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Preface

Experimental evidence shows that molecules are not like ‘liquid droplets’
of electrons, but have a structure made of bonds and lone pairs directed
in space. Even at its most elementary level, any successful theory of
bonding in chemistry should explain why atoms are or are not bonded in
molecules, the structure and shape of molecules in space and how
molecules interact at long range. Even if modern molecular quantum
mechanics offers the natural basis for very elaborate numerical calcula-
tions, models of bonding avoiding the more mathematical aspects of the
subject in the spirit of Coulson’s Valence are still of conceptual interest
for providing an elementary description of valence and its implications
for the electronic structure of molecules. This is the aim of this concise
book, which grew from a series of lectures delivered by the author at the
University of Genoa, based on original research work by the author and
his group from the early 1990s to the present day. The book should serve
as a complement to a 20-hour university lecture course in Physical and
Quantum Chemistry.

The book consists of two parts, where essentially two models have been
proposed, mostly requiring the solution of quadratic equations with real
roots. Part 1 explains forces acting at short range, typical of localized or
delocalized chemical bonds in molecules or solids; Part 2 explains forces
acting at long range, between closed-shell atoms or molecules, resulting in
the so-called van der Waals (VdW) molecules. An electrostatic model is
further derived for H-bonded and VAW dimers, which explains in a simple
way the angular shape of the dimers in terms of the first two permanent
electric moments of the monomers.

The contents of the book is as follows. After a short self-contained
mathematical introduction, Chapter 1 presents the essential elements of
the variation approach to either total or second-order molecular energies,
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the system of atomic units (au) necessary to simplify all mathematical
expressions, and an introductory description of the electron distribution
in molecules, with particular emphasis on the nature of the quantum
mechanical exchange-overlap densities and their importance in determin-
ing the nature of chemical bonds and Pauli repulsions.

The contents of Part 1 is based on such premises. Using mostly 2 x 2
Huckel secular equations, Chapter 2 introduces a model of bonding in
homonuclear and heteronuclear diatomics, multiple and delocalized
bonds in hydrocarbons, and the stereochemistry of chemical bonds in
polyatomic molecules; in a word, a model of the strong first-order
interactions originating in the chemical bond. Hybridization effects
and their importance in determining shape and charge distribution in
first-row hydrides (CHy4, HF, H,O and NH3) are examined in some detail
in Section 2.7.

In Chapter 3, the Hiickel model of linear and closed polyene chains is
used to explain the origin of band structure in the one-dimensional crystal,
outlining the importance of the nature of the electronic bands in deter-
mining the different properties of insulators, conductors, semiconductors
and superconductors.

Turning to Part 2, after a short introduction to stationary Rayleigh—
Schrodinger (RS) perturbation theory and its use for the classification of
long-range intermolecular forces, Chapter 4 deals with a simple two-
state model of weak interactions, introducing the reader to an easy way
of understanding second-order electric properties of molecules and
VdW bonding between closed shells. The chapter ends with a short
outline of the temperature-dependent Keesom interactions in polar
gases.

Finally, Chapter 5 studies the structure of H-bonded dimers and the
nature of the hydrogen bond, which has a strength intermediate between a
VdW bond and a weak chemical bond. Besides a qualitative MO approach
based on HOMO-LUMO charge transfer from an electron donor to an
electron acceptor molecule, a quantitative electrostatic approach is pre-
sented, suggesting an electrostatic model which works even at its simplest
pictorial level.

A list of alphabetically ordered references, and author and subject
indices complete the book.

The book is dedicated to the memory of my old friend and colleague
Deryk Wynn Davies, who died on 27 February 2008. I wish to thank my
colleagues Gian Franco Musso and Giuseppe Figari for useful discussions
on different topics of this subject, Paolo Lazzeretti and Stefano Pelloni for
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some calculations using the SYSMO programme at the University of
Modena and Reggio, and my son Mario who prepared the drawings on the
computer. Finally, I acknowledge the support of the Italian Ministry for
Education University and Research (MIUR) and the University of Genoa.

Valerio Magnasco
Genoa, 20 December 2009






1

Mathematical Foundations

1.1 Matrices and Systems of Linear Equations

1.2 Properties of Eigenvalues and Eigenvectors

1.3 Variational Approximations

1.4 Atomic Units

1.5 The Electron Distribution in Molecules

1.6 Exchange-overlap Densities and the Chemical Bond

In physics and chemistry it is not possible to develop any useful model of
matter without a basic knowledge of some elementary mathematics. This
involves use of some elements of linear algebra, such as the solution of
algebraic equations (at least quadratic), the solution of systems of linear
equations, and a few elements on matrices and determinants.

1.1 MATRICES AND SYSTEMS OF LINEAR
EQUATIONS

We start from matrices, limiting ourselves to the case of a square matrix of
order two, namely a matrix involving two rows and two columns. Let us
denote this matrix by the boldface capital letter A:

A A
A_ 11 An (1)
Ay Axp

Models for Bonding in Chemistry Valerio Magnasco
© 2010 John Wiley & Sons, Ltd




2 MATHEMATICAL FOUNDATIONS

where A;; is a number called the ijth element of matrix A. The elements
Aji (j =) are called diagonal elements. We are interested mostly in
symmetric matrices, for which A,y = Aqy. If Ay = Ayp = 0, the matrix
is diagonal. Properties of a square matrix A are its trace(tr A = A1 + Az2),
the sum of its diagonal elements, and its determinant, denoted by
|A| = det A, a number that can be evaluated from its elements by the rule:

|A| = A11A22—A12A21 (12)
Two 2 x 2 matrices can be multiplied rows by columns by the rule:
AB=C (1.3)
Ann A\ (B Bn _ Cii Ci (1.4)
A Az )\ Bai Bxn G Cn

the elements of the product matrix C being;:

Cit = AuB11+A1By, Cia=AnBi+A1By, (1.5)
Cy1 = Ay1B11 +AnByi, Cup =ABia+A»B)n. '
So, we are led to the matrix multiplication rule:
2
Cij = ZAiKBKf (16)
k=1

If matrix B is a simple number a, Equation (1.6) shows that all elements
of matrix A must be multiplied by this number. Instead, for alAl, we have
from Equation (1.2):

a1 A
alry An

aA11 aA12

alA| = a(A11Apn—AnAyn) =
Ay An

,  (1.7)

so that, multiplying a determinant by a number is equivalent to multi-
plying just one row (or one column) by that number.

We can have also rectangular matrices, where the number of rows is
different from the number of columns. Particularly important is the 2 x 1

column vector c:
c c
c= (") =1(" (1.8)
1 1)

or the 1 x 2 row vector ¢:
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5:(611 612):(61 Cz) (19)

where the tilde ~ means interchanging columns by rows or vice versa (the
transposed matrix).
The linear inhomogeneous system:

{A1161 +Apc =b

(1.10)
Axici +Anc =b,

can be easily rewritten in matrix form using matrix multiplication rule
(1.3) as:

Ac=b (1.11)

where ¢ and b are 2 x 1 column vectors.

Equation (1.10) is a system of two algebraic equations linear in the
unknowns c1 and ¢,, the elements of matrix A being the coefficients of the
linear combination. Particular importance has the case where b is pro-
portional to ¢ through a number A:

Ac=ic (1.12)

which is known as the eigenvalue equation for matrix A. A is called an
eigenvalue and c an eigenvector of the square matrix A. Equation (1.12) is
equally well written as the homogeneous system:

(A—i1)c=0 (1.13)

where 1 is the 2 x 2 diagonal matrix having 1 along the diagonal, called
the identity matrix, and 0 is the zero vector matrix, a 2 x 1 column of
zeros. Written explicitly, the homogeneous system (Equation 1.13) is:

{ (A11—/1)C1 +A1¢c, =0 (1.14)

Az + (Azz—l)(:z =0

Elementary algebra then says that the system of equations (1.14) has
acceptable solutions if and only if the determinant of the coefficients
vanishes, namely if:

An—4  An

A—J1| =
Ay Axp—A

=0 (1.15)

Equation (1.15) is known as the secular equation for matrix A. If we
expand the determinant according to the rule of Equation (1.2), we obtain



4 MATHEMATICAL FOUNDATIONS

for a symmetric matrix A:
(Aj1=2)(Ap—2)—Ap* =0 (1.16)
giving the quadratic equation in A:
P—(An+Ap)i+ AnAn—Ap* =0 (1.17)

which has the two real' solutions (the eigenvalues, the roots of the
equation):

_An+An A
A A )
(1.18)
_AutAn A
B 2 2
where A is the positive quantity:
2 2112
A= [(AZZ—AH) F4AL, } >0 (1.19)

Inserting each root in turn in the homogeneous system (Equation 1.14),
we obtain the corresponding solutions (the eigenvectors, our unknowns):

1/2 1/2
B <A+(A22—A11)> _ (A—(AZZ—A11)>
m=|——, a=|—FF""-

2A 2A
(1.20)
12 12
[ A-(An—An) (A +(An—An)
il e B

where the second index (a column index, shown in bold type in Equa-
tions 1.20) specifies the eigenvalue to which the eigenvector refers. All
such results can be collected in the 2 x 2 square matrices:

A O c c
A= 7) c=(a )= " " (1.21)
0 A4 €1 €22

the first being the diagonal matrix of the eigenvalues (the roots of our
secular equation 1.17), the second the row matrix of the eigenvectors (the
unknowns of the homogeneous system 1.14). Matrix multiplication rule
shows that:

CAC=A, CC=CC=1 (1.22)

This is a mathematical property of real symmetric matrices.
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We usually say that the first of Equations (1.22) expresses the diago-
nalization of the symmetric matrix A through a transformation with the
complete matrix of its eigenvectors, while the second equations express
the normalization of the coefficients (i.e., the resulting vectors are chosen
to have modulus 1).2

Equations (18-20) simplify noticeably in the case Ay, = A1 = a. Then,
putting A = Ay = B, we obtain:

/11 :a—i—B, )Q:a—ﬁ
1/v2 —1/V2 (1.23)
C1 = , C =
1/V2 1/V2
Occasionally, we shall need to solve the so called pseudosecular
equation for the symmetric matrix A arising from the pseudoeigenvalue
equation:

Ap1—24 Ap—AS

Ac = Sc= |A—AS| =
Ay =S Axp—J

=0 (1.24)

where S is the overlap matrix:

Sit S 1 S
R el (1.25)
S$21 S S 1
Solution of Equation (1.24) then gives:

P A +An-2ApS A
b 2(1-82) 2(1-82)

P A1 +A»n—2A,S8 n A
2 2(1-82) 2(1-82)

(1.26)

1/2
A= [(AZZ—AM)Z +4(A12—A118)(A12—A228)} >0 (1.27)

The eigenvectors corresponding to the roots (Equations 1.26) are rather
complicated (Magnasco, 2007), so we shall content ourselves here by
giving only the results for Ay = Aj; = @ and Ay; = Ay = B:

>The length of the vectors. A matrix satisfying the second of Equations (1.22) is said to be an
orthogonal matrix.
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a+p “12 ~12
M 118’ C11 (2 + ZS) , €21 ( + S)
(1.28)
ly = —(1[_’[;7 e =—(2-28)""7 cy=(2-287"?

under these assumptions, these are the elements of the square matrices A
and C (Equations 1.21). Matrix multiplication shows that these matrices
satisfy the generalization of Equations (1.22):

CAC=A, CSC=CSC=1 (1.29)

so that matrices A and S are simultaneously diagonalized under the
transformation with the orthogonal matrix C.

All previous results can be extended to square symmetric matrices of
order N, in which case the solution of the corresponding secular equations
must be found by numerical methods, unless use can be made of symmetry
arguments.

1.2 PROPERTIES OF EIGENVALUES AND
EIGENVECTORS

It is of interest to stress some properties hidden in the eigenvalues
\ . c . .
(41 42) and eigenvectors <c1 ), (Equations 1.23), of the symmetric

2

matrix A of order 2 with Ay = Ajy = a and Ay; = A, = B.
In fact, Equation (1.17) can be written:

(A=2)(Ja—=2) = Ada—(h1+22)i+ 12 =0 (1.30)

so that:
Iy = Al1Ap—Ap® = a?—p* = detA (1.31)
M+l =A11+A»n =2a=trA (132)

In Equation (1.17), therefore, the coefficient of 1°, the determinant of
matrix A, is expressible as the product of the two eigenvalues; the
coefficient of 2, the trace of matrix A, is expressible as the sum of the
two eigenvalues.

From the eigenvectors of Equations (1.23) we can construct the two
square symmetric matrices of order 2:
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S 11
V2 1 1 2 2
Pi=c¢ = 1 (72 \/_§> = 11 (133)
/2 2 2
1 1
V2 1 1 2 2
P2 =CC = 1 ( \/z \/Z) = B 1 1 (1.34)
N 2

The two matrices P; and P, do not admit inverse (the determinants of
both are zero) and have the properties:

1 1y /11 11
2 212 2 2 2
P’ = = =P 1.35
RN EUEE I FEEE il FUET I
2 2 2 2
1 1 1 1 1 1
2
P2 = = =P 1.36
2 11 1 1 1 1 > (1.36)
2 2
11 1 1
2 2 2 2 0 0
PP — - —0 1.37
S P | I 7
2 2 2 2

P,P; = (1.38)

|
| —
| —
(NS
N = N =
o =
Il
/N
oS O
~_
Il
(=)

N =
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o] =
N =
o
[\

P, +P Oy (1.39)
+P, = + = = .
1 2 0 1

N =
—_
N =
—_

In mathematics, matrices having these properties (idempotency, mutual
exclusivity, completeness®) are called projectors. In fact, acting on matrix
C of Equation (1.21)

Pi;C =Pic1 +Pica = ¢4 (140)
since:
D[ (1 11y 1
2 20| v2 22 2V2 V2
P = = = = 1.41
DU T B 11 11 1 ¢ (141)
22 )\va) \2at2a]
1 1 1 11 +1 1
13| v 22 va | g,
Pic, = = = =0
1 1 1 11 +1 1 0
2 V2 22 22

(1.42)

so that, acting on the complete matrix C of the eigenvectors, Py selects its
eigenvector ¢y, at the same time annihilating c,. In the same way:

P,C =Pyc1 +Prcp = ¢ (1.43)

This makes evident the projector properties of matrices Py and P,.
Furthermore, matrices P; and P, allow one to write matrix A in the so-
called canonical form:

A = }\,1]_)1 +12P2 (144)

3Often referred to as resolution of the identity.



