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Chapter One

Introduction: Geochemical Sediments 
in Landscapes

David J. Nash and Sue J. McLaren

1.1 Scope of This Volume

Geochemical sediments of various types are an often overlooked but extremely 
important component of global terrestrial environments. Where present, 
chemical sediments and residual deposits may control slope development 
and landscape evolution, increase the preservation potential of otherwise 
fragile sediments, provide important archives of environmental change, act 
as relative or absolute dating tools and, in some cases, be of considerable 
economic importance. Chemical sedimentation may occur in almost any 
terrestrial environment, providing there is a suitable dissolved mineral 
source, a mechanism to transfer the mineral in solution to a site of accumula-
tion and some means of triggering precipitation. However, given the increased 
importance of chemical weathering in the tropics and sub-tropics, they tend 
to be most widespread in low-latitude regions (Goudie, 1973).

Despite their global signifi cance, terrestrial geochemical sediments have 
not been considered collectively for over 20 years. Indeed, the last book to 
review the full suite of chemical sediments and residual deposits was 
Goudie and Pye’s seminal volume Chemical Sediments and Geomorphology 
(Goudie and Pye, 1983a). Since then, selected geochemical sediments have 
been discussed in volumes such as Wright and Tucker (Calcretes; 1991), 
Martini and Chesworth (Weathering, Soils and Palaeosols; 1992), Ollier and 
Pain (Regolith, Soils and Landforms; 1996), Thiry and Simon-Coinçon 
(Palaeoweathering, Palaeosurfaces and Related Continental Deposits; 1999), 
Dorn (Rock Coatings; 1998), Taylor and Eggleton (Regolith Geology and 
Geomorphology; 2001), and Chen and Roach (Calcrete: Characteristics, Dis-
tribution and Use in Mineral Exploration; 2005). However, many of these 
texts tend to discuss geochemical sediments within either a geological or 
pedological framework, often with little attempt to position them in their 
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geomorphological context. As will be seen in section 1.3 and many of the 
chapters in this volume, understanding the infl uence of landscape setting 
upon geochemical sedimentation is of paramount importance if the result-
ing chemical sediments and residua are to be correctly interpreted. The 
need for a follow-up volume to Goudie and Pye (1983a) became very 
apparent during meetings of the British Geomorphological Research Group 
(BGRG) fi xed-term working group on Terrestrial Geochemical Sediments and 
Geomorphology, convened by the editors and Andrew Goudie, which ran 
between 2001 and 2004. Indeed, the majority of the authors within this 
collection were members of the working group, and all royalties from this 
book will go to the BGRG (now the British Society for Geomorphology).

The individual chapters within Geochemical Sediments and Landscapes 
focus largely on the relationships between geomorphology and geochemical 
sedimentation. Given the emphasis on landscape, the range of precipitates 
and residual deposits considered are mainly those which form in terrestrial 
settings. An exception is the chapter on beachrock and intertidal precipi-
tates (Gischler, Chapter 11), which develop at the terrestrial–marine inter-
face but, where present, have a signifi cant impact upon coastal geomorphology 
and sedimentology. The defi nition of geochemical sediments used in the 
volume is a deliberately broad one, refl ecting the wide range of environ-
ments under which chemical sedimentation can occur. As Goudie and Pye 
(1983b) suggest, geochemical sediments are conventionally defi ned as sedi-
mentary deposits originating through inorganic chemical processes. This 
distinguishes them from clastic, volcaniclastic, biochemical and organic 
sediments. However, this defi nition is not especially useful, since the major-
ity of the geochemical sediments reviewed here comprise a mixture of 
detrital clastic particles which are bound together by various intergranular 
chemical precipitates. Certainly, there are some very ‘pure’ chemical pre-
cipitates, such as speleothems (see Fairchild et al., Chapter 7) and some 
lacustrine deposits (Verrecchia, Chapter 9), but these are the exception 
rather than the rule. The conventional defi nition also places greatest 
emphasis on the role of physico-chemical processes in geochemical sedi-
mentation. However, as will be seen from many chapters in this collection, 
biogeochemical processes are increasingly recognised as being of vital 
importance for the formation of a wide range of supposedly ‘chemical’ 
precipitates. Indeed, biological agencies may be directly implicated in the 
formation of many chemical sediments, and play a key role in the weather-
ing and release of solutes for a wide range of other precipitates.

1.2 Organisation

Geochemical Sediments and Landscapes is organised into 14 chapters. These 
are arranged so that the main duricrusts (calcrete, laterite and silcrete) are 
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discussed fi rst (Chapters 2–4), followed by a consideration of deposits 
precipitated in various aeolian, slope, spring, fl uvial, lake, cave and near-
coastal environments (Chapters 5–12). The volume concludes with an 
overview of the range of techniques available for analysing geochemical 
sediments (McAlister and Smith, Chapter 13) and a general summary 
which includes a consideration of directions for future research (McLaren 
and Nash, Chapter 14).

The specifi c content of individual chapters, inevitably, refl ects the 
primary research interests of the contributing authors. However, all con-
tributors were requested, where appropriate, to include information about 
the nature and general characteristics, distribution, fi eld occurrence, land-
scape relations, macro- and micromorphology, chemistry, mineralogy, 
mechanisms of formation or accumulation, and palaeoenvironmental sig-
nifi cance of their respective geochemical sediment. Individual deposits are 
treated as discrete entities in their specifi c chapters. However, in recogni-
tion of the fact that individual chemical sediments may grade laterally or 
vertically into geochemically allied materials, for example along pH (e.g. 
calcrete and silcrete) or other environmental gradients (e.g. beachrock and 
coastal aeolianite), authors were also asked to highlight any signifi cant 
relationships to other terrestrial geochemical sediments. Despite its title, 
the chapters within Geochemical Sediments and Landscapes do not include 
lengthy discussions of the physics of geochemical sedimentation; authors 
were instead asked to cite suitable references so that interested readers can 
access such materials.

1.3 Signifi cance of Geochemical Sediments in Landscapes

The geochemical precipitates and residual deposits discussed within this 
volume are signifi cant from a range of geomorphological, palaeoenviron-
mental and economic perspectives. From a geomorphological standpoint, 
the more indurated and resistant chemical sediments such as calcrete 
(Wright, Chapter 2), ferricrete (Widdowson, Chapter 3) and silcrete (Nash 
and Ullyott, Chapter 4) exert a major infl uence upon the topographic 
evolution of many parts of the world. This infl uence is most noticeable in 
tropical and sub-tropical areas because such duricrusts are most wide-
spread in these regions (Goudie, 1973). Geochemical crusts that have 
developed over palaeosurfaces may be preserved as horizontal to sub-hori-
zontal caprocks on plateaux and mesas (Goudie, 1984). Along the southern 
coast of South Africa, for example, silcrete and ferricrete accumulation 
within deeply weathered bedrock has led to the preservation of remnants 
of the post-Gondwana ‘African Surface’ (Summerfi eld, 1982, 1983a; 
Marker et al., 2002). In contrast, where geochemical sediment formation 
took place preferentially in a topographic low, usually as a product of 
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groundwater-related cementation, relief and drainage inversion may occur 
if surrounding uncemented and less resistant materials are removed by 
erosion (Pain and Ollier, 1995). In Australia, silcretes developed within 
palaeochannels may now crop out in inverted relief (e.g. Barnes and Pitt, 
1976; Alley et al., 1999; Hill et al., 2003). In either case, the presence of 
a duricrust caprock exerts a control upon slope development and hydrology 
and may signifi cantly retard landscape denudation. The undercutting and 
subsequent collapse of caprocks may lead to the development of charac-
teristic features such as ‘breakaways’ with the resulting slope surfaces 
mantled by duricrust-derived regolith.

Geochemical sedimentation may also play a more subtle but equally 
important role in preserving ‘ephemeral’ sediment bodies which would 
otherwise be highly susceptible to erosion and destruction. Calcium car-
bonate, gypsum or halite cementation of near-coastal and desert dune 
sands may, for example, signifi cantly enhance their preservation potential 
once they are transformed to aeolianite (e.g. McKee, 1966; Gardner, 1998; 
McLaren and Gardner, 2004; see McLaren, Chapter 5). Similarly, the 
induration of fl uvial terrace sediments through the development of pedo-
genic or groundwater calcretes may increase their resistance to erosion and 
reworking and hence preserve key palaeohydrological evidence (e.g. Candy 
et al., 2004a; see Wright, Chapter 2). In extreme cases, geochemical sedi-
mentation may lead to the complete preservation of relict landforms, as, 
for example, in the case of the silica- and carbonate cemented palaeochan-
nels described by Maizels (1987, 1990) from central Oman.

In addition to their geomorphological roles, chemical sediments of 
various types may act as important archives of palaeoenvironmental infor-
mation. Even in the most arid deserts, where detailed hydrological or cli-
matic data are often sparse, the occurrence of crusts such as calcrete or 
gypcrete at or near the land surface is a clear indication that the mobilisa-
tion and precipitation of minerals in the presence of water has occurred in 
the past. Evaporites in Death Valley, USA, for example, have been used 
to unravel sequences of regional climatic changes over the past 200,000 
years (Lowenstein et al., 1999; see Chivas, Chapter 10). The accumulation 
of thick sequences of geochemical precipitates usually requires lengthy 
periods of landscape stability. As such, vast thicknesses of any fossil deposit 
may indicate relative tectonic, climatic and/or hydrological stability. 
However, it is essential that the morphological and geochemical character-
istics of chemical sediments, as well as the environmental factors control-
ling their formation, are fully appreciated before they are used as evidence 
in palaeoenvironmental reconstruction. For example, when attempting to 
distinguish the signifi cance of a calcrete within a sedimentary sequence, it 
is essential to determine whether it formed by pedogenic or non-pedogenic 
processes (see Wright, Chapter 2), since different processes of cementation 
may operate at different rates and represent different palaeohydrological 
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conditions (e.g. Nash and Smith, 1998). This becomes even more critical 
when dealing with calcretes in the geological record (Pimentel et al., 1996) 
where fabrics may have been altered over time through processes of dia-
genesis and paragenesis.

Successful palaeoenvironmental interpretation is highly dependent upon 
the availability of representative and well-documented modern analogues. 
For many geochemical sediments, this is unproblematic as the processes 
involved in, and the controls upon, their formation are well understood. 
Studies of dripwater chemistry and environmental conditions within con-
temporary cave systems, for example, have greatly improved the hydrogeo-
chemical interpretation of ancient speleothems (see Fairchild et al., 2006a,b; 
and Fairchild et al., Chapter 7). Similarly, Zhang et al. (2001) and Chen 
et al. (2004) have investigated the physico-chemical controls on con-
temporary carbonate precipitation at waterfalls, which has considerably 
enhanced our understanding of tufa and travertine formation (see Viles and 
Pentecost, Chapter 6). However, for materials such as silcrete (Nash and 
Ullyott, Chapter 4), there are virtually no representative modern equiva-
lents, and debate continues over the precise environments under which 
they form (e.g. Summerfi eld, 1983b, 1986; Nash et al., 1994; Ullyott 
et al., 1998). Disagreements over the role of biological and physico-chemi-
cal mechanisms in the formation of rock varnish have also historically hin-
dered their effective use as a palaeoenvironmental indicator, although 
recent developments will hopefully rectify this situation (see Liu, 2003; and 
Dorn, Chapter 8).

Geochemical sediments are increasingly being used as both relative and 
absolute age indicators. Duricrusts formed on palaeosurfaces as a result of 
pedogenic processes, for example, may represent important marker hori-
zons and can, with considerable care, be used as a broad-scale correlative 
tool. However, it is the potential for absolute dating of geochemical sedi-
ments that is currently generating greatest interest. The dating of many 
CaCO3-cemented sediments has long been considered inappropriate due 
to concerns over whether the carbonate-cementing environment could be 
viewed as geochemically ‘closed’. Advances in the use of U-series dating 
mean that previously problematic materials such as calcrete can now be 
systematically dated (Kelly et al., 2000; Candy et al., 2004b, 2005). 
Similarly, the analysis and dating of microlaminations is permitting both 
palaeoenvironmental information and calibrated ages to be derived from 
rock varnish (see Liu et al., 2000; and Dorn, Chapter 8). These improve-
ments may mean that such chemical sediments will, in the future, be used 
as routinely as speleothems (Fairchild et al., Chapter 7) and laminated 
lacustrine deposits (Verrecchia, Chapter 9) as chronometric and palaeoen-
vironmental tools.

Finally, many geochemical sediments are of major economic impor-
tance, both as sources of minerals and construction materials, and because 
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of their potential impacts on human livelihoods through their infl uence 
upon soil properties and groundwater chemistry. In regions where alterna-
tive construction materials are scarce, geochemical sediments such as cal-
crete (Wright, Chapter 2), laterite (Widdowson, Chapter 3) and beachrock 
(Gischler, Chapter 11) may be used as building materials. For example, 
certain types of air-hardening laterite are widely employed as building 
bricks in Asia (Goudie, 1973), and calcrete was used as one of the main 
sources of road aggregate during the construction of the Trans-Kalahari 
Highway in Botswana in the late 1990s (Lawrance and Toole, 1984). In 
terms of mineral prospecting, evaporite sequences (Chivas, Chapter 10, 
and Goudie and Heslop, Chapter 12) provide economically signifi cant 
sources of gypsum, nitrate, sulphate and borax, bauxite (Widdowson, 
Chapter 3) remains a key source of aluminium ore (e.g. Anand and Butt, 
2003) and groundwater calcrete (Wright, Chapter 2) may contain signifi -
cant concentrations of uranium (Carlisle et al., 1978; Carlisle, 1983).

Even where geochemical sediments are, in themselves, of little direct 
economic value, they may be of considerable utility in basin analysis, oil 
reservoir or aquifer characterisation and for locating economically impor-
tant ore bodies (e.g. Smith et al., 1993; Abdel-Wahab et al., 1998; Butt et 
al., 2005). For example, chemical analyses of pedogenic calcretes are 
increasingly used as a gold-prospecting tool in southern Australia due to the 
preferential concentration of Au within profi les during bedrock weathering 
and cementation (Lintern et al., 1992); elevated levels of Au within the cal-
crete regolith may represent the near-surface expression of an area of con-
cealed primary or secondary gold mineralisation (Lintern, 2002). Similarly, 
the upper ferruginous zone of lateritic profi les is frequently used as a sample 
medium for the detection of underlying Au ore bodies in southern and 
Western Australia (Butt et al., 2005). However, for these techniques to be 
successful, it is essential that sampling is undertaken with full regard to the 
local landform context (Craig, 2005), which requires that detailed regolith-
landform mapping is carried out during the early phases of any mineral 
exploration programme (e.g. Hill et al., 2003). This ongoing work rein-
forces the premise behind this volume, namely that understanding the infl u-
ence of landscape context upon the formation of any geochemical sediment 
is key to the successful exploitation of that precipitate or residual deposit. 
We are confi dent that as our understanding of the genesis of all geochemical 
sediments improves, then their economic value can only increase.
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