive removal of preparations that were either ineffective or too toxic from Herbals and Pharmacopoeias. It also led to a more rational development of new drugs.


The early nineteenth century saw the extraction of pure substances from plant material. These substances were of consistent quality but only a few of the compounds isolated proved to be satisfactory as therapeutic agents. The majority were found to be too toxic although many, such as morphine and cocaine for example, were extensively prescribed by physicians.

The search to find less toxic medicines than those based on natural sources resulted in the introduction of synthetic substances as drugs in the late nineteenth century and their widespread use in the twentieth century. This development was based on the structures of known pharmacologically active compounds, now referred to as *leads*. The approach adopted by most nineteenth century workers was to synthesise structures related to that of the lead and test these compounds for the required activity. These lead-related compounds are now referred to as *analogues*.

The first rational development of synthetic drugs was carried out by Paul Ehrlich and Sacachiro Hata who produced arsphenamine in 1910 by combining synthesis with reliable biological screening and evaluation procedures. Ehrlich, at the beginning of the nineteenth century, had recognised that both the beneficial and toxic properties of a drug were important to its evaluation. He realised that the more effective drugs showed a greater selectivity for the target microorganism than its host. Consequently, to compare the effectiveness of different compounds, he expressed a drug's selectivity and hence its effectiveness in terms of its chemotherapeutic index, which he defined as:

Chemotherapeutic index =
$$\frac{\text{Minimum curative dose}}{\text{Maximum tolerated dose}}$$
 (1.1)

At the start of the nineteenth century Ehrlich was looking for a safer antiprotozoal agent with which to treat syphilis than the then currently used atoxyl. He and Hata tested and catalogued in terms of his therapeutic index over 600 structurally related arsenic compounds. This led to their discovery in 1909 that arsphenamine (Salvarsan) could cure mice infected with syphilis. This drug was found to be effective in humans but had to be used with extreme care as it was very toxic. However, it was used up to the mid- 1940s when it was replaced by penicillin.

Ehrlich's method of approach is still one of the basic techniques used to design and evaluate new drugs in medicinal chemistry. However, his chemotherapeutic index has been updated to take into account the variability of individuals and is now defined as its reciprocal, the therapeutic index or ratio:

Therapeutic index
$$= \frac{\text{LD}_{50}}{\text{ED}_{50}}$$
 (1.2)

where LD_{50} is the lethal dose required to kill 50 per cent of the test animals and ED_{50} is the dose producing an effective therapeutic response in 50 per cent of the test animals. In theory, the larger a drug's therapeutic index, the greater is its margin of safety. However, because of the nature of the data used in their derivation, therapeutic index values can only be used as a limited guide to the relative usefulness of different compounds.

The term *structure–activity relationship* (*SAR*) is now used to describe Ehrlich's approach to drug discovery, which consisted of synthesising and testing a series of structurally related compounds (see Chapter 3). Although attempts to quantitatively relate chemical structure to biological action were first initiated in the nineteenth century, it was not until the 1960s that Hansch and Fujita devised a method that successfully incorporated quantitative measurements into structure–activity relationship determinations (see section 3.4.4). The technique is referred to as *QSAR (quantitative structure–activity relationship*).