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Preface to the Second Edition

It is five years since the first edition was published, and many things have moved on
sufficiently to justify this second edition.

Some things never change; I have left the elementary chapters alone and I still believe
that Appendix A on relevant mathematical methods is the correct place for you to start your
studies.

Some topics have matured in the last five years. Density functional theory (and especially
the B3LYP choice of functionals) has become the workhorse of modern computational
chemistry. I have reworked all the problems and expanded the text as appropriate.

I have also said ‘goodbye’ to a few of the older topics. For example, everyone can now
do chemical drawing, so I do not need to teach it. Thankfully that bane of our lives the
Z-matrix has all but disappeared; I still have fond memories of struggling to get cyclic
structures symmetrical and so it still gets a page of discussion.

I have completely rewritten the chapters dealing with Monte Carlo and molecular dynam-
ics, the Gn models, transition states and solvent models. I have also added a completely
new chapter called ‘Sharing Out the Energy’, and I hope you will enjoy reading it.

It is fashionable to have an associated website with any new teaching text, and I have
therefore added a website at

http://www.wileyeurope.com/college/hinchliffe

where you will find a number of problem sets and their solutions. Feel free to use them any
way you like. I used them in my own teaching. Perhaps you have a corresponding set that
you would like to share with the rest of us? Let me know.

I did all the illustrative calculations using either Gaussian 03 or HyperChem; these were
done either on a beautiful Sony Vaio laptop or on the University of Manchester’s High
Performance Computing parallel computer, a Bull Itanium2 system.

As always, I welcome comments and can be reached at: Alan.Hinchliffe@manchester.
ac.uk.

Alan Hinchliffe
Manchester, UK





Preface to the First Edition

There is nothing radically new about the techniques we use in modern molecular modelling.
Classical mechanics hasn’t changed since the time of Newton, Hamilton and Lagrange,
the great ideas of statistical mechanics and thermodynamics were discovered by Ludwig
Boltzmann and J. Willard Gibbs amongst others and the basic concepts of quantum mechan-
ics appeared in the 1920s, by which time J.C. Maxwell’s famous electromagnetic equations
had long since been published.

The chemically inspired idea that molecules can profitably be treated as a collection
of balls joined together with springs can be traced back to the work of D.H. Andrews
in 1930. The first serious molecular Monte Carlo simulation appeared in 1953, closely
followed by B.J. Alder and T.E. Wainwright’s classic molecular dynamics study of hard
discs in 1957.

The Hartrees’ 1927 work on atomic structure is the concrete foundation of our everyday
concept of atomic orbitals, whilst C.C.J. Roothaan’s 1951 formulation of the HF-LCAO
model arguably gave us the basis for much of modern molecular quantum theory.

If we move on a little, most of my colleagues would agree that the two recent major
advances in molecular quantum theory have been density functional theory, and the elegant
treatment of solvents using ONIOM. Ancient civilizations believed in the cyclic nature of
time and they might have had a point for, as usual, nothing is new. Workers in solid-state
physics and biology actually proposed these models many years ago. It took the chemists
a while to catch up.

Scientists and engineers first got their hands on computers in the late 1960s. We have
passed the point on the computer history curve where every ten years gave us an order
of magnitude increase in computer power, but it is no coincidence the that growth in our
understanding and application of molecular modelling has run in parallel with growth in
computer power. Perhaps the two greatest driving forces in recent years have been the PC
and the graphical user interface. I am humbled by the fact that my lowly 1.2 GHz AMD
Athlon office PC is far more powerful than the world-beating mainframes that I used as a
graduate student all those years ago, and that I can build a molecule on screen and run a
B3LYP/6-311++G(3d,2p) calculation before my eyes (of which more in Chapter 20).

We have also reached a stage where tremendously powerful molecular modelling com-
puter packages are commercially available, and the subject is routinely taught as part of
undergraduate science degrees. I have made use of several such packages to produce the
screenshots; obviously they look better in colour than the greyscale of this text.



xviii Preface to the First Edition

There are a number of classic (and hard) texts in the field; if I’m stuck with a basic
molecular quantum mechanics problem, I usually reach for Eyring, Walter and Kimball’s
Quantum Chemistry but the going is rarely easy.

Equally there are a number of beautifully produced elementary texts and software refer-
ence manuals that can apparently transform you into an expert overnight. It’s a two-edged
sword, and we are victims of our own success. One often meets self-appointed experts in
the field who have picked up much of the jargon with little of the deep understanding. It’s
no use (in my humble opinion) trying to hold a conversation about gradients, hessians and
density functional theory with a colleague who has just run a molecule through one package
or another but hasn’t the slightest clue what the phrases or the output mean.

It therefore seemed to me (and to the reviewers who read my new book proposal) that
the time was right for a middle course. I assume that you are a ‘Beginner’ in the sense of
Chambers dictionary, someone who begins; a person who is in the early stages of learning
or doing anything. . . , and I want to tell you how we go about modern molecular modelling,
why we do it, and most important of all, explain much of the basic theory behind the mouse
clicks. This involves mathematics and physics, and the book neither pulls punches nor aims
at instant enlightenment. Many of the concepts and ideas are difficult ones, and you will
have to think long and hard about them; if it’s any consolation, so did the pioneers in our
subject. I have given many of the derivations in full, and tried to avoid the dreaded phrase
‘it can be shown that’.

There are various strands to our studies, all of which eventually intertwine. We start off
with molecular mechanics, a classical treatment widely used to predict molecular geomet-
ries. In Chapter 8, I give a quick guide to statistical thermodynamics (if such a thing is
possible), because we need to make use of the concepts when trying to model arrays of
particles at nonzero temperatures. Armed with this knowledge, we are ready for an assault
on Monte Carlo and molecular dynamics.

Just as we have to bite the bullet of statistical mechanics, so we have to bite the equally
difficult one of quantum mechanics, which occupies Chapters 11 and 12. We then turn to
the quantum treatment of atoms, where many of the sums can be done on a postcard if
armed with knowledge of angular momentum.

The Hartree–Fock and HF-LCAO models dominate much of the next few chapters, as
they should. The Hartree–Fock model is great for predicting many molecular properties,
but it can’t usually cope with bond breaking and bond making. Chapter 19 treats electron
correlation and Chapter 20 deals with the very topical density functional theory (DFT).
You won’t be taken seriously if you have not done a DFT calculation on your molecule.
Quantum mechanics, statistical mechanics and electromagnetism all have a certain well-
deserved reputation amongst science students; they are hard subjects. Unfortunately all
three all feature in this new text. In electromagnetism it is mostly a matter of getting to
grips with the mathematical notation (although I have spared you Maxwell’s beautiful equa-
tions), whilst in the other two subjects it is more a question of mastering hard concepts. In
the case of quantum mechanics, the concepts are often in direct contradiction to everyday
experience and common sense. I expect from you a certain level of mathematical compet-
ence; I have made extensive use of vectors and matrices not because I am perverse, but
because such mathematical notation brings out the inherent simplicity and beauty of many
of the equations. I have tried to help by giving a mathematical appendix, which should also
make the text self-contained.
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I have tried to put the text into historical perspective, and in particular I have quoted
directly from a number of what I call keynote papers. It is interesting to read at first hand
how the pioneers put their ideas across, and in any case they do it far better than me. For
example, I am not the only author to quote Paul Dirac’s famous statement

The underlying Physical Laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that exact
application of these laws leads to equations much too complicated to be soluble.

I hope you have a profitable time in your studies, and at the very least begin to appreciate
what all those options mean next time you run a modelling package!

Alan Hinchliffe
Manchester, UK





1
Electric Charges and their

Properties

As far as we can tell, there are four fundamental types of interactions between physical
objects. There is the weak nuclear interaction that governs the decay of beta particles, and
the strong nuclear interaction that is responsible for binding together the particles in a
nucleus. The familiar gravitational interaction holds the Earth very firmly in its orbit round
the Sun, and finally we know that there is an electromagnetic interaction that is responsible
for binding atomic electrons to nuclei and for holding atoms together when they combine
to form molecules.

Of the four, the gravitational interaction is the only one we would normally come across
in our everyday world. This is because gravitational interactions between bodies always
add. The gravitational interaction between two atoms is negligible but when large numbers
of fundamental particles such as atoms are aggregated together, the gravitational interaction
becomes significant.

You may think it bizarre that there are four types of interaction, yet, conversely, you
might wonder why there should be just four. Why not one, three or five? Should there not
be a unifying theory to explain why there are four, and whether they are related? As I write,
there is no such unifying theory despite tremendous research activity.

1.1 Point Charges

In this chapter I am going to concentrate on electric charges and their properties, since
electrons and protons are fundamental building blocks for atoms and molecules.

It turns out that there are two types of electric charge in nature, which we might choose
to call type X and type Y (or Red and Blue for that matter, but X and Y will do for

Molecular Modelling for Beginners, Second Edition Alan Hinchliffe
c© 2008 John Wiley & Sons, Ltd



2 Molecular Modelling for Beginners

now). Experimental evidence shows the existence of an electrostatic force between electric
charges; the force between two X-type charges is always repulsive, as is the force between
two Y-type charges. The force between an X-type and a Y-type is always attractive. For
this reason, the early experimenters decided to classify charges as positive or negative,
because a positive quantity times a positive quantity gives a positive quantity, a negative
quantity times a negative quantity gives a positive quantity whilst a negative quantity times
a positive quantity gives a negative quantity. I am sure you know that the best known
fundamental particles responsible for these charges are electrons and protons, and you are
probably expecting me to tell you that the electrons are the negatively charged particles
whilst protons are positively charged. It is actually just a convention that we take: we could
just as well have called electrons positive.

Whilst on the subject, it is fascinating to note that the charge on the electron is exactly
equal and opposite of that on a proton. Atoms and molecules generally contain exactly
the same number of electrons and protons, and so the net charge on a molecule is almost
always zero. Ions certainly exist in solutions of electrolytes, but the number of Na+ ions in
a solution of sodium chloride is exactly equal to the number of Cl− ions and once again we
are rarely aware of any imbalance of charge.

A thunderstorm results when nature separates out positive and negative charges on a
macroscopic scale. It is thought that friction between moving masses of air and water
vapour detaches electrons from some molecules and attaches them to others. This results
in parts of clouds being left with an excess of charge, often with spectacular results. It was
investigations into such atmospheric phenomena that gave the first clues about the nature
of the electrostatic force.

We normally start any study of charges at rest (electrostatics) by considering the force
between two point charges, as shown in Figure 1.1. The term ‘point charge’is a mathematical
abstraction; obviously electrons and protons have a finite size. Just bear with me for a few
pages, and accept that a point charge is one whose dimensions are small compared to the
distance between them. An electron is large if you happen to be a nearby electron, but can
normally be treated as a point charge if you happen to be a human being a metre away.

Origin

QB

QA

RB

RA

RAB

Figure 1.1 Point charges

The concept of a point charge may strike you as an odd one, but once we have established
the magnitude of the force between two such charges, we can deduce the force between
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any arbitrary charge distributions on the grounds that they are composed of a large number
of point charges.

In Figure 1.1 we have point charge QA at position vector RA and QB at RB. From the
laws of vector analysis, the vector RAB = RB − RA joins QA to QB, and points from QA to
QB as shown. I have indicated the direction of the vectors with arrows.

1.2 Coulomb’s Law

In 1785, Charles Augustin de Coulomb became the first person to give a mathematical form
to the force between point charges. He measured the force directly between two very small
charged bodies, and was able to show that the force exerted by QA on QB was

• proportional to the inverse square of the distance between QA and QB when both charges
were fixed;

• proportional to QA when QB and RAB were fixed;
• proportional to QB when QA and RAB were fixed.

He also noticed that the force acted along the line joining the centres of the two charges,
and that the force was either attractive or repulsive depending on whether the charges were
different or of the same type. The sign of the product of the charges therefore determines
the direction of the force.

A mathematical result of these observations can be written in scalar form as

FA on B ∝ QAQB

R2
AB

(1.1)

Forces are vector quantities, and Equation (1.1) is better written in vector form as

FA on B ∝ QAQB

R3
AB

RAB

When Coulomb first established his law, he had no means of quantifying charge and so
could not identify the proportionality constant. He took it to be unity, and thereby defined
charge in terms of the force between charges. Modern practice is to regard charge and
force as independent quantities, and because of this a dimensioned proportionality constant
is necessary. For a reason that need not concern us, this is taken as 1/4πε0, where the
permittivity of free space ε0 is an experimentally determined quantity with the approximate
value ε0 = 8.854 × 10−12 C2 N−1 m−2. Coulomb’s law is therefore

FA on B = 1

4πε0

QAQB

R3
AB

RAB (1.2)

and it applies to measurements done in free space. If we repeat Coulomb’s experiments
with the charges immersed in different media, then we find that the law still holds but with a
different proportionality constant. We modify the proportionality constant using a quantity
εr called the relative permittivity. In older texts, εr is called the dielectric constant. Our
final statement of Coulomb’s law is therefore

FA on B = 1

4πεrε0

QAQB

R3
AB

RAB (1.3)
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According to Newton’s third law, we know that if QA exerts a force FA on B on QB, then QB

should exert an equal and opposite force on QA. Coulomb’s law satisfies this requirement,
since

FB on A = 1

4πεrε0

QAQB

R3
BA

RBA

(the vector RBA points in the opposite direction to RAB and so one force is exactly the
negative of the other, as it should be).

1.3 Pair Wise Additivity

Suppose we now add a third point charge QC with position vector RC as shown in Figure 1.2.
Since QA and QB are point charges, the addition of QC cannot alter the force between QA

and QB.

QA

QB

QC

Origin
RB

RAB

RCB

RC

RA

Figure 1.2 Third charge added

The total force on QB now comprises two terms, the force due to point charge QA and
the force due to point charge QC. This total force is given by

FB = QB

4πε0

(
QA

RAB

R3
AB

+ QC

RCB

R3
CB

)
(1.4)

This may seem at first sight to be a trivial statement: surely all forces act this way. Not
necessarily, for I have assumed that the addition of QC did not have any effect on QA and
QB (and so did not influence the force between them).

The generic term pair wise additive describes things like forces that add as above. Forces
between point electric charges are certainly pair wise additive, and so you might imagine
that forces between atoms and molecules must therefore be pair wise additive, because
atoms and molecules consist of (essentially) point charges. I am afraid that nature is not
so kind, and we will shortly meet situations where forces between the composites of elec-
trons and protons that go to make up atoms and molecules are far from being pair wise
additive.



Electric Charges and their Properties 5

1.4 Electric Field

Suppose now we have a point charge Q at the coordinate origin, and we place another point
charge q at point P that has position vector r (Figure 1.3).

Origin

r

Q

q

Figure 1.3 Field concept

The force exerted by Q on q is

F = 1

4πε0

Qq

r3
r

which I can rewrite trivially as

F =
(

1

4πε0

Q

r3
r
)

q

The point is that the term in brackets is to do with Q and the vector r, and contains no
mention of q. If we want to find the force on any arbitrary q at r, we calculate the quantity
in brackets once and then multiply by q. One way of thinking about this is to imagine that
the charge Q creates a certain field at point r, which determines the force on any other q
when placed at position r.

This property is called the electric field E at that point. It is a vector quantity, like force,
and the relationship is

F (on q at r) = qE (at r)

Comparison with Coulomb’s law, Equation (1.3), shows that the electric field at point r due
to a point charge Q at the coordinate origin is

E = 1

4πε0

Qr
r3

(1.5)

E is sometimes written E(r) to emphasize that the electric field depends on the position
vector r.

Electric fields are vector fields and they are often visualized as field lines. These are
drawn such that their spacing is inversely proportional to the strength of the field, and their
tangent is in the direction of the field. They start at positive charges and end at negative
charges, and two simple examples are shown in Figure 1.4. Here the choice of eight lines
is quite arbitrary.

Electric fields that do not vary with time are called electrostatic fields.
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+Q –Q

Figure 1.4 Field lines for point charges

1.5 Work

Look again at Figure 1.3, and suppose we move point charge q whilst keeping Q fixed
in position. When a force acts to make something move, energy is transferred. There is a
useful phrase in physical science that is to do with the energy transferred, and it is work.
Work measures the energy transferred in any change, and can be calculated from the change
in energy of a body when it moves through a distance under the influence of a force.

We have to be careful to take account of the energy balance. If a body gains energy, this
energy has to come from somewhere, and that somewhere must lose energy. What we do
is to divide the universe into two parts: the bits we are interested in called the system and
the rest of the universe that we call the surroundings.

Some texts focus on the work done by the system, some concern themselves with the
work done on the system. According to the law of conservation of energy, one is exactly
the equal and opposite of the other, but we have to be clear which is being discussed. I am
going to write won for the work done on our system.

If the system gains energy, then won will be positive. If the system loses energy then won

will negative.
We also have to be careful about the phrase ‘through a distance’. The phrase means

‘through a distance that is the projection of the force vector on the displacement vector’,
and you should instantly recognize a vector scalar product (see Appendix A).

A useful formula that relates to the energy gained by a system (i.e. won) when a constant
force F moves its point of application through l is

won = −F.l (1.6)

In the case where the force is not constant, we have to divide up the motion into differential
elements dl. The energy transferred is then given by the sum of all the corresponding
differential elements dwon. The corresponding formulae are

dwon = −F.dl
won = − ∫

F.dl
(1.7)

We now move q by an infinitesimal vector displacement dl, as shown in Figure 1.5, so
that it ends up at point r + dl. The work done on the system in that differential change is

dwon = −F.dl

If the angle between the vectors rI and dl is θ , then we have

dwon = −Fdl cos θ
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and examination of Figure 1.6 shows that dl cos θ is the radial distance moved by charge
q, which we will write dr.

Origin

r

Q

q

r + dl

dl

Point I

Point II

Figure 1.5 Electrostatic work

Origin

r

q
θ

dl

F

Figure 1.6 Relationship between vectors

Hence

dwon = − 1

4πε0

Qq

r2
dr

The total work done moving from position I to position II is therefore found by integrating

won = − 1

4πε0

II∫
I

Qq

r2
dr

= 1

4πε0

Qq

(
1

rII

− 1

rI

) (1.8)

The work done depends only on the initial and final positions of charge q; it is independent
of the way we make the change.

Another way to think about the problem is as follows. The force is radial, and we can
divide the movement from position I to position II into infinitesimal steps, some of which
are parallel to F and some of which are perpendicular to F. The perpendicular steps count
0 towards won, the parallel steps only depend on the change in the (scalar) radial distance.
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1.6 Charge Distributions

So far I have concentrated on point charges, and carefully skirted round the question as to
how we deal with continuous distributions of charge. Figure 1.7 shows a charge distribution
QA. The density of charge need not be constant through space, and we normally write ρ(r)
for the density at the point whose position vector is r. The charge contained within the
volume element dτ at r is therefore ρ(r)dτ and the relationship between ρ(r) and QA is
discussed in Appendix A. It is

QA =
∫

ρ (r) dτ (1.9)

In order to find the force between the charge distribution and the point charge QB we simply
extend our ideas about the force between two point charges; one of the point charges being
ρ(r)dτ and the other QB.

Origin

RB

RAB

RA

QB

QA

ρ
A

dτ

Figure 1.7 Charge distribution

The total force is given by the sum of all possible contributions from the elements of the
continuous charge distribution QA with point charge QB. The practical calculation of such
a force can be a nightmare, even for simple charge distributions. One of the reasons for the
nightmare is that forces are vector quantities; we need to know about both their magnitude
and their direction.

In the next section, I am going to tell you about a very useful scalar field called the
mutual potential energy U. This field has the great advantage that it is a scalar field, and so
we do not need to worry about direction in our calculations.

1.7 Mutual Potential Energy, U

Suppose now we start with charge q at infinity, and move it up to a point with vector position
r, as shown in Figure 1.3. The work done is

won = 1

4πε0

Qq

r
(1.10)


