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Preface

This is a practical book for those engaged in research within industry. It is concerned with

the design and analysis of experiments and covers a large repertoire of designs. But in the

authors’ experience this is not enough – the experiment must be effective. For this the

researcher must bring his knowledge to the situations to which he needs to apply experimen-

tation. For example, how can the design be formulated so that the conclusions are unbiased and

the experimental results are as precise as needed?

Each chapter starts with a situation obtained from our experience or from that of our

fellow lecturers. A design is then introduced and data analysed using an appropriate method.

The chapter then finishes with a critique of the experiment – the good points and the

limitations.

The book has been developed from the courses run by Statistics for Industry Limited

for over 30 years, during which time more than 10,000 scientists and technologists

have gained the knowledge and confidence to apply statistics to their own data. We hope

that you will benefit similarly from our book. Every design in the book has been applied

successfully.

The examples have been chosen from many industries – chemicals, plastics, oils, nuclear,

food, drink, lighting, water and pharmaceuticals. We hope this indicates to you how widely

statistics can be applied. It would be surprising if statistics could not be applied successfully by

you to your work.

The book is supported by a number of specially designed computer programs and Excel

Macros. These can be downloaded fromWiley’s website. Although the reader can gain much

by just reading the text, he/shewill benefit evenmore by downloading the software and using it

to carry out the problems given at the end of each chapter.

The book gives a brief overview of introductory statistics. For those who feel they need a

more comprehensive view before tackling this book can refer to Statistical Methods in

Practice (2009) by the same authors.

Statistics for Industry Limited was founded by Richard Boddy in 1977. He was joined by

Gordon Smith as a Director in 1989. They have run a wide variety of courses worldwide,

including Statistical Methods in Practice, Statistics for Analytical Chemists, Statistics for

Microbiologists, Design of Experiments, Statistical Process Control, Statistics in Sensory

Evaluation and Multivariate Analysis. This book is based on material from their Design of

Experiments course.

Our courses and our course material have greatly benefited from the knowledge and

experience of our lecturers: Derrick Chamberlain (ex ICI), Frits Quadt (ex Unilever), Martin

Minett (MJM Consultants), Alan Moxon (ex Cadbury), Ian Peacock (ex ICI), Malcolm

Tillotson (ex Huddersfield Polytechnic), Stan Townson (ex ICI), Sam Turner (ex Pedigree

Petfoods) and Bob Woodward (ex ICI). In particular we would like to acknowledge

Dave Hudson (ex Tioxide) who wrote the Visual-Basic-based software, John Henderson



(exChemdal) whowrote the Excel-based software andMichelle Hughes who so painstakingly

turned our notes into practical pages.

Supporting software is available on the book companion website www.wiley.com/

go_effective.

Richard Boddy

Gordon Smith

Email: s4i@aol.com

April 2010
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1

Why bother to design

an experiment?

1.1 Introduction

There are many aspects involved in successful experimentation. This book concentrates

mainly on designing and analysing experiments but there is much more required from you,

the experimenter. You must research the subject well and include prior knowledge available

from previous experiments within your organization. You should also consider a strategy

for the investigation such as considering a series of small investigations. You must plan the

experiment operationally so it can be successfully undertaken and, lastly, having analysed

the experiment you must be able to interpret the analysis and draw valid conclusions.

If you follow that path, then you should have completed a successful project.

If not, then youmay havewasted resources, had insufficient trials or data to be able tomake

conclusions that will stand up to scrutiny, or end up by making invalid claims.

There is no guarantee of finding all the answers, but you will have been well informed and

will have made the most efficient use of the information and data available.

Let us consider some situations that illustrate the benefits of using designed experiments.

1.2 Examples and benefits

1.2.1 Develop a better product

An oil formulator has been charged with the task of improving the formulation of a lubricating

oil in order to improve the fuel economy of motor engines. There are two important

components of the formulation – type of base oil and level of friction modifier. Without

knowledge of experimental design, he does notwish to change both variables at once. He keeps

to the current level of friction modifier and changes the base oil, gaining an improvement. The

next trial therefore uses the new base oil and he changes the level of friction modifier. It also

Effective Experimentation: For Scientists and Technologists Richard Boddy and Gordon Smith
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gains a small improvement. He reports that the new oil should be made with new base oil and

changed level of friction modifier and can be called ‘New Improved’.

This is an inefficientway of exploring the experimental space, even assuming that only two

levels of each variable are possible. He has assumed that a change resulting from changing the

level of friction modifier when using one base oil will be repeated with the other, but this does

not often happen with manufacturing processes. There are often interactions. He should have

tested all four combinations of the two levels of both variables in a factorial experiment. It may

be that the best combination is none of those that he examined, as in the example in Chapter 4.

Such an experiment, if replicated (more than one trial at each set of conditions) would give

him the following benefits:-

(i) determination of the effects of each variable and knowledge ofwhether or not there is

an interaction between them;

(ii) determination of whether an improvement can be made;

(iii) a measure of the batch-to-batch variability that enables him to test differences for

significance.

1.2.2 Which antiperspirant is best?

A toiletries company has developed some formulations of an antiperspirant and wishes to

determine which one is most effective. After chemical and microbiological tests the only

realistic way is to test them out on volunteers in a carefully controlled environment. Perhaps at

first thought a large number of volunteers should be assembled, and formulations allocated at

random to the volunteers, each person testing one formulation. The trouble with this approach

is that there is a lot of variation between one person and another in amounts of perspiration and

the effectiveness of an antiperspirant, whichwould obscure any differences that theremight be

between formulations.

An experimental design is needed so that person-to-person differences (‘nuisance’

variation) can be identified but their effect removed when comparing the formulations. Thus,

a panel of volunteers is gathered, and each one tests every formulation. The person-to-person

variation would be there but would affect all the results, but differences between formulations

should be more consistent. This design is known as a randomized block design, introduced in

Chapter 18.

The benefits of this design are:-

(i) formulations can be directly compared;

(ii) person-to-person variability can be quantified but its effect eliminated in the

comparison of formulations;

(iii) the best formulation can be identified.

1.2.3 A complex project

Bungitallin Spices are developing a new spice for lightly flavoured cheeses. They have

identified 30 ingredients, decided on a composition and produced a trial sample. The taste

seems reasonable and they decide to proceed with a marketing campaign to launch their

new product.
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Nowclearly Bungitallin have a great knowledge of spices and it is perhaps not surprising in

the spice industry that 30 ingredients have been included. However, there are many questions

that are readily brought to mind.

i. How did they decide on the composition?

ii. Could they have done better if they used experimental design?

iii. Do all 30 ingredients contribute to taste? How many can be discerned and at what

levels? How many can be removed without any discernible effect in the taste?

iv. How many of the 30 ingredients are necessary for texture or other parameters and at

what levels?

v. How do the ingredients interact with each other?

vi. How is the spice to be produced?What are the process conditions? How robust are the

conditions?

vii. How much variation can we expect from batch-to-batch? Is this acceptable or does it

need reducing?

Clearly there are a lot of questions to be answered. If we attempt to answer all the questions

in an unstructured manner the cost may be far greater than the profit from launching the spice.

On the other hand, ifwe do nothingBungitallinmay be left with a failure at great cost. Thus,we

must investigate, but in an efficient way.

Experimental design offers an approach that will enable us to achieve our objective in an

efficient manner and give us unbiased results, thus enabling us to have confidence in our

conclusions.

Different chapters of this book will help you to answer these questions.

Questions iii), iv) and v) can be investigated using factorial or fractional factorial

designs followed by response surface methods to achieve the best formulation. If the

experiment is too large to carry out in one trial a central composite designmay be employed.

Questions vi) and vii) can be investigated using saturated designs or computer-aided

experimental designs (CAED).

Question vii) can be investigated using randomized block or Latin Square designs.

1.3 Good design and good analysis

Of course, it is not only necessary to carry out a good design but it must be followed by

a good analysis – in fact, when designing an experiment we should also consider how it is to

be analysed.

This book starts with a chapter that covers summary statistics, the normal distribution,

confidence intervals and significance testing. Later it refers tomultiple regression, a necessary

tool when the design has an imbalance which can occur for many reasons such as ‘lost’ data.

All these designs and methods of analysis will greatly enhance your experiments but we

must not forget themost important aspect of experimental design – the researcher’s knowledge.

The design is aimed at increasing this knowledge andmaking it more rigorous so that we have a

high degree of certainty that actions resulting from the design will prove to be successful.
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2

A change for the

better – significance testing

2.1 Introduction

‘Havewe improved the process?’ This is a frequently asked question. A change has beenmade

to the process on the basis that it will improve it, but do subsequent results confirm this? It is

perhaps usual for people to say, for example, that before the change the process gave a mean

reading of 29.3, but now it is 29.6, therefore the change hasworked. However, all processes are

subject to noise (error, variation) and thus the change to 29.6 could be due to noise rather than

the change. How are we to know? As well as quantifying the mean of a process we must also

quantify the variability. Then we shall be in a position to know whether 29.6 could have been

caused by noise or whether it must have been due to the process change because it is well

beyond the value that could have been attributed to noise.

As well as looking at the above situation we shall take the opportunity in this chapter to

introduce some of the building blocks of statistics used in analysing experiments – measure of

average and variability, blob charts, histograms, normal distribution, confidence intervals and

significance tests. However, these are very brief expositions of these topics and for a more in-

depth treatment readers are referred to ‘Statistical Methods in Practice’ by Boddy & Smith.

2.2 Towards a darker stout

Stout is a drink that traditionally is dark – in fact the darker the better. Trentside Ales use

adjunct AX751 to give a dark colour but a rival product BZ529 has been trialled on a pilot. The

trials indicated that BZ529 gave a darker colour so RobWhetham, the Development Manager

of Trentside, has decided to put it into production in one of their four vats and then compare it

with batches using AX751. The past 20 batches gave the results shown in Table 2.1 for

darkness using AX751 as measured on a spectrometer:
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Rob’s first task is to look for trends since the presence of a trend would indicate the process

was not stable and it would be difficult to judgewhether the new additive had been effective. A

runs chart for the data is shown in Figure 2.1 that indicates that the data has no trend. A better

analysis would be using a cusum technique as outlined in ‘Statistical Methods in Practice’.

Rob next looks at the distribution of data using a blob diagram as shown in Figure 2.2.

The distribution is typical of a process under control with values spread fairly symmetri-

cally with more in the centre.

2.3 Summary statistics

The distribution of the data, as shown in a blob diagram or histogram, provides a valuable

visual way of making judgements about the data. As well as the plots it is usually valuable to

summarize data in terms of average and variability using the mean and standard deviation.

The mean is the sum of all observations divided by the number of observations.

Table 2.1 Darkness of 20 batches using AX751

Batch 1 2 3 4 5 6 7 8 9 10

Darkness 207 193 218 209 197 181 202 226 213 199

Batch 11 12 13 14 15 16 17 18 19 20

Darkness 206 215 204 205 189 201 220 211 186 194

150
160
170
180
190
200
210
220
230
240
250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Batch

D
ar

kn
es

s

Figure 2.1 Runs chart.

150 160 170 180 190 200 210 220 230 240 250

Darkness

Figure 2.2 Blob diagram.
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The sum was 4076, there were 20 observations, so the mean in this case equals 203.8. It is

usually referred to as the sample mean (�x).
The standard deviation can be defined as the average of the deviations from the mean. It is

a strange sort of average but it does indicate the amount of variation. It is usually referred to as

the sample standard deviation (s). Its value is 11.7. If we look at the 20 valueswe see that 14 are

within one standard deviation of the mean, i.e. 192.1 to 215.5 and six are outside these limits

which is to be expected when we use a standard deviation.

2.4 The normal distribution

Figure 2.3 shows the data presented in an alternative way to a blob diagram.

In a histogram, the height of each bar is proportional to the number of batches within the

specified range. Superimposed onto the histogram is a normal-distribution curve. The

normal distribution occurs when a process is subject to many additive errors, none of which

are dominant in magnitude. It is found in abundance in processes where effort has been

made to reduce the effect of any dominant source of error. It is also found in many natural

processes.

The normal distribution is defined by two parameters, the population mean and population

standard deviation. However, the population statistics are unknown and Rob has only sample

data so it is these values – i.e. mean of 203.8 and a standard deviation of 11.7 that have been

used to draw the normal distribution.

The normal distribution is often important in analyses of experiments since it provides

a check on the validity of the conclusions. It is, however, very difficult to assess using

histograms. A far better check is a probability plot shown in Figure 2.4. In this, the 20

observations have been ranked in order and then plotted against a nonlinear scale that

represents the position of the observation if it was obtained from a perfect normal distribution.

4

3

2

F
re

q
u

en
cy

Darkness

1

0
180 185 190 195 200 205 210 215 220 225 230

Figure 2.3 Histogram plus normal-distribution curve.
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The judgement we must now make, allowing for sampling or other errors, is: ‘Is the shape

of the plot sufficiently linear?’ This takes judgement but Rob is assured that a straight line is

a very good fit.

2.5 How accurate is my mean?

Rob has 20 batches with darkness values. Assuming these are representative samples from

a stable process, how accurate is the mean? In order to calculate its accuracy we use a 95%

confidence interval for the population mean (m) that is given by the formula:

x � tsffiffiffi
n

p

where �x is the sample mean

s is the sample standard deviation

n is the number of observations

and t is the coefficient obtained from Table A.2 using a 95% confidence level and n� l

degrees of freedom.

Degrees of freedom are the number of independent deviations from the mean used to

calculate the standard deviation, one less than the number of observations. To illustrate this,

if we have two results, say 240 and 260, the mean is 250 and both results must give the same

deviation of 10. Thus, there is only one degree of freedom.

In our example:

�x¼ 203.8

s¼ 11.7

n¼ 20

99

95

90

80
70
60
50
40
30
20

10

5

1
180 190 200

Darkeness

P
o

p
u

la
ti

o
n

 P
er

ce
n

ta
g

e

210 220 230

Figure 2.4 Normal probability plot.
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t¼ 2.09 with 19 degrees of freedom at a 95% confidence level

95% confidence interval ¼ 203:8� 2:09� 11:7ffiffiffiffiffi
20

p

¼ 198:3 to 209:3:

This means we are 95% certain that this stable process will, in the long run, produce stout

using AX751 with a mean darkness between 198.3 and 209.3.

Rob is pleased with the narrowness of the interval. This should allow him to make a

reasonable judgement about whether the new additive is better.

2.6 Is the new additive an improvement?

Rob is now in a position to design and carry out an experiment. He decides to use six trials, not

based on design considerations but on product considerations. If the adjunct BZ529 is

detrimental to the product he would wish to abandon it fairly quickly.

The next six batches give darkness values as shown in Table 2.2.

Rob is both encouraged and discouraged by the results. The result of 231 is higher than

darkness readings obtained with AX751 but 195 and 198 are below the mean of the last

20 batches. On the other hand, themean of BZ529 (212.0) is higher than obtainedwithAX751.

A plot of the data for both adjuncts is shown in Figure 2.5.

Because of variation any two means are always likely to be different. What we need to

know is whether this difference is due to chance or is it due to the adjuncts?We can answer this

by carrying out a two-sample t-test, but before doing so we need to combine the two standard

deviations from the two adjuncts. The summary statistics for the two adjuncts are shown in

Table 2.3.

Table 2.2 Darkness values of 6 batches from BZ529

Batch 21 22 23 24 25 26

Darkness 215 231 208 195 225 198

AX751

150 160 170 180 190 200 210 220 230 240 250

Darkness

BZ529

Figure 2.5 Blob diagram for the two adjuncts.
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Combined SDðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd fA � SD2

AÞþ ðd fB � SD2
BÞ

d fA þ d fB

s

where SDA, SDB are the sample standard deviations for AX751 and BZ529 with dfA and dfB
degrees of freedom, respectively

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð19� 11:72Þþ ð5� 14:42Þ

19þ 5

r

¼ 12.3 with 19 þ 5¼ 24 degrees of freedom.

We use the following procedure to carry out the significance test:

Null hypothesis: In the long run the two adjuncts will give the same mean, i.e. mA¼ mB
Alternative hypothesis: In the long run the two adjuncts will give different means, i.e.

mA 6¼ mB

Test value:¼ j�xA��xBj
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nA
þ 1

nB

r

where �xA; �xB are the sample means for AX751 and BZ529, respectively; j�xA� �xBj is the
magnitude of the difference between �xA and �xB; nA, nB the number of observations, and s

the combined SD.

¼ j203:8�212:0j

12:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

20
þ 1

6

r
¼1.43.

Table value: t¼ 2.06 fromTable A.2with (nA þ nB� 2)¼ 24 degrees of freedom at a 5%

significance level

Decision: If the test value is greater than the table value we reject the null hypothesis and

accept the alternative.

Table 2.3 Summary statistics

Mean Standard

deviation

Number of

results

Degrees of

freedom

Adjunct AX751 203.8 11.7 20 19

Adjunct BZ529 212.0 14.4 6 5
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However, in this case the test value is less than the table value. We cannot reject the null

hypothesis.

Conclusion: There is insufficient evidence to conclude that there is a difference between

the means for AX751 and BZ529.

Rob is disappointed. He has failed to establish that the new adjunct is significantly better

but there are grounds for being optimistic – the sample mean is higher, the test value is

approaching the table value and he only produced six batches with the new adjunct. Howmany

batches should he have produced?

2.7 How many trials are needed for an experiment?

The number of trials required in a two-sample experiment is estimated by the formula:

nA ¼ nB ¼ 2
ts

c

� �2

where nA, nB are the number of trials for each adjunct, c the difference that is required to be

significant, s is a measure of the combined standard deviation, and t is a value from Table A.2

with the same number of degrees of freedom as the combined standard deviation.

In this example:

s¼ 12.3 and t¼ 2.06 from Table A.2 based on 24 degrees of freedom at a significance

level of 5%

The difficult decision for Rob is the size of the difference (c) that needs to be found

significant by the experiment. It is decided that improving the darkness on average by 8 will

lead to a noticeable better stout.

nA ¼ nB ¼ 2
ts

c

� �2

¼ 20:

We should note that this is a very useful formula, not only for a two-sample t-test but for

factorial experiments given in later chapters.With two-level factorial designs this formula can

be used to give an indication of the size of experiment required.

This is very convenient! Rob already has 20 batches with Adjunct AX751. He also has six

batches with BZ529. He therefore produces 14 more batches that are added in Table 2.4 to

those already produced.

Table 2.4 20 Batches with BZ529

Batch 21 22 23 24 25 26 27 28 29 30

Darkness 215 231 208 195 225 198 205 216 218 234

Batch 31 32 33 34 35 36 37 38 39 40

Darkness 229 209 211 220 217 193 205 222 199 216

HOW MANY TRIALS ARE NEEDED FOR AN EXPERIMENT? 11



Carrying out a significance test in the samemanner as previously we use the same null and

alternative hypotheses.

The summary statistics for BZ529 were: Mean (�x)¼ 213.3, SD¼ 11.9.

Combined SD (s)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð19� 11:72Þþ ð19� 11:92Þ

19þ 19

r
¼ 11.8 with 38 degrees of freedom.

Test value¼ j203:8�213:3j

11:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

20
þ 1

20

r ¼ 2:55

Table value¼ 2.02 from Table A.2 at a 5% significance level with 38 degrees of freedom.

Bob can conclude that BZ529 gives a significant improvement with an increase of 9.5 on

the mean darkness.

2.8 Were the aims of the investigation achieved?

Yes.

Bob has shown, beyond reasonable doubt, that the new adjunct is significantly better. He

also designed the investigation so the number of trials was chosen to find a difference that was

materially important.

But...

We are dealing with a process that uses natural raw materials. How can we be sure the

improvement was due to the adjunct and not due to a change in the materials?

Let us look at this question in more detail. There are three possible approaches:

To revert back to AX521 and determine whether the darkness returns to its original level.

This is awell-based theoretical design but in practical terms it is a nonstarter.Why should

Trentside Ales produce 20 batches of what they now believe will be an inferior product?
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Figure 2.6 Trends analysis of 40 batches.
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Change another vat from using AX751 to BZ529 and observe the difference in design. This

is an excellent design if facilities are available but will prolong the changeover period to

the superior adjunct.

Observe when the change in performance took place using cusum analysis. With this data

it shows that the change took place at exactly batch 20 (in practice, wewould expect it to

be between 18 and 22) leading to further evidence that the change to BZ529 caused the

improvement. The results of the cusum analysis is shown in Figure 2.6.

2.9 Problems

Jackson, the Senior Development Officer of Seltronics, had carried out an investigation into

the performance of a prototype production line for 1000 mF capacitors. His investigation had
found that the prototype production linewas capable ofmaking capacitors with a satisfactory

average leakage current of below 100 mA. At this juncture, the Technical Manager of

Seltronics draws Jackson’s attention to a research article that indicates that a slight

modification to the method of fabrication can achieve a worthwhile reduction in leakage

current. He asks Jackson to investigate further.

Jackson decides to carry out the modification and produce a number of batches with the

modified process. Jackson’s first finding is that the modification is far from slight and will

increase the running costs considerably. In Jackson’s opinion it will be necessary to demon-

strate a significant decrease in leakage current before the modification is installed on the full

production line. Bearing this inmind he tests 8 capacitors, one from each batch, and obtains the

results given in the table below and also shown as a blob diagram.

Mean Standard

deviation

Standard process 113 65 43 32 78 59 142 43 95 71 74.1 34.32

Modified process 84 56 122 30 43 100 40 61 67.0 32.15

160140120100806040200

Modified

160140120100806040200

Standard

The table also includes results from the ten batches produced before the modification. For

convenience we shall refer to these as being produced by the standard process.
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Examining the blob diagrams it would appear that the standard process results do not come

from a normal distribution. However, with so little data it is often difficult to make such a

judgement using a blob diagram.

a) Use a normal probability plot on the standard process data and decide whether it fits

a normal distribution.

b) Calculate 95% confidence intervals for the mean of each process.

c) Using a two-sample t-test decide whether the true means are significantly different.
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