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Preface

Experimental evidence shows thatmolecules are not like ‘liquid droplets’
of electrons, but have a structure made of bonds and lone pairs directed
in space. Even at its most elementary level, any successful theory of
bonding in chemistry should explainwhy atoms are or are not bonded in
molecules, the structure and shape of molecules in space and how
molecules interact at long range. Even if modern molecular quantum
mechanics offers the natural basis for very elaborate numerical calcula-
tions, models of bonding avoiding the more mathematical aspects of the
subject in the spirit of Coulson’s Valence are still of conceptual interest
for providing an elementary description of valence and its implications
for the electronic structure of molecules. This is the aim of this concise
book, which grew from a series of lectures delivered by the author at the
University of Genoa, based on original research work by the author and
his group from the early 1990s to the present day. The book should serve
as a complement to a 20-hour university lecture course in Physical and
Quantum Chemistry.
The book consists of two parts, where essentially twomodels have been

proposed, mostly requiring the solution of quadratic equations with real
roots. Part 1 explains forces acting at short range, typical of localized or
delocalized chemical bonds in molecules or solids; Part 2 explains forces
acting at long range, between closed-shell atoms ormolecules, resulting in
the so-called van der Waals (VdW) molecules. An electrostatic model is
further derived forH-bonded andVdWdimers,which explains in a simple
way the angular shape of the dimers in terms of the first two permanent
electric moments of the monomers.
The contents of the book is as follows. After a short self-contained

mathematical introduction, Chapter 1 presents the essential elements of
the variation approach to either total or second-order molecular energies,



the system of atomic units (au) necessary to simplify all mathematical
expressions, and an introductory description of the electron distribution
in molecules, with particular emphasis on the nature of the quantum
mechanical exchange-overlap densities and their importance in determin-
ing the nature of chemical bonds and Pauli repulsions.
The contents of Part 1 is based on such premises. Using mostly 2�2

H€uckel secular equations, Chapter 2 introduces a model of bonding in
homonuclear and heteronuclear diatomics, multiple and delocalized
bonds in hydrocarbons, and the stereochemistry of chemical bonds in
polyatomic molecules; in a word, a model of the strong first-order
interactions originating in the chemical bond. Hybridization effects
and their importance in determining shape and charge distribution in
first-row hydrides (CH4, HF, H2O andNH3) are examined in some detail
in Section 2.7.
In Chapter 3, the H€uckel model of linear and closed polyene chains is

used to explain the origin of band structure in the one-dimensional crystal,
outlining the importance of the nature of the electronic bands in deter-
mining the different properties of insulators, conductors, semiconductors
and superconductors.
Turning to Part 2, after a short introduction to stationary Rayleigh–

Schr€odinger (RS) perturbation theory and its use for the classification of
long-range intermolecular forces, Chapter 4 deals with a simple two-
state model of weak interactions, introducing the reader to an easy way
of understanding second-order electric properties of molecules and
VdW bonding between closed shells. The chapter ends with a short
outline of the temperature-dependent Keesom interactions in polar
gases.
Finally, Chapter 5 studies the structure of H-bonded dimers and the

nature of the hydrogen bond,which has a strength intermediate between a
VdWbondandaweak chemical bond. Besides a qualitativeMOapproach
based on HOMO-LUMO charge transfer from an electron donor to an
electron acceptor molecule, a quantitative electrostatic approach is pre-
sented, suggesting an electrostatic model which works even at its simplest
pictorial level.
A list of alphabetically ordered references, and author and subject

indices complete the book.
The book is dedicated to the memory of my old friend and colleague

Deryk Wynn Davies, who died on 27 February 2008. I wish to thank my
colleagues Gian FrancoMusso and Giuseppe Figari for useful discussions
on different topics of this subject, Paolo Lazzeretti and Stefano Pelloni for

xii PREFACE



some calculations using the SYSMO programme at the University of
Modena andReggio, andmy sonMariowhoprepared the drawings on the
computer. Finally, I acknowledge the support of the Italian Ministry for
Education University and Research (MIUR) and the University of Genoa.

Valerio Magnasco
Genoa, 20 December 2009
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1
Mathematical Foundations

1.1 Matrices and Systems of Linear Equations
1.2 Properties of Eigenvalues and Eigenvectors
1.3 Variational Approximations
1.4 Atomic Units
1.5 The Electron Distribution in Molecules
1.6 Exchange-overlap Densities and the Chemical Bond

In physics and chemistry it is not possible to develop any useful model of
matter without a basic knowledge of some elementary mathematics. This
involves use of some elements of linear algebra, such as the solution of
algebraic equations (at least quadratic), the solution of systems of linear
equations, and a few elements on matrices and determinants.

1.1 MATRICES AND SYSTEMS OF LINEAR
EQUATIONS

We start frommatrices, limiting ourselves to the case of a squarematrix of
order two, namely a matrix involving two rows and two columns. Let us
denote this matrix by the boldface capital letter A:

A ¼ A11 A12

A21 A22

 !
ð1:1Þ

Models for Bonding in Chemistry Valerio Magnasco
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where Aij is a number called the ijth element of matrix A. The elements
Aii (j ¼ i) are called diagonal elements. We are interested mostly in
symmetric matrices, for which A21 ¼ A12. If A21 ¼ A12 ¼ 0, the matrix
is diagonal. Properties of a squarematrixA are its traceðtrA ¼A11þA22Þ;
the sum of its diagonal elements, and its determinant, denoted by
Aj j ¼ detA; a number that can be evaluated from its elements by the rule:

jAj ¼ A11A22�A12A21 ð1:2Þ
Two 2� 2 matrices can be multiplied rows by columns by the rule:

AB ¼ C ð1:3Þ

A11 A12

A21 A22

 !
B11 B12

B21 B22

 !
¼ C11 C12

C21 C22

 !
ð1:4Þ

the elements of the product matrix C being:

C11 ¼ A11B11 þA12B21; C12 ¼ A11B12 þA12B22;

C21 ¼ A21B11 þA22B21; C22 ¼ A21B12 þA22B22:

(
ð1:5Þ

So, we are led to the matrix multiplication rule:

Cij ¼
X2
k¼1

AikBkj ð1:6Þ

If matrixB is a simple number a, Equation (1.6) shows that all elements
of matrix Amust be multiplied by this number. Instead, for a|A|, we have
from Equation (1.2):

ajAj ¼ aðA11A22�A12A21Þ ¼
aA11 aA12

A21 A22

�����
����� ¼ aA11 A12

aA21 A22

�����
�����; ð1:7Þ

so that, multiplying a determinant by a number is equivalent to multi-
plying just one row (or one column) by that number.
We can have also rectangular matrices, where the number of rows is

different from the number of columns. Particularly important is the 2�1
column vector c:

c ¼ c11

c21

 !
¼ c1

c2

 !
ð1:8Þ

or the 1� 2 row vector ~c:
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~~c ¼ c11 c12ð Þ ¼ c1 c2ð Þ ð1:9Þ
where the tilde � means interchanging columns by rows or vice versa (the
transposed matrix).
The linear inhomogeneous system:

A11c1 þA12c2 ¼ b1

A21c1 þA22c2 ¼ b2

(
ð1:10Þ

can be easily rewritten in matrix form using matrix multiplication rule
(1.3) as:

Ac ¼ b ð1:11Þ
where c and b are 2� 1 column vectors.
Equation (1.10) is a system of two algebraic equations linear in the

unknowns c1 and c2, the elements of matrixA being the coefficients of the
linear combination. Particular importance has the case where b is pro-
portional to c through a number l:

Ac ¼ lc ð1:12Þ
which is known as the eigenvalue equation for matrix A. l is called an
eigenvalue and c an eigenvector of the squarematrixA. Equation (1.12) is
equally well written as the homogeneous system:

ðA�l1Þc ¼ 0 ð1:13Þ
where 1 is the 2� 2 diagonal matrix having 1 along the diagonal, called
the identity matrix, and 0 is the zero vector matrix, a 2� 1 column of
zeros. Written explicitly, the homogeneous system (Equation 1.13) is:

ðA11�lÞc1 þA12c2 ¼ 0

A21c1þðA22�lÞc2 ¼ 0

(
ð1:14Þ

Elementary algebra then says that the system of equations (1.14) has
acceptable solutions if and only if the determinant of the coefficients
vanishes, namely if:

jA�l1j ¼ A11�l A12

A21 A22�l

�����
����� ¼ 0 ð1:15Þ

Equation (1.15) is known as the secular equation for matrix A. If we
expand the determinant according to the rule of Equation (1.2), we obtain
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for a symmetric matrix A:

ðA11�lÞðA22�lÞ�A12
2 ¼ 0 ð1:16Þ

giving the quadratic equation in l:

l2�ðA11 þA22ÞlþA11A22�A12
2 ¼ 0 ð1:17Þ

which has the two real1 solutions (the eigenvalues, the roots of the
equation):

l1 ¼ A11 þA22

2
þ D

2

l2 ¼ A11 þA22

2
�D
2

8>>>><
>>>>:

ð1:18Þ

where D is the positive quantity:

D ¼ ðA22�A11Þ2 þ 4A12
2

h i1=2
> 0 ð1:19Þ

Inserting each root in turn in the homogeneous system (Equation 1.14),
we obtain the corresponding solutions (the eigenvectors, our unknowns):

c11 ¼ DþðA22�A11Þ
2D

 !1=2
; c21 ¼ D�ðA22�A11Þ

2D

 !1=2

c12 ¼ � D�ðA22�A11Þ
2D

 !1=2
; c22 ¼ DþðA22�A11Þ

2D

 !1=2

8>>>>>><
>>>>>>:

ð1:20Þ

where the second index (a column index, shown in bold type in Equa-
tions 1.20) specifies the eigenvalue to which the eigenvector refers. All
such results can be collected in the 2� 2 square matrices:

L ¼ l1 0

0 l2

 !
; C ¼ c1 c2ð Þ ¼ c11 c12

c21 c22

 !
ð1:21Þ

the first being the diagonal matrix of the eigenvalues (the roots of our
secular equation 1.17), the second the rowmatrix of the eigenvectors (the
unknowns of the homogeneous system 1.14). Matrix multiplication rule
shows that:

~CAC ¼ L; ~CC ¼ C~C ¼ 1 ð1:22Þ

1This is a mathematical property of real symmetric matrices.
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We usually say that the first of Equations (1.22) expresses the diago-
nalization of the symmetric matrix A through a transformation with the
complete matrix of its eigenvectors, while the second equations express
the normalization of the coefficients (i.e., the resulting vectors are chosen
to have modulus 1).2

Equations (18–20) simplify noticeably in the caseA22 ¼ A11 ¼ a. Then,
putting A12 ¼ A21 ¼ b, we obtain:

l1 ¼ aþb; l2 ¼ a�b

c1 ¼ 1=
ffiffiffi
2

p

1=
ffiffiffi
2

p
 !

; c2 ¼
�1=

ffiffiffi
2

p

1=
ffiffiffi
2

p
 !8><

>: ð1:23Þ

Occasionally, we shall need to solve the so called pseudosecular
equation for the symmetric matrix A arising from the pseudoeigenvalue
equation:

Ac ¼ lScY jA�lSj ¼ A11�l A12�lS

A21�lS A22�l

�����
����� ¼ 0 ð1:24Þ

where S is the overlap matrix:

S ¼ S11 S12

S21 S22

 !
¼ 1 S

S 1

 !
ð1:25Þ

Solution of Equation (1.24) then gives:

l1 ¼ A11 þA22�2A12S

2ð1�S2Þ � D
2ð1�S2Þ

l2 ¼ A11 þA22�2A12S

2ð1�S2Þ þ D
2ð1�S2Þ

8>>>><
>>>>:

ð1:26Þ

D ¼ ðA22�A11Þ2 þ 4ðA12�A11SÞðA12�A22SÞ
h i1=2

> 0 ð1:27Þ

The eigenvectors corresponding to the roots (Equations 1.26) are rather
complicated (Magnasco, 2007), so we shall content ourselves here by
giving only the results for A22 ¼ A11 ¼ a and A21 ¼ A12 ¼ b:

2The length of the vectors. A matrix satisfying the second of Equations (1.22) is said to be an

orthogonal matrix.
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l1 ¼ aþb

1þ S
; c11 ¼ ð2þ 2SÞ�1=2; c21 ¼ ð2þ 2SÞ�1=2

l2 ¼ a�b

1�S
; c12 ¼ �ð2�2SÞ�1=2; c22 ¼ ð2�2SÞ�1=2

8>>>><
>>>>:

ð1:28Þ

under these assumptions, these are the elements of the square matrices L
and C (Equations 1.21). Matrix multiplication shows that these matrices
satisfy the generalization of Equations (1.22):

~CAC ¼ L; ~CSC ¼ CS~C ¼ 1 ð1:29Þ
so that matrices A and S are simultaneously diagonalized under the
transformation with the orthogonal matrix C.
All previous results can be extended to square symmetric matrices of

orderN, inwhich case the solution of the corresponding secular equations
must be foundby numericalmethods, unless use can bemade of symmetry
arguments.

1.2 PROPERTIES OF EIGENVALUES AND
EIGENVECTORS

It is of interest to stress some properties hidden in the eigenvalues

l1 l2ð Þ and eigenvectors
c1
c2

� �
, (Equations 1.23), of the symmetric

matrix A of order 2 with A22 ¼ A11 ¼ a and A21 ¼ A12 ¼ b:
In fact, Equation (1.17) can be written:

ðl1�lÞðl2�lÞ ¼ l1l2�ðl1 þ l2Þlþ l2 ¼ 0 ð1:30Þ
so that:

l1l2 ¼ A11A22�A12
2 ¼ a2�b2 ¼ detA ð1:31Þ

l1þ l2 ¼ A11 þA22 ¼ 2a ¼ trA ð1:32Þ
In Equation (1.17), therefore, the coefficient of l0, the determinant of

matrix A, is expressible as the product of the two eigenvalues; the
coefficient of l, the trace of matrix A, is expressible as the sum of the
two eigenvalues.
From the eigenvectors of Equations (1.23) we can construct the two

square symmetric matrices of order 2:
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P1 ¼ c1~c1 ¼

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA

1ffiffiffi
2

p 1ffiffiffi
2

p
 !

¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ð1:33Þ

P2 ¼ c2~c2 ¼
� 1ffiffiffi

2
p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA

� 1ffiffiffi
2

p 1ffiffiffi
2

p
 !

¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ð1:34Þ

The two matrices P1 and P2 do not admit inverse (the determinants of
both are zero) and have the properties:

P1
2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼ P1 ð1:35Þ

P2
2 ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ P2 ð1:36Þ

P1P2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ 0 0

0 0

 !
¼ 0 ð1:37Þ

P2P1 ¼

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA ¼ 0 0

0 0

 !
¼ 0 ð1:38Þ
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P1þ P2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCAþ

1

2
� 1

2

� 1

2

1

2

0
BBBB@

1
CCCCA ¼ 1 0

0 1

 !
¼ 1 ð1:39Þ

Inmathematics,matrices having these properties (idempotency,mutual
exclusivity, completeness3) are called projectors. In fact, acting onmatrix
C of Equation (1.21)

P1C ¼ P1c1 þ P1c2 ¼ c1 ð1:40Þ

since:

P1c1 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼ c1 ð1:41Þ

P1c2 ¼

1

2

1

2

1

2

1

2

0
BBBB@

1
CCCCA

� 1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼

� 1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

� 1

2

1ffiffiffi
2

p þ 1

2

1ffiffiffi
2

p

0
BBBBB@

1
CCCCCA ¼ 0

0

 !
¼ 0

ð1:42Þ

so that, acting on the complete matrix C of the eigenvectors, P1 selects its
eigenvector c1, at the same time annihilating c2. In the same way:

P2C ¼ P2c1 þ P2c2 ¼ c2 ð1:43Þ

This makes evident the projector properties of matrices P1 and P2.
Furthermore, matrices P1 and P2 allow one to write matrix A in the so-

called canonical form:

A ¼ l1P1 þ l2P2 ð1:44Þ

3Often referred to as resolution of the identity.

8 MATHEMATICAL FOUNDATIONS


