Molecular Modelling for Beginners

Second Edition

ALAN HINCHLIFFE The University of Manchester

Molecular Modelling for Beginners

Molecular Modelling for Beginners

Second Edition

ALAN HINCHLIFFE The University of Manchester

This edition first published 2008 © 2008 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging in Publication Data

Hinchliffe, Alan.

Molecular modelling for beginners / Alan Hinchliffe. — 2nd ed. p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-51313-2 (cloth) — ISBN 978-0-470-51314-9 (pbk. : alk. paper)
Molecules—Mathematical models. 2. Molecules—Computer simulation.
I. Title.
QD480.H58 2008
541'.22015118—dc22

2008024099

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

CLOTH: 978-0-470-51313-2 PAPER: 978-0-470-51314-9

Set in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

Contents

Pref	face to	the Second Edition	XV
Pref	face to	the First Edition	xvii
1	Elect	ric Charges and their Properties	1
	1.1	Point Charges	1
	1.2	Coulomb's Law	3
	1.3	Pair Wise Additivity	4
	1.4	Electric Field	5
	1.5	Work	6
	1.6	Charge Distributions	8
	1.7	Mutual Potential Energy, U	8
	1.8	Relationship between Force and Mutual Potential Energy	9
	1.9	Electric Multipoles	10
		1.9.1 Continuous Charge Distributions	12
		1.9.2 Electric Second Moment	13
		1.9.3 Higher Electric Moments	15
	1.10	Electrostatic Potential	15
	1.11	Polarization and Polarizability	16
	1.12	Dipole Polarizability	17
		1.12.1 Properties of Polarizabilities	18
	1.13	Many-Body Forces	19
	1.14	Problem Set	20
2	The I	Forces between Molecules	21
	2.1	Pair Potential	21
	2.2	Multipole Expansion	23
	2.3	Charge–Dipole Interaction	23
	2.4	Dipole–Dipole Interaction	25
	2.5	Taking Account of the Temperature	26
	2.6	Induction Energy	27
	2.7	Dispersion Energy	28
	2.8	Repulsive Contributions	29
	2.9	Combination Rules	31
	2.10	Comparison with Experiment	32
		2.10.1 Gas Imperfections	32
		2.10.2 Molecular Beams	32

vi	Contents

	2.11	Impro	ved Pair Potentials	33
	2.12	A Nur	nerical Potential	33
	2.13	Site-S	Site Potentials	34
	2.14	Proble	em Set	35
	Refe	rences		35
3	Balls	s on Spr	rings	37
	3.1	Vibrat	tional Motion	38
	3.2	The F	orce Law	41
	3.3	A Sim	ple Diatomic	41
	3.4	Three	Problems	43
	3.5	The M	Iorse Potential	45
	3.6	More	Advanced Potentials	46
	Refe	rences		47
4	Mole	ecular N	Aechanics	49
	4.1	More	About Balls on Springs	49
	4.2	Large	r Systems of Balls on Springs	51
	4.3	Force	Fields	53
	4.4	Molec	cular Mechanics (MM)	53
		4.4.1	Bond Stretching	54
		4.4.2	Bond Bending	54
		4.4.3	Dihedral Motions	55
		4.4.4	Out-of-Plane Angle Potential (Inversion)	56
		4.4.5	Nonbonded Interactions	56
		4.4.6	Coulomb Interactions	57
	4.5	Mode	lling the Solvent	57
	4.6	Time-	and Money-Saving Tricks	57
		4.6.1	United Atoms	57
		4.6.2	Cut-Offs	58
	4.7	Mode	rn Force Fields	58
		4.7.1	Variations on a Theme	59
	4.8	Some	Commercial Force Fields	60
		4.8.1	Dreiding	60
		4.8.2	MM1	60
		4.8.3	MM2 (Improved Hydrocarbon Force Field)	61
		4.8.4	AMBER	61
		4.8.5	OPLS (Optimized Potentials for Liquid Simulations)	62
		4.8.6	Johnson	62
		4.8.7	Unified Force Field (UFF)	63
	Refe	rences	•	63
5	The	Molecu	lar Potential Energy Surface	65
	5.1	Multi	ple Minima	65
	5.2	Saddl	e Points	66
	5.3	Chara	cterization	68
5	The 5.1 5.2 5.3	Molecu Multij Saddle Chara	lar Potential Energy Surface ple Minima e Points cterization	65 65 68

	5.4	Finding Minima	68
	5.5	Multivariate Grid Search	69
		5.5.1 Univariate Search	69
	5.6	Derivative Methods	70
	5.7	First-Order Methods	70
		5.7.1 Steepest Descent	70
		5.7.2 Conjugate Gradients	71
	5.8	Second-Order Methods	72
		5.8.1 Newton-Raphson	72
		5.8.2 Block Diagonal Newton–Raphson	75
		5.8.3 Quasi-Newton–Raphson	75
		5.8.4 Fletcher–Powell Algorithm	75
	5.9	Choice of Method	76
	5.10	The Z-Matrix	77
	5.11	The End of the Z-Matrix	78
	5.12	Redundant Internal Coordinates	80
	Refe	rences	80
6	Mole	ecular Mechanics Examples	81
	6.1	Geometry Optimization	81
	6.2	Conformation Searches	82
	6.3	Amino Acids	84
		6.3.1 Molecular Structure Databases	85
		6.3.2 The .pdb File Format	85
	6.4	OSAR	86
		6.4.1 Atomic Partial Charges	86
		6.4.2 Polarizabilities	87
		6.4.3 Molecular Volume and Surface Area	90
		$6.4.4 \ Log(P)$	92
	6.5	Problem Set	93
	Refe	rences	93
7	Shar	ing Out the Energy	95
	7.1	Games of Chance	97
		7.1.1 Two Dice	99
	7.2	Enumeration	99
	7.3	Boltzmann Probability	100
	7.4	Safety in Numbers	104
	7.5	Partition Function	106
	7.6	Two-Level Quantum System	107
	7.7	Lindemann's Theory of Melting	109
	7.8	Problem Set	111
8	Intro	oduction to Statistical Thermodynamics	113
	8.1	The Ensemble	114
	8.2	Internal Energy, $U_{\rm th}$	116

	8.3	Helmholtz Energy, A	116
	8.4	Entropy S	117
	8.5	Equation of State and Pressure	117
	8.6	Phase Space	117
	8.7	Configurational Integral	119
	8.8	Virial of Clausius	120
9	Mon	te Carlo Simulations	123
	9.1	An Early Paper	125
	9.2	The First 'Chemical' Monte Carlo Simulation	127
	9.3	Importance Sampling	128
	9.4	Periodic Box	129
	9.5	Cut-Offs	131
	9.6	MC Simulation of Rigid Molecules	132
	9.7	Flexible Molecules	133
	Refe	rences	133
10	Mole	ecular Dynamics	135
	10.1	Radial Distribution Function	136
	10.2	Pair Correlation Functions	139
	10.3	Molecular Dynamics Methodology	140
		10.3.1 Hard Sphere Potential	140
		10.3.2 Finite Square Well	140
		10.3.3 Lennardjonesium	142
	10.4	Algorithms for Time Dependence	142
		10.4.1 Leapfrog Algorithm	142
		10.4.2 Verlet Algorithm	143
	10.5	Molten Salts	144
	10.6	Liquid Water	144
		10.6.1 Other Water Potentials	147
	10.7	Different Types of Molecular Dynamics	147
	10.8	Uses in Conformational Studies	148
	Refe	rences	150
11	Intro	duction to Quantum Modelling	151
	11.1	The Schrödinger Equation	151
	11.2	The Time-Independent Schrödinger Equation	153
	11.3	Particles in Potential Wells	154
		11.3.1 One-Dimensional Infinite Well	154
	11.4	Correspondence Principle	156
	11.5	Two-Dimensional Infinite Well	157
	11.6	Three-Dimensional Infinite Well	159
	11.7	Two Noninteracting Particles	161
	11.8	Finite Well	162
	11.9	Unbound States	164

	11.10	Free Particles	164
	11.11	Vibrational Motion	165
12	Quant	um Gases	169
	12.1	Sharing Out the Energy	170
	12.2	Rayleigh Counting	172
	12.3	Maxwell–Boltzmann Distribution of Atomic Kinetic Energies	173
	12.4	Black Body Radiation	175
	12.5	Modelling Metals	177
		12.5.1 The Drude Model	178
		12.5.2 The Pauli Treatment	180
	12.6	Indistinguishability	181
	12.0	Snin	185
	12.7	Fermions and Bosons	185
	12.0	Pauli Exclusion Principle	187
	12.7	Roltzmann's Counting Pule	107
	12.10 Defere		180
	Kelele	lices	109
13	One-F	lectron Atoms	191
	13.1	Atomic Spectra	192
	10.1	13.1.1 Bohr's Theory	192
	13.2	Correspondence Principle	194
	13.2	Infinite Nucleus Approximation	194
	13.4	Hartree's Atomic Units	195
	13.5	Schrödinger Treatment of the Hydrogen Atom	195
	13.5	Radial Solutions	193
	13.0	Atomic Orbitals	100
	15.7	13.7.1 l = 0 (s orbitals)	200
		13.7.1 t = 0 (3-0) orbitals	200
		12.7.2 The p-orbitals	202
	12.0	The Stern Carlooh Experiment	203
	12.0	Flootron Spin	203
	12.10	Total Angular Momentum	208
	12.10	Direct Theory of the Electron	209
	12.11	Macaurement in the Quantum Warld	210
	13.12 Defense	Measurement in the Quantum world	212
	Refere	nces	213
14	The O	rbital Model	215
	14.1	One- and Two-Electron Operators	216
	14.2	Many-Body Problem	216
	14.3	Orbital Model	217
	14.4	Perturbation Theory	219
	14 5	Variation Method	221
	14.6	Linear Variation Method	221
	14.7	Slater Determinants	225
	14.9	Slater_Condon_Shortley Rules	220
	14.0	Sinter Condon Shoridey Rules	220

	14.9	Hartree Model	229
	14.10	Hartree–Fock Model	230
	14.11	Atomic Shielding Constants	231
		14.11.1 Zener's Wavefunctions	232
		14.11.2 Slater's Rules	233
	14.12	Koopmans' Theorem	234
	Refere	nces	235
15	Simple	e Molecules	237
	15.1	Hydrogen Molecule Ion, H ₂ ⁺	238
	15.2	LCAO Model	240
	15.3	Elliptic Orbitals	242
	15.4	Heitler-London Treatment of Dihydrogen	244
	15.5	Dihydrogen MO Treatment	246
	15.6	James and Coolidge Treatment	247
	15.7	Population Analysis	247
		15.7.1 Extension to Many-Electron Systems	249
	Refere	nces	250
16	The H	F-LCAO Model	253
	16.1	Roothaan's 1951 Landmark Paper	254
	16.2	The \hat{J} and \hat{K} Operators	256
	16.3	HF-LCAO Equations	256
		16.3.1 The HF-LCAO Equations	259
	16.4	Electronic Energy	259
	16.5	Koopmans' Theorem	260
	16.6	Open Shell Systems	260
	16.7	Unrestricted Hartree-Fock (UHF) Model	262
		16.7.1 Three Technical Points	263
	16.8	Basis Sets	264
		16.8.1 Clementi and Raimondi	264
		16.8.2 Extension to Second-Row Atoms	265
		16.8.3 Polarization Functions	266
	16.9	Gaussian Orbitals	267
		16.9.1 STO/nG	270
		16.9.2 STO/4-31G	271
		16.9.3 Gaussian Polarization and Diffuse Functions	272
		16.9.4 Extended Basis Sets	273
	Refere	nces	274
17	HF-L	CAO Examples	275
	17.1	Output	277
		17.1.1 GaussView, the Graphical User Interface for Gaussian 03	280
	17.2	Visualization	281
	17.3	Properties	282
		17.3.1 Electrostatic Potential	283

	17.4	Geometry Optimization	285
	17.5	Vibrational Analysis	287
		17.5.1 Hellmann Feynman Theorem	290
	17.6	Thermodynamic Properties	291
		17.6.1 Ideal Monatomic Gas	292
		17.6.2 Ideal Diatomic Gas	293
		17.6.3 $q_{\rm rot}$	293
		$17.6.4 q_{\rm vib}$	294
	17.7	Back to L-Phenylanine	295
	17.8	Excited States	296
	17.9	Consequences of the Brillouin Theorem	300
	17.10	Electric Field Gradients	301
	17.11	Hyperfine Interactions	303
	17.12	Problem Set	305
	Refere	ences	306
18	Semie	mpirical Models	307
	18.1	Hückel π -Electron Theory	308
		18.1.1 Treatment of Heteroatoms	310
	18.2	Extended Hückel Theory	311
		18.2.1 Wolfsberg and Helmholtz	312
		18.2.2 Roald Hoffmann	314
	18.3	Pariser, Parr and Pople	314
	18.4	Zero Differential Overlap	315
	18.5	Which Basis Functions Are They?	317
	18.6	All Valence Electron ZDO Models	318
	18.7	CNDO	318
	18.8	CNDO/2	319
	18.9	CNDO/S	320
	18.10	INDO	320
	18.11	NDDO (Neglect of Diatomic Differential	
		Overlap)	321
	18.12	The MINDO Family	321
		18.12.1 MINDO/3	321
	18.13	MNDO	322
	18.14	Austin Model 1 (AM1)	323
	18.15	PM3	323
	18.16	SAM1	323
	18.17	ZINDO/1 and ZINDO/S	323
	18.18	Effective Core Potentials	324
	18.19	Problem Set	324
	Refere	ences	324
19	Electr	ron Correlation	327
	19.1	Electron Density Functions	327
		19.1.1 Fermi Correlation	329

	19.2	Configuration Interaction	329
	19.3	Coupled Cluster Method	330
	19.4	Møller–Plesset Perturbation Theory	331
	19.5	Multiconfiguration SCF	335
	Refer	ences	335
20	Densi	ty Functional Theory and the Kohn–Sham LCAO Equations	337
	20.1	Pauli and Thomas-Fermi Models	338
	20.2	Hohenberg–Kohn Theorems	340
	20.3	Kohn–Sham (KS-LCAO) Equations	342
	20.4	Numerical Integration (Quadrature)	343
	20.5	Practical Details	343
	20.6	Custom and Hybrid Functionals	345
	20.7	An Example	345
	Refer	ences	347
21	Accu	rate Thermodynamic Properties; the Gn Models	349
	21.1	G1 Theory	349
	21.2	G2 Theory	351
		21.2.1 G2(MP2)	352
	21.3	G3 Theory	352
		21.3.1 G3 Variations	353
	Refer	ences	353
22	Trans	sition States	355
	22.1	An Example	357
	22.2	The Reaction Path	359
	Refer	ences	361
23	Deali	ng with the Solvent	363
	23.1	Solvent Models	363
	23.2	Langevin Dynamics	364
	23.3	Continuum Solvation Models	366
		23.3.1 The Onsager Model	368
		23.3.2 Polarizable Continuum Models	370
	23.4	Periodic Solvent Box	370
	Refer	ences	371
24	Hybr	id Models; the QM/MM Approach	373
	24.1	Link Atoms	374
	24.2	IMOMM	375
	24.3	IMOMO	376
	24.4	ONIOM (Our Own N-layered Integrated Molecular Orbital	
		and Molecular Mechanics)	377
	Refer	ences	377

Appendix A	A Mathematical Aide-Mémoire	379
Appendix B	Glossary	399
Appendix C	List of Symbols	401
Index		405

Preface to the Second Edition

It is five years since the first edition was published, and many things have moved on sufficiently to justify this second edition.

Some things never change; I have left the elementary chapters alone and I still believe that Appendix A on relevant mathematical methods is the correct place for you to *start* your studies.

Some topics have matured in the last five years. Density functional theory (and especially the B3LYP choice of functionals) has become the workhorse of modern computational chemistry. I have reworked all the problems and expanded the text as appropriate.

I have also said 'goodbye' to a few of the older topics. For example, everyone can now do chemical drawing, so I do not need to teach it. Thankfully that bane of our lives the Z-matrix has all but disappeared; I still have fond memories of struggling to get cyclic structures symmetrical and so it still gets a page of discussion.

I have completely rewritten the chapters dealing with Monte Carlo and molecular dynamics, the Gn models, transition states and solvent models. I have also added a completely new chapter called 'Sharing Out the Energy', and I hope you will enjoy reading it.

It is fashionable to have an associated website with any new teaching text, and I have therefore added a website at

http://www.wileyeurope.com/college/hinchliffe

where you will find a number of problem sets and their solutions. Feel free to use them any way you like. I used them in my own teaching. Perhaps you have a corresponding set that you would like to share with the rest of us? Let me know.

I did all the illustrative calculations using either Gaussian 03 or HyperChem; these were done either on a beautiful Sony Vaio laptop or on the University of Manchester's High Performance Computing parallel computer, a Bull Itanium2 system.

As always, I welcome comments and can be reached at: Alan.Hinchliffe@manchester. ac.uk.

Alan Hinchliffe Manchester, UK

Preface to the First Edition

There is nothing radically new about the techniques we use in modern molecular modelling. Classical mechanics hasn't changed since the time of Newton, Hamilton and Lagrange, the great ideas of statistical mechanics and thermodynamics were discovered by Ludwig Boltzmann and J. Willard Gibbs amongst others and the basic concepts of quantum mechanics appeared in the 1920s, by which time J.C. Maxwell's famous electromagnetic equations had long since been published.

The chemically inspired idea that molecules can profitably be treated as a collection of balls joined together with springs can be traced back to the work of D.H. Andrews in 1930. The first serious molecular Monte Carlo simulation appeared in 1953, closely followed by B.J. Alder and T.E. Wainwright's classic molecular dynamics study of hard discs in 1957.

The Hartrees' 1927 work on atomic structure is the concrete foundation of our everyday concept of atomic orbitals, whilst C.C.J. Roothaan's 1951 formulation of the HF-LCAO model arguably gave us the basis for much of modern molecular quantum theory.

If we move on a little, most of my colleagues would agree that the two recent major advances in molecular quantum theory have been density functional theory, and the elegant treatment of solvents using ONIOM. Ancient civilizations believed in the cyclic nature of time and they might have had a point for, as usual, nothing is new. Workers in solid-state physics and biology actually proposed these models many years ago. It took the chemists a while to catch up.

Scientists and engineers first got their hands on computers in the late 1960s. We have passed the point on the computer history curve where every ten years gave us an order of magnitude increase in computer power, but it is no coincidence the that growth in our understanding and application of molecular modelling has run in parallel with growth in computer power. Perhaps the two greatest driving forces in recent years have been the PC and the graphical user interface. I am humbled by the fact that my lowly 1.2 GHz AMD Athlon office PC is far more powerful than the world-beating mainframes that I used as a graduate student all those years ago, and that I can build a molecule on screen and run a B3LYP/6-311++G(3d,2p) calculation before my eyes (of which more in Chapter 20).

We have also reached a stage where tremendously powerful molecular modelling computer packages are commercially available, and the subject is routinely taught as part of undergraduate science degrees. I have made use of several such packages to produce the screenshots; obviously they look better in colour than the greyscale of this text. There are a number of classic (and hard) texts in the field; if I'm stuck with a basic molecular quantum mechanics problem, I usually reach for Eyring, Walter and Kimball's *Quantum Chemistry* but the going is rarely easy.

Equally there are a number of beautifully produced elementary texts and software reference manuals that can apparently transform you into an expert overnight. It's a two-edged sword, and we are victims of our own success. One often meets self-appointed experts in the field who have picked up much of the jargon with little of the deep understanding. It's no use (in my humble opinion) trying to hold a conversation about gradients, hessians and density functional theory with a colleague who has just run a molecule through one package or another but hasn't the slightest clue what the phrases or the output mean.

It therefore seemed to me (and to the reviewers who read my new book proposal) that the time was right for a middle course. I assume that you are a 'Beginner' in the sense of Chambers dictionary, *someone who begins; a person who is in the early stages of learning or doing anything...*, and I want to tell you how we go about modern molecular modelling, why we do it, and most important of all, explain much of the basic theory behind the mouse clicks. This involves mathematics and physics, and the book neither pulls punches nor aims at instant enlightenment. Many of the concepts and ideas are difficult ones, and you will have to think long and hard about them; if it's any consolation, so did the pioneers in our subject. I have given many of the derivations in full, and tried to avoid the dreaded phrase 'it can be shown that'.

There are various strands to our studies, all of which eventually intertwine. We start off with molecular mechanics, a classical treatment widely used to predict molecular geometries. In Chapter 8, I give a quick guide to statistical thermodynamics (if such a thing is possible), because we need to make use of the concepts when trying to model arrays of particles at nonzero temperatures. Armed with this knowledge, we are ready for an assault on Monte Carlo and molecular dynamics.

Just as we have to bite the bullet of statistical mechanics, so we have to bite the equally difficult one of quantum mechanics, which occupies Chapters 11 and 12. We then turn to the quantum treatment of atoms, where many of the sums can be done on a postcard if armed with knowledge of angular momentum.

The Hartree-Fock and HF-LCAO models dominate much of the next few chapters, as they should. The Hartree–Fock model is great for predicting many molecular properties, but it can't usually cope with bond breaking and bond making. Chapter 19 treats electron correlation and Chapter 20 deals with the very topical density functional theory (DFT). You won't be taken seriously if you have not done a DFT calculation on your molecule. Quantum mechanics, statistical mechanics and electromagnetism all have a certain welldeserved reputation amongst science students; they are hard subjects. Unfortunately all three all feature in this new text. In electromagnetism it is mostly a matter of getting to grips with the mathematical notation (although I have spared you Maxwell's beautiful equations), whilst in the other two subjects it is more a question of mastering hard concepts. In the case of quantum mechanics, the concepts are often in direct contradiction to everyday experience and common sense. I expect from you a certain level of mathematical competence; I have made extensive use of vectors and matrices not because I am perverse, but because such mathematical notation brings out the inherent simplicity and beauty of many of the equations. I have tried to help by giving a mathematical appendix, which should also make the text self-contained.

I have tried to put the text into historical perspective, and in particular I have quoted directly from a number of what I call *keynote papers*. It is interesting to read at first hand how the pioneers put their ideas across, and in any case they do it far better than me. For example, I am not the only author to quote Paul Dirac's famous statement

The underlying Physical Laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that exact application of these laws leads to equations much too complicated to be soluble.

I hope you have a profitable time in your studies, and at the very least begin to appreciate what all those options mean next time you run a modelling package!

Alan Hinchliffe Manchester, UK

1

Electric Charges and their Properties

As far as we can tell, there are four fundamental types of interactions between physical objects. There is the *weak nuclear interaction* that governs the decay of beta particles, and the *strong nuclear interaction* that is responsible for binding together the particles in a nucleus. The familiar *gravitational* interaction holds the Earth very firmly in its orbit round the Sun, and finally we know that there is an *electromagnetic* interaction that is responsible for binding atomic electrons to nuclei and for holding atoms together when they combine to form molecules.

Of the four, the gravitational interaction is the only one we would normally come across in our everyday world. This is because gravitational interactions between bodies always add. The gravitational interaction between two atoms is negligible but when large numbers of fundamental particles such as atoms are aggregated together, the gravitational interaction becomes significant.

You may think it bizarre that there are four types of interaction, yet, conversely, you might wonder why there should be just four. Why not one, three or five? Should there not be a unifying theory to explain why there are four, and whether they are related? As I write, there is no such unifying theory despite tremendous research activity.

1.1 Point Charges

In this chapter I am going to concentrate on electric charges and their properties, since electrons and protons are fundamental building blocks for atoms and molecules.

It turns out that there are two types of electric charge in nature, which we might choose to call type X and type Y (or Red and Blue for that matter, but X and Y will do for

Molecular Modelling for Beginners, Second Edition Alan Hinchliffe

© 2008 John Wiley & Sons, Ltd

now). Experimental evidence shows the existence of an electrostatic force between electric charges; the force between two X-type charges is always repulsive, as is the force between two Y-type charges. The force between an X-type and a Y-type is always attractive. For this reason, the early experimenters decided to classify charges as positive or negative, because a positive quantity times a positive quantity gives a positive quantity, a negative quantity times a negative quantity gives a positive quantity whilst a negative quantity times a positive quantity. I am sure you know that the best known fundamental particles responsible for these charges are electrons and protons, and you are probably expecting me to tell you that the electrons are the negatively charged particles whilst protons are positively charged. It is actually just a convention that we take: we could just as well have called electrons positive.

Whilst on the subject, it is fascinating to note that the charge on the electron is exactly equal and opposite of that on a proton. Atoms and molecules generally contain exactly the same number of electrons and protons, and so the net charge on a molecule is almost always zero. Ions certainly exist in solutions of electrolytes, but the number of Na^+ ions in a solution of sodium chloride is exactly equal to the number of Cl^- ions and once again we are rarely aware of any imbalance of charge.

A thunderstorm results when nature separates out positive and negative charges on a macroscopic scale. It is thought that friction between moving masses of air and water vapour detaches electrons from some molecules and attaches them to others. This results in parts of clouds being left with an excess of charge, often with spectacular results. It was investigations into such atmospheric phenomena that gave the first clues about the nature of the electrostatic force.

We normally start any study of charges at rest (*electrostatics*) by considering the force between two point charges, as shown in Figure 1.1. The term 'point charge' is a mathematical abstraction; obviously electrons and protons have a finite size. Just bear with me for a few pages, and accept that a point charge is one whose dimensions are small compared to the distance between them. An electron is large if you happen to be a nearby electron, but can normally be treated as a point charge if you happen to be a human being a metre away.

Figure 1.1 Point charges

The concept of a point charge may strike you as an odd one, but once we have established the magnitude of the force between two such charges, we can deduce the force between any arbitrary charge distributions on the grounds that they are composed of a large number of point charges.

In Figure 1.1 we have point charge Q_A at position vector \mathbf{R}_A and Q_B at \mathbf{R}_B . From the laws of vector analysis, the vector $\mathbf{R}_{AB} = \mathbf{R}_B - \mathbf{R}_A$ joins Q_A to Q_B , and points from Q_A to Q_B as shown. I have indicated the direction of the vectors with arrows.

1.2 Coulomb's Law

In 1785, Charles Augustin de Coulomb became the first person to give a mathematical form to the force between point charges. He measured the force directly between two very small charged bodies, and was able to show that the force exerted by Q_A on Q_B was

- proportional to the inverse square of the distance between Q_A and Q_B when both charges were fixed;
- proportional to Q_A when Q_B and \mathbf{R}_{AB} were fixed;
- proportional to $Q_{\rm B}$ when $Q_{\rm A}$ and $\mathbf{R}_{\rm AB}$ were fixed.

He also noticed that the force acted along the line joining the centres of the two charges, and that the force was either attractive or repulsive depending on whether the charges were different or of the same type. The sign of the product of the charges therefore determines the direction of the force.

A mathematical result of these observations can be written in scalar form as

$$F_{\rm A \ on \ B} \propto \frac{Q_{\rm A} Q_{\rm B}}{R_{\rm AB}^2} \tag{1.1}$$

Forces are vector quantities, and Equation (1.1) is better written in vector form as

$$\mathbf{F}_{\text{A on B}} \propto \frac{Q_{\text{A}}Q_{\text{B}}}{R_{\text{AB}}^3} \mathbf{R}_{\text{AB}}$$

When Coulomb first established his law, he had no means of quantifying charge and so could not identify the proportionality constant. He took it to be unity, and thereby defined charge in terms of the force between charges. Modern practice is to regard charge and force as independent quantities, and because of this a dimensioned proportionality constant is necessary. For a reason that need not concern us, this is taken as $1/4\pi\varepsilon_0$, where the permittivity of free space ε_0 is an experimentally determined quantity with the approximate value $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$. Coulomb's law is therefore

$$\mathbf{F}_{A \text{ on } B} = \frac{1}{4\pi\varepsilon_0} \frac{Q_A Q_B}{R_{AB}^3} \mathbf{R}_{AB}$$
(1.2)

and it applies to measurements done in free space. If we repeat Coulomb's experiments with the charges immersed in different media, then we find that the law still holds but with a different proportionality constant. We modify the proportionality constant using a quantity ε_r called the *relative permittivity*. In older texts, ε_r is called the *dielectric constant*. Our final statement of Coulomb's law is therefore

$$\mathbf{F}_{A \text{ on } B} = \frac{1}{4\pi\varepsilon_{r}\varepsilon_{0}} \frac{Q_{A}Q_{B}}{R_{AB}^{3}} \mathbf{R}_{AB}$$
(1.3)

4 Molecular Modelling for Beginners

According to Newton's third law, we know that if Q_A exerts a force $\mathbf{F}_{A \text{ on } B}$ on Q_B , then Q_B should exert an equal and opposite force on Q_A . Coulomb's law satisfies this requirement, since

$$\mathbf{F}_{\mathrm{B \ on \ A}} = \frac{1}{4\pi\varepsilon_{\mathrm{r}}\varepsilon_{\mathrm{0}}} \frac{Q_{\mathrm{A}}Q_{\mathrm{B}}}{R_{\mathrm{BA}}^{3}} \mathbf{R}_{\mathrm{BA}}$$

(the vector \mathbf{R}_{BA} points in the opposite direction to \mathbf{R}_{AB} and so one force is exactly the negative of the other, as it should be).

1.3 Pair Wise Additivity

Suppose we now add a third point charge Q_C with position vector \mathbf{R}_C as shown in Figure 1.2. Since Q_A and Q_B are point charges, the addition of Q_C cannot alter the force between Q_A and Q_B .

Figure 1.2 Third charge added

The total force on $Q_{\rm B}$ now comprises two terms, the force due to point charge $Q_{\rm A}$ and the force due to point charge $Q_{\rm C}$. This total force is given by

$$\mathbf{F}_{\mathrm{B}} = \frac{Q_{\mathrm{B}}}{4\pi\varepsilon_{0}} \left(Q_{\mathrm{A}} \frac{\mathbf{R}_{\mathrm{AB}}}{R_{\mathrm{AB}}^{3}} + Q_{\mathrm{C}} \frac{\mathbf{R}_{\mathrm{CB}}}{R_{\mathrm{CB}}^{3}} \right)$$
(1.4)

This may seem at first sight to be a trivial statement: surely all forces act this way. Not necessarily, for I have assumed that the addition of $Q_{\rm C}$ did not have any effect on $Q_{\rm A}$ and $Q_{\rm B}$ (and so did not influence the force between them).

The generic term *pair wise additive* describes things like forces that add as above. Forces between point electric charges are certainly pair wise additive, and so you might imagine that forces between atoms and molecules must therefore be pair wise additive, because atoms and molecules consist of (essentially) point charges. I am afraid that nature is not so kind, and we will shortly meet situations where forces between the composites of electrons and protons that go to make up atoms and molecules are far from being pair wise additive.

1.4 Electric Field

Suppose now we have a point charge Q at the coordinate origin, and we place another point charge q at point P that has position vector **r** (Figure 1.3).

Figure 1.3 Field concept

The force exerted by Q on q is

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^3} \mathbf{r}$$

which I can rewrite trivially as

$$\mathbf{F} = \left(\frac{1}{4\pi\varepsilon_0}\frac{Q}{r^3}\mathbf{r}\right)q$$

The point is that the term in brackets is to do with Q and the vector \mathbf{r} , and contains no mention of q. If we want to find the force on any arbitrary q at \mathbf{r} , we calculate the quantity in brackets once and then multiply by q. One way of thinking about this is to imagine that the charge Q creates a certain field at point \mathbf{r} , which determines the force on any other q when placed at position \mathbf{r} .

This property is called the *electric field* \mathbf{E} at that point. It is a vector quantity, like force, and the relationship is

$$\mathbf{F}$$
 (on q at \mathbf{r}) = $q\mathbf{E}$ (at \mathbf{r})

Comparison with Coulomb's law, Equation (1.3), shows that the electric field at point \mathbf{r} due to a point charge Q at the coordinate origin is

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q\mathbf{r}}{r^3} \tag{1.5}$$

E is sometimes written E(r) to emphasize that the electric field depends on the position vector $\boldsymbol{r}.$

Electric fields are vector fields and they are often visualized as *field lines*. These are drawn such that their spacing is inversely proportional to the strength of the field, and their tangent is in the direction of the field. They start at positive charges and end at negative charges, and two simple examples are shown in Figure 1.4. Here the choice of eight lines is quite arbitrary.

Electric fields that do not vary with time are called *electrostatic* fields.

Figure 1.4 Field lines for point charges

1.5 Work

Look again at Figure 1.3, and suppose we move point charge q whilst keeping Q fixed in position. When a force acts to make something move, energy is transferred. There is a useful phrase in physical science that is to do with the energy transferred, and it is *work*. Work measures the energy transferred in any change, and can be calculated from the change in energy of a body when it moves through a distance under the influence of a force.

We have to be careful to take account of the energy balance. If a body gains energy, this energy has to come from somewhere, and that somewhere must lose energy. What we do is to divide the universe into two parts: the bits we are interested in called the *system* and the rest of the universe that we call the *surroundings*.

Some texts focus on the work done *by* the system, some concern themselves with the work done *on* the system. According to the law of conservation of energy, one is exactly the equal and opposite of the other, but we have to be clear which is being discussed. I am going to write w_{on} for the work done on our system.

If the system gains energy, then w_{on} will be positive. If the system loses energy then w_{on} will negative.

We also have to be careful about the phrase 'through a distance'. The phrase means 'through a distance that is the projection of the force vector on the displacement vector', and you should instantly recognize a vector scalar product (see Appendix A).

A useful formula that relates to the energy gained by a system (i.e. w_{on}) when a constant force **F** moves its point of application through **l** is

$$v_{\rm on} = -\mathbf{F}.\mathbf{I} \tag{1.6}$$

In the case where the force is not constant, we have to divide up the motion into differential elements dl. The energy transferred is then given by the sum of all the corresponding differential elements dw_{on} . The corresponding formulae are

$$dw_{\rm on} = -\mathbf{F}.d\mathbf{l}$$

$$w_{\rm on} = -\int \mathbf{F}.d\mathbf{l}$$
(1.7)

We now move q by an infinitesimal vector displacement dl, as shown in Figure 1.5, so that it ends up at point $\mathbf{r} + d\mathbf{l}$. The work done on the system in that differential change is

$$dw_{on} = -\mathbf{F}.d\mathbf{I}$$

If the angle between the vectors \mathbf{r}_{I} and dl is θ , then we have

$$dw_{on} = -F dl \cos \theta$$

and examination of Figure 1.6 shows that $dl \cos \theta$ is the radial distance moved by charge q, which we will write dr.

Figure 1.5 Electrostatic work

Figure 1.6 Relationship between vectors

Hence

$$\mathrm{d}w_{\mathrm{on}} = -\frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} \mathrm{d}r$$

The total work done moving from position I to position II is therefore found by integrating

$$w_{\rm on} = -\frac{1}{4\pi\varepsilon_0} \int_{\rm I}^{\rm II} \frac{Qq}{r^2} dr$$

$$= \frac{1}{4\pi\varepsilon_0} Qq \left(\frac{1}{r_{\rm II}} - \frac{1}{r_{\rm I}}\right)$$
(1.8)

The work done depends only on the initial and final positions of charge q; it is independent of the way we make the change.

Another way to think about the problem is as follows. The force is radial, and we can divide the movement from position I to position II into infinitesimal steps, some of which are parallel to \mathbf{F} and some of which are perpendicular to \mathbf{F} . The perpendicular steps count 0 towards w_{on} , the parallel steps only depend on the change in the (scalar) radial distance.

1.6 Charge Distributions

So far I have concentrated on point charges, and carefully skirted round the question as to how we deal with continuous distributions of charge. Figure 1.7 shows a charge distribution Q_A . The density of charge need not be constant through space, and we normally write $\rho(\mathbf{r})$ for the density at the point whose position vector is \mathbf{r} . The charge contained within the volume element $d\tau$ at \mathbf{r} is therefore $\rho(\mathbf{r})d\tau$ and the relationship between $\rho(\mathbf{r})$ and Q_A is discussed in Appendix A. It is

$$Q_{\rm A} = \int \rho \left(\mathbf{r} \right) \, \mathrm{d}\tau \tag{1.9}$$

In order to find the force between the charge distribution and the point charge $Q_{\rm B}$ we simply extend our ideas about the force between two point charges; one of the point charges being $\rho(\mathbf{r})d\tau$ and the other $Q_{\rm B}$.

Figure 1.7 Charge distribution

The total force is given by the sum of all possible contributions from the elements of the continuous charge distribution Q_A with point charge Q_B . The practical calculation of such a force can be a nightmare, even for simple charge distributions. One of the reasons for the nightmare is that forces are vector quantities; we need to know about both their magnitude and their direction.

In the next section, I am going to tell you about a very useful scalar field called the mutual potential energy U. This field has the great advantage that it is a scalar field, and so we do not need to worry about direction in our calculations.

1.7 Mutual Potential Energy, U

Suppose now we start with charge q at infinity, and move it up to a point with vector position **r**, as shown in Figure 1.3. The work done is

$$w_{\rm on} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r} \tag{1.10}$$