
Perl and A
pache

Visual
Blueprint

Software Development/General

$34.99 USA
$41.99 CAN
£24.99 UK www.wiley.com/go/visual

Perl and Apache

• High-resolution screen shots
demonstrate each task

• Succinct explanations walk you
through step by step

• Two-page lessons break big topics
into bite-sized modules

• “Apply It” and “Extra” sidebars
highlight useful tips

Your visual blueprint™ for
developing dynamic Web contentMcDaniel

Welcome to the only guidebook series that takes a visual approach to professional-level computer
topics. Open the book and you’ll discover step-by-step screen shots that demonstrate over 190
key techniques using Perl and Apache, including:

• Installing Perl and Apache on Linux®

• Building interactive Perl scripts

• Configuring Apache to execute Perl

• Separating HTML code from Perl code

• Processing credit card transactions

• Interfacing a Web site with Facebook®

• Posting status updates to Twitter®

• Creating dynamic images with Perl

• Accessing a back-end MySQL® database

• Securing dynamic Web sites

Perl and Apache

Adam McDaniel

spine=1.03"

“I have
several

books from
the Visual

series and have
always found

them to be
valuable resources.”

— Stephen P. Miller
(Ballston Spa, NY)

Sample code available on
the companion Web site

Your visual blueprint™ for developing
dynamic Web content

by Adam McDaniel

Perl and Apache

01_556801-ffirs.indd i01_556801-ffirs.indd i 8/31/10 9:15 AM8/31/10 9:15 AM

Perl and Apache: Your visual blueprint™
for developing dynamic Web content

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Published simultaneously in Canada

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011,
fax 201-748-6008, or online at www.wiley.com/go/permissions.

Library of Congress Control Number: 2010934753

ISBN: 978-0-470-55680-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Trademark Acknowledgments
Wiley, the Wiley Publishing logo, Visual, the Visual logo, Visual Blueprint,
Read Less - Learn More and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates.
All other trademarks are the property of their respective owners. Wiley
Publishing, Inc. is not associated with any product or vendor mentioned
in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER
AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE
SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES
LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND TECHNIQUES
DESCRIBED IN THIS BOOK, THE AUTHOR HAS CREATED VARIOUS
NAMES, COMPANY NAMES, MAILING, E-MAIL AND INTERNET
ADDRESSES, PHONE AND FAX NUMBERS AND SIMILAR
INFORMATION, ALL OF WHICH ARE FICTITIOUS. ANY RESEMBLANCE
OF THESE FICTITIOUS NAMES, ADDRESSES, PHONE AND FAX
NUMBERS AND SIMILAR INFORMATION TO ANY ACTUAL PERSON,
COMPANY AND/OR ORGANIZATION IS UNINTENTIONAL AND
PURELY COINCIDENTAL.

Contact Us
For general information on our other products and services please contact
our Customer Care Department within the U.S. at 877-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For technical support please visit www.wiley.com/techsupport.

Sales

Contact Wiley
at (877) 762-2974
or (317) 572-4002.

The Diwan-I-Khas of the palace complex at Fatehpur Sikri

The history of this intriguing pavilion is almost as enigmatic
as the structure itself. Dating to the 17th century, this private
audience hall is remarkable for its richly carved central pillar,
unique in Mughal architecture. One school of thought holds
that the design of the building and its stone centerpiece may
reflect some
Hindu mandala
in which the
central column
represents the
axis of the
world. As such,
it conferred
superior status
upon the
emperor who
received visiting
dignitaries while
seated at its base.

Explore India’s countless architectural treasures in Frommer’s
India, 4th Edition (ISBN 978-0-470-55610-8) available
wherever books are sold or at www.Frommers.com.

01_556801-ffirs.indd ii01_556801-ffirs.indd ii 8/31/10 9:15 AM8/31/10 9:15 AM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.frommers.com
htp://www.wiley.com/techsupport

Acquisitions Editor
Aaron Black

Project Editor
Jade Williams

Technical Editor
Allen Wyatt

Copy Editor
Marylouise Wiack

Editorial Director
Robyn Siesky

Editorial Manager
Rosemarie Graham

Business Manager
Amy Knies

Senior Marketing Manager
Sandy Smith

Vice President and Executive Group
Publisher

Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Project Coordinator
Patrick Redmond

Graphics and Production Specialists
Andrea Hornberger
Jennifer Mayberry

Quality Control Technician
Jessica Kramer

Proofreading
Tricia Liebig

Indexing
Potomac Indexing, LLC

Media Development Project Manager
Laura Moss

Media Development Assistant Project
Manager

Jenny Swisher

Screen Artist
Ana Carrillo

Jill Proll
Ron Terry

Illustrator
Cheryl Grubbs

Credits

01_556801-ffirs.indd iii01_556801-ffirs.indd iii 8/31/10 9:15 AM8/31/10 9:15 AM

Adam McDaniel has been desgining, developing, modifying, and maintaining computer programs of one
language or another since 1993, and has been an active proponent of Perl since being introduced to the
langauge in 1998. In early 1999, Adam led a team of developers implementing an E-Commerce fulfillment
engine written entirely in Perl for a virtual shopping mall. Afterwards, he worked for Hitachi ID Systems for
over 8 years, during which he designed and implemented security recommondations and software for
various Fortune 500 companies across the United States and Europe.

Always interested in new technologies and architectures, development credits include an open-source offline
HTML reader for the Palm OS platform, contributions to the Linux Kernel, plus countless utility and
speciality programs. In 2006, Adam produced the Array.org Netbook Kernel software download and Web
site, allowing users to download an optimized build of the Linux kernel, specific for the Ubuntu Linux
distribution. This site, implemented using Perl and Apache, became hugely popular resulting in millions
unique visitors in just a few months. It actually prompted him to move away from security architecture and
design and into a new field: Linux distribution architecture. Today, Adam works as the Lead OS Architect
for Jolicloud, a Paris-based Linux distribution that specializes in a cloud-based user interface designed for
netbooks, tablets, and other portable computers.

This book is actually the product of many significant people, projects, and events, without all of which, this
project would never have been possible.

First and foremost, I must thank my wife, Shauna, for her un-ending patience, understanding,
encouragement, and love, both silent and vocal, which she happily supplied while I toiled away endlessly on
this project. I must also thank my editors at Wiley Publishing, espcially Aaron Black and Jade Williams, for
their expert guideance, advice, and patience, despite their occasional prodding over e-mail.

This book could not be possible without hundreds of thousands of developers who have dedicated their
time and expertise to open-source software. Projects like the Linux Kernel, Perl, Apache, and everything
in-between serves as an excellent model of design, efficiency, and dedication to people like me and other
technology enthusiasts.

Finally, regarding significant events, I have to thank our unpredictable Canadian winter weather. In January
2008, we experienced seven days of -40 degree weather; this caused a water pipe to burst and flood my
basement with 18 inches of water while I was away from home. Had my basement not flooded, I would never
have replaced an old waterlogged laptop with a brand new EeePC netbook through the insurance claim.
Without that, I would have never become interested in netbook hardware, nor in customizing the Linux kernel
for that hardware. And I certainly would have never created my Array.org Netbook Kernel Web site, through
which Aaron Black would never have contacted me, and this book would never have come into existence.

Author’s Acknowledgments

About the Author

This book is dedicated to my father, William McDaniel, who knew about this project, but never got the chance to see the
final result.

Dedication

01_556801-ffirs.indd iv01_556801-ffirs.indd iv 8/31/10 9:15 AM8/31/10 9:15 AM

http://www.array.org

Who This Book Is For
This book is for advanced computer users who want
to take their knowledge of this particular technology
or software application to the next level.

The Conventions in This Book
1 Steps
This book uses a step-by-step format to guide you
easily through each task. Numbered steps are
actions you must do; bulleted steps clarify a point,
step, or optional feature; and indented steps give
you the result.

2 Notes
Notes give additional information — special
conditions that may occur during an operation, a
situation that you want to avoid, or a cross
reference to a related area of the book.

3 Icons and Buttons
Icons and buttons show you exactly what you need
to click to perform a step.

4 Extra or Apply It
An Extra section provides additional information
about the preceding task — insider information and
tips for ease and efficiency. An Apply It section takes
the code from the preceding task one step further
and allows you to take full advantage of it.

5 Bold
Bold type shows text or numbers you must type.

6 Italics
Italic type introduces and defines a new term.

7 Courier Font
Courier font indicates the use of scripting
language code such as statements, operators, or
functions, and code such as objects, methods, or
properties.

How to Use This Book
Ch

apter 8: U
sin

g Perl R
eferen

ces an
d M

odu
les

3

3

3

4
5

1

3

It is possible to pass additional variables to the module’s functions, just like any other subroutine. The only
difference is that the $self variable is the first parameter in the @_ array. If your function allows for other
parameters, then you can write them as

sub Function {

 my ($self, $param1, $param2) = @_;

 [...]

}

When Function is executed within the context of a Perl script, the $self parameter is implicitly passed to the method.

$test->Function($param1, $param2);

However, if two methods within a module need to execute each other, they should be treated like regular
subroutines, not methods. For example, if Function has to call the method Calculate, then it must specify
$self explicitly.

sub Function {

 my $self = shift;

 &Calculate($self, ...);

}

0 Execute the Perl

script.

 The module is

imported, and its

subroutine is

executed as a method

in your Perl script.

• Output of the Perl

module function.

• Output of the

Dumper, showing

the contents of the

module handle.

6 Type use
Data::Dumper;

7 Type print Dumper(
$handle); to

examine the

contents of the

module handle.

8 Save the Perl script.

9 Open a Command

Prompt in the same

directory with your

Perl script.

4 Type my $handle = Module-
>new(); to declare a new

scalar, initialize the module,

and store the module

reference.

5 Type $handle->Function(); to

execute one of the exported

functions in the module.

Note: Even though Function is a
subroutine, it is not correct to
precede it with an ampersand.

1 Open a new Perl script in a

text editor.

2 Identify a Perl module that

you want to load.

3 Type use Module;

Call a Module’s Subroutines as Methods

B efore a Perl script can take advantage of the
subroutines contained within a module, a module
reference needs to be established. Just like an

array or hash reference, a module reference is a scalar
that points to a particular instance of a module. That
scalar then acts as a handle to the module’s contents,
including its variables, methods, and shared $self hash
reference.
Naturally, a single script may have many module
instances running in tandem, even multiple instances of
the same module, if required. It is the individual scalar
that holds the module reference that keeps everything
organized.
It is that same scalar that is used to access the module’s
subroutines as methods. This happens through an arrow

(->), similar to what you saw earlier in this chapter when
dereferencing a reference.
use Module;
my $h = Module->new();
$h->method();

You can even use the handle to access the same $self
variable used within the actual module. In the exact same
way that subroutines are executed as modules, variables
can be manipulated using the handle.
$h->{ KEY } = VALUE;

Regardless of whether your module utilizes KEY anywhere,
the script can use it to store additional data, just like any
type of complex hash reference. When the program ends,
all active module references are automatically released
from memory. It is possible to manually destroy a module
by calling undef on the module reference.

Call a Module’s
Subroutines as Methods

4

1

2

5

6

7

01_556801-ffirs.indd v01_556801-ffirs.indd v 8/31/10 9:15 AM8/31/10 9:15 AM

TABLE OF CONTENTS

vi

HOW TO USE THIS BOOK . XII

1 INTRODUCING PERL AND APACHE WEB SITE
DEVELOPMENT . 2

Introducing Apache and Perl ..2
Introducing the Common Gateway Interface...4
Understanding CGI from the End-User’s Point of View ..6
Understanding CGI from the Web Browser’s Point of View8
Understanding CGI from the Web Server’s Point of View10
Understanding CGI from the CGI Program’s Point of View12
Compare Perl to Other CGI Languages ...14
Compare Apache to Other Web Servers ..16
Developing Your Web Site..18
Find Perl- and Apache-Friendly Hosting Providers ..20
Find Help Developing CGI Programs ..22

2 INSTALLING PERL ON WINDOWS 24
Introducing ActivePerl for Windows ..24
Introducing Strawberry Perl for Windows ..25
Download ActivePerl for Windows ...26
Install ActivePerl for Windows ...28
Download Strawberry Perl for Windows ..30
Install Strawberry Perl for Windows ..32

3 INSTALLING PERL ON LINUX 34
Install Perl for Debian/Ubuntu Linux ...34
Install Perl for Red Hat Linux ..35
Download ActivePerl for Linux or Unix ...36
Install ActivePerl for Linux or Unix ...38

4 INSTALLING APACHE ON WINDOWS 40
Download Apache for Windows ...40
Install Apache for Windows ...42
Configure Apache on Windows ..44
Start and Stop the Apache Service on Windows ...46

02_556801-ftoc.indd vi02_556801-ftoc.indd vi 8/31/10 9:15 AM8/31/10 9:15 AM

vii

5 INSTALLING APACHE ON LINUX 48
Install Apache for Debian/Ubuntu Linux ...48
Install Apache for Red Hat Linux ...49
Configure Apache on Linux ...50
Start and Stop the Apache Service on Linux ..52

6 INTRODUCING THE FUNDAMENTALS
OF PERL . 54

Understanding Perl Syntax ..54
Understanding the Anatomy of a Perl Script ..57
Create a New Perl Script ...58
Print Output to the Screen ...60
Execute a Perl Script ..62
Introducing Perl Scalars ...64
Store Data into Scalars ...66
Retrieve Data from Scalars ...67
Introducing Perl Arrays ..68
Store Data into Arrays ...70
Retrieve Data from Arrays ...71
Introducing Perl Hashes ...72
Store Data into Hashes ..74
Retrieve Data from Hashes ..75

7 BUILDING AN INTERACTIVE PERL SCRIPT 76
Introducing Perl Conditions ..76
Introducing Perl Operators ...78
Control Program Flow with if, elsif, else ..80
Introducing Perl Loops ...82
Loop Program Flow with foreach, while ...84
Introducing Perl Subroutines ...86
Organize Program Code with Subroutines ..88
Manipulate Variables in Subroutines ...90

8 USING PERL REFERENCES AND MODULES 92
Introducing References ..92
Understanding Compound Data Structures ..94
Build an Array or Hash Reference ...96

02_556801-ftoc.indd vii02_556801-ftoc.indd vii 8/31/10 9:15 AM8/31/10 9:15 AM

TABLE OF CONTENTS

viii

Deconstruct a Reference ...98
Nest Variable Types with References ...100
Introducing Perl Modules ...102
Create a New Module ...104
Call a Module’s Subroutines as Methods ..106

9 INSTALLING THIRD-PARTY PERL MODULES 108
Introducing CPAN ..108
Configure CPAN ...110
Search for Perl Modules with CPAN ...111
Install Perl Modules with CPAN ...112
Introducing ActivePerl Perl Package Manager ..114
Configure ActivePerl PPM ..116
Search for Perl Modules with ActivePerl PPM ..118
Install Perl Modules with ActivePerl PPM ..119
Search for Perl Modules in Debian/Ubuntu Linux ..120
Install Perl Modules in Debian/Ubuntu Linux ..121
Search for Perl Modules in Red Hat Linux ...122
Install Perl Modules in Red Hat Linux ...123
Search for and Download Perl Modules Manually ..124
Build and Install Perl Modules Manually ...126

10 CONFIGURING APACHE TO EXECUTE PERL . . . 128
Introducing the Apache CGI Handler ..128
Create a User Directory for Apache in Windows ..130
Create a User Directory for Apache in Linux ..132
Enable the Apache CGI Module and Handler ..134
Configure a Directory to Use the CGI Handler ..136
Understanding the Apache Logs ..138
Configure the Apache Logs ..139
Read the Apache Logs ...140
Forward Perl Activity into the Apache Logs ...141

11 INTRODUCING DO-IT-YOURSELF PERL/CGI
INTERACTION . 142

Create an HTML Form ..142
Read HTTP GET/POST Parameters ...144
Introducing Cookies ...146

02_556801-ftoc.indd viii02_556801-ftoc.indd viii 8/31/10 9:15 AM8/31/10 9:15 AM

ix

Store HTTP Cookies ...148
Retrieve HTTP Cookies...150
Send an E-Mail Message ..152

12 USING PERL’S BUILT-IN CGI LIBRARY 154
Introducing the Built-In CGI Library ..154
Import the CGI Library as an Object ...156
Import the CGI Library’s Routines as Functions ...157
Read HTTP GET/POST Parameters with the CGI Library158
Store HTTP Cookies with the CGI Library...160
Retrieve HTTP Cookies with the CGI Library ..162
Return Useful Error Messages with CGI::Carp ..164

13 SEPARATING HTML CODE FROM PERL CODE . . .166
Understanding the Benefits of Separating HTML from Perl166
Introducing the Perl HTML::Template Module ..168
Understanding the Structure of an HTML::Template File170
Create a New Template File ..172
Import the HTML::Template Module ..174
Display Data with TMPL_VAR ...176
Control Template Content with TMPL_IF, TMPL_ELSE178
Repeat Template Content with TMPL_LOOP ...180
Nest Templates with TMPL_INCLUDE ..182
Create an HTML::Template Header and Footer ...184
Create an HTML::Template Toolbar ..185
Link the Header, Toolbar, and Footer with Dynamic Perl Content186
Extend HTML::Template to Non-HTML Formats ..188

14 ADDING DYNAMIC CONTENT WITH
SERVER-SIDE INCLUDES (SSI). 190

Introducing Server-Side Includes ...190
Enable the Apache SSI Module and Output Filter...192
Configure a Directory to Use SSI ..194
Understanding SSI Elements ..196
Import Files with SSI ..198
Execute Programs with SSI ..199
Set Variables within SSI ...200
Retrieve Variables with SSI ..201

02_556801-ftoc.indd ix02_556801-ftoc.indd ix 8/31/10 9:15 AM8/31/10 9:15 AM

TABLE OF CONTENTS

x

Use Conditional Expressions with SSI ..202
Display File Statistics with SSI ...204
Link the Header, Toolbar, and Footer with Static HTML Content206

15 AUTHENTICATING A USER SESSION 208
Understanding Apache User Authentication ..208
Secure a Directory Path with Apache ...210
Use an Authentication Password File ...212
Require Only Authorized Users..214
Understanding User Authentication in Perl ..216
Create a Perl Authentication Module ..218
Access a User’s Database ...220
Store User Credentials in a User’s Database ...222
Check for Session Authorization (Step 1) ..224
Display a Login Prompt (Step 2) ..226
Validate a User’s Credentials (Step 3) ..228
Authorize a User’s Session (Step 4) ..230
Restrict Access to a CGI Script..232
Terminate a User Session ..234

16 INTERFACING YOUR WEB SITE
WITH FACEBOOK . 236

Register Your Web Site as a Facebook Application ..236
Add a Facebook Social Plugin to Your Web Site ..238
Enable Facebook Connect on Your Web Site ..240
Understanding the Facebook Canvas Feature for Applications244
Create a Facebook Application with Perl ..246

17 INTERFACING WITH THE TWITTER
API USING PERL. 248

Introducing the Twitter APIs ..248
Introducing the Perl Twitter Modules ...250
Register a New Twitter Application ..252
Authenticate to Twitter Using OAuth ...254
Create a MyTwitter Perl Module That Inherits Net::Twitter258
Post a Twitter Status Update ..260
Retrieve a Twitter Timeline ..261
Retrieve a List of Twitter Users you Follow ...262

02_556801-ftoc.indd x02_556801-ftoc.indd x 8/31/10 9:15 AM8/31/10 9:15 AM

xi

Retrieve a List of Twitter Followers ...263
Search for Content Using the Twitter Search API ...264
Use the Twitter @Anywhere JavaScript API ...266
Follow Real-Time Activity with the Twitter Streaming API268

18 CREATING DYNAMIC IMAGES WITH PERL 270
Accept a File for Upload ...270
Open an Image with Image::Magick ...272
Resize or Crop an Image with Image::Magick...273
Manipulate an Image with Image::Magick ..274
Save an Image to Disk ...275
Display a Dynamic Image to the Browser ...276
Implement an Image Captcha Test ...278
Produce an Image Gallery ..280

19 FACILITATING DYNAMIC AJAX
CALLS WITH PERL . 284

Introducing AJAX ..284
Introducing CGI::Ajax ...286
Add CGI::Ajax into Your Perl CGI Scripts ...288
Call Perl Subroutines Through JavaScript ...290
Call JavaScript Through Perl Subroutines ...292
Enable Debug Mode in CGI::Ajax ...294
Integrate Perl and XML ..296
Integrate Perl and JSON ...297

20 PROCESSING CREDIT CARD TRANSACTIONS
WITH PERL. 298

Introducing PayPal ...298
Sign Up for a PayPal Sandbox Account ...300
Create Buyer and Seller Sandbox Accounts ..302
Retrieve Your Seller’s Sandbox API Credentials ...303
Use Business::PayPal::NVP to Connect to PayPal ...304
Process a Credit Card Payment with PayPal ...306
Use the PayPal Express Checkout API ...308
Search Your PayPal Transaction History ..312
View a PayPal Transaction’s Details ..313
Refund a PayPal Transaction ...314

02_556801-ftoc.indd xi02_556801-ftoc.indd xi 8/31/10 9:15 AM8/31/10 9:15 AM

TABLE OF CONTENTS

xii

21 ACCESSING A BACK-END MYSQL DATABASE
WITH PERL. 316

Introducing the MySQL Database ...316
Understanding the SQL Syntax ..318
Download MySQL for Windows ...320
Install MySQL for Windows ...322
Install MySQL for Debian/Ubuntu Linux ..324
Install MySQL for Red Hat Linux ...325
Introducing the Perl DBI Library ..326
Connect to a MySQL Database with the DBI Library ..328
Retrieve SQL Data Using the DBI Library...330
Display SQL Data Through HTML::Template ..332
Change SQL Data Using the DBI Library ..334

22 SECURING DYNAMIC WEB SITES 336
Understanding TLS/SSL Encryption ...336
Create a Private SSL Key ..338
Generate an SSL Certificate Signing Request ..339
Sign Your Own CSR to Create a Test SSL Certificate ..340
Submit Your CSR to Be Signed by a Certificate Authority341
Configure Apache to Use TLS/SSL ...342
Understanding Security in Perl CGI Development ...346
Limit CGI Access in Apache ...348
Identify Unusual Activity on Your Web Site...350
Sanitize User Content in Perl CGI ...352
Validate User Content in Perl CGI ...354

23 SPEEDING UP DYNAMIC WEB SITES 356
Introducing the Apache mod_perl Module ..356
Install the Apache mod_perl Module for Windows ...358
Install the Apache mod_perl Module for Linux ..359
Configure the Apache mod_perl Module...360
Understanding mod_perl’s Caveats ..362

APPENDIX A: PERL REFERENCE. 364
Access Perl Documentation ..364
Execute Perl on the Command-Line ...367

02_556801-ftoc.indd xii02_556801-ftoc.indd xii 8/31/10 9:15 AM8/31/10 9:15 AM

1

Available Built-In Perl Functions ...368
Using Perl Pre-Defined Variables ...376
Perl Operators ..380
Perl Regular Expressions ...384

APPENDIX B: APACHE CONFIGURE AND MODULE
REFERENCE. 386

Apache Run-Time Configuration Directives ...386
Apache Base Modules and Directives ...391
Apache Authentication and Authorization Modules and Directives398
Apache Extended Modules and Directives..404

APPENDIX C: USEFUL PERL MODULES 418
Useful Perl Modules ...418

02_556801-ftoc.indd 102_556801-ftoc.indd 1 8/31/10 9:15 AM8/31/10 9:15 AM

2

Introducing
Apache and Perl

S ince the inception of the World Wide Web in 1989,
users, academics, and professionals have been
inspired by this new canvas to present information

over the Internet. The jump from a text-based interface to
a graphical interface would capture the world’s
imagination on presenting information to the masses.
Content-owners can now store information in a series of
files on a server, with end-users accessing that data at
their convenience. In the earlier days of the Internet, the
server-side information was stored as simple static text
files and images, meaning that files were only changed
when someone manually made a change and uploaded
the new file to the server. As a result, most Web sites
did not change very often. With the introduction of the
Common Gateway Interface (CGI), Web sites could now
use programs in place of static files to dynamically create
on-demand content that was unique for every user.
Anyone wanting to participate on the graphical Internet
requires a client-side program, called a Web browser.
This program is installed onto a local workstation, and
requires an outgoing connection to the public Internet.
The browser establishes a communication link through
the network to a server-side counterpart, called a Web

server, submits a request, and waits for a response. It
is the server’s job to interpret the request being made,
assess the requester’s credentials, open the file or execute
a program using CGI, and transmit the results back to the
user. Once the browser receives the data, it must decode
the transfer and render a graphical representation of the
text and images so that the user can interpret the
information.
Many Web browser programs are freely available for
download, depending on the user’s choice of operating
system. Popular options include Mozilla Firefox, Google
Chrome, Microsoft Internet Explorer, and Apple Safari.
For the content-owner, a Web site is delivered to the
user’s browser by various Web server programs, like
Apache HTTP Server or Microsoft Internet Information
Service (IIS). Again, the options available depend on the
choice of operating system on the server.
The program that utilizes CGI typically runs on the same
computer as the Web server. There are multiple languages
available today that can interact with CGI, including PHP,
Java, and even C and C++, but this book focuses on the
Practical Extraction and Report Language, more
commonly known as Perl.

The Apache HTTP Server

A History of Apache

First released in 1995, Apache evolved from the remains of
the now defunct NCSA HTTPd program, which was the first
Web server created to support the Hypertext Transfer
Protocol, or HTTP.

Early Web servers were only capable of relaying static content
directly from files stored on the Web server’s hard drive.
Eventually, the CGI protocol was standardized and support
was added to Apache.

Versions of Apache

Because Apache has been in development for many years,
new versions are constantly being released as major version
milestones. The latest major release, Apache 2.2, supports a
wide range of configuration features, performance
enhancements, and third-party modules.

Earlier releases, such as Apache 2.0 and 1.3, are still available
and supported. However, you should only consider using an
older version if you have a specific reason to do so. If you are
just starting out with Apache, use the latest stable release
available, Apache 2.2.

The Apache HTTP Server, widely viewed today as the de facto Web server for Unix and Windows platforms, handles more than
90 percent of World Wide Web traffic.

03_556801-ch01.indd 203_556801-ch01.indd 2 8/31/10 9:16 AM8/31/10 9:16 AM

3

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

Because today’s Internet has many options for dynamic
content, a Web site author may choose any type of
technology that is available: client-side, server-side, or even
both. Intelligently mixing technologies that complement
each other can create a memorable site that your users will
want to visit again.

The End-User Experience

To provide a pleasurable and esthetically pleasing Web site,
the Web site author composes HTML content that
describes the site’s text, images, and layout. Early Web
browsers lacked many of today’s client-side technologies
that are used to create dynamic content, such as Flash,
Java, and JavaScript. Instead, they relied on the Web
server to provide the entire end-user experience.

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

The Perl Programming Language

A History of Perl

When Perl was originally developed, it was not intended to
help Web servers deliver dynamic content. Perl 1.0 was
released in 1987 as a tool to read, print, sort, report, and
interpret large amounts of data efficiently; it quickly
became a useful tool for programmers and system
administrators. Today’s generation, Perl 5, is widely viewed
as the most common and most stable version available.
The next generation of the language, Perl 6, is currently
under development and available as an experimental
release.

Versions of Perl

Like Apache, Perl has experienced several major release
milestones. The latest stable release, Perl 5.12, is a staple
program on virtually all recent releases of Unix-based
operating system distributions.

The latest experimental release of Perl 6 introduces major
changes to Perl 5 syntax and internals. Because both
generations will remain in active development, there is no
need to switch your programming focus to Perl 6 after you
learn Perl 5, however converting a script is not
complicated.

The New, Dynamic Internet

By 1993, Perl was being used in tandem with Web servers
to supply content over the Web by executing a program.
With the new CGI protocol facilitating program execution
on a Web server, Web sites could now provide the means
to display dynamically changing content to Internet users.

Shortly after CGI was adopted, Web site authors were
creating programs using Perl to support more complex
features online. It was now possible to automate Web site
features that changed very often, such as news reports,
stock quotes, and sports scores, all of which previously
required a human to sit at a computer and update files on
a server.

Even more enhanced real-time features were developed,
such as user authentication, data validation, and database
access. This allowed Web sites to produce larger portals
that were designed to only allow registered users access to
secure information.

Following its own development path, Perl matured independently from Apache as a multi-purpose scripting language for
Unix. The Perl programming language uses a syntax structure that is very similar to C in design, yet free and malleable
in implementation. The Perl language is classified as a third-generation, or high-level, programming language; the
programmer does not need to worry about complex memory allocation or architecture-specific, low-level CPU interaction.
The program file source code, or script, is scanned and interpreted, not compiled, by the Perl interpreter at run time.

03_556801-ch01.indd 303_556801-ch01.indd 3 8/31/10 9:16 AM8/31/10 9:16 AM

4

T he Common Gateway Interface, or CGI, is a
protocol used by the Web server to communicate
with other programs that are stored locally on the

Web server. These programs use CGI to identify unique
information about the user’s session. When a user directs
her Web browser to your Web site, you can instruct the
Web server’s CGI handler to execute a custom program,
like a Perl script, to generate dynamic HTML code, and
relay it back to the user’s browser.

The CGI acronym has many meanings. More commonly
it refers to the Computer Generated Imagery created for
television and movies. However, in the context of the
Internet Web browser, server, and this book, CGI only
refers to this communication protocol.
The output of a typical CGI program is most often HTML
code, but it can be of any file type. See the section,
“Understanding CGI from the Web Browser’s Point of
View,” for a description of how this works.

Introducing the Common
Gateway Interface

HTTP Response Headers

The Web server sends HTTP response headers back to the
Web browser, followed by the requested content. This informs
the browser on how much data content to expect, how it is
formatted, and any new cookies that the browser must store.

CGI scripts have limited control of the HTTP response
headers. To conform to HTTP standards, the Web server
provides the majority of response headers automatically but
still expects the CGI script to provide the content-type HTTP
response header. This allows the CGI script to forewarn the
Web browser, advising whether the output data it is sending
is HTML code, a JPEG image, or a downloadable Zip file.

HTTP Headers

Regardless of what the user is requesting or receiving, all communication traffic handled by the Web server is prefixed by a
series of HTTP headers. These headers supply information that is vital for CGI, but they are only visible to the Web browser,
server, and CGI programming languages like Perl. The user never sees these headers when the browser renders the Web page.

CGI Process Flow

When a user requests a Web page, the Web server decides whether or not to launch a CGI process based upon the filename the
user requests. If he requests a static file, such as index.html or report.txt, the server relays the file back to the user as-is.
If he requests a dynamic Perl script, such as index.pl or report.pl, the server launches the CGI process, executes the Perl
interpreter, and relays the program’s output back to the user.

HTTP Request Headers

The Web browser sends HTTP request headers to the Web
server on every page request. This tells the server which URL
is being requested, what languages and encryption protocols
are supported, any established cookies, and any submitted
content from the user through an HTML form.

CGI scripts have access to these request headers through
the server’s environment variables. Perl CGI scripts interpret
environment variables by way of a special variable called
%ENV.

03_556801-ch01.indd 403_556801-ch01.indd 4 8/31/10 9:16 AM8/31/10 9:16 AM

5

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

POST Method

The POST method sends the submitted content
immediately after the HTTP request headers. This allows
for more data to be sent than GET, and it is hidden from
the browser’s Address bar. The main difference of the
POST method is that bookmarks and page reloads may not
work as the user expects; for example, the actual submitted
information might not be maintained if the user refreshes
the bookmarked URL at a later date.

HTML Forms

In order to collect information from the user, data is submitted through an HTML form. You can use this form to collect
any type of information, and bind the user’s typed answer to a specific identifier. When the user clicks the Submit button,
a new URL is requested and the data is relayed to the server.

On the server-side, you need to configure a CGI script to collect the information being submitted and process it. You
must configure the HTML form to use a specific method to encode and relay its information to the server. The two most
popular methods are GET and POST.

GET Method

The GET method appends the submitted content onto the
end of the URL receiving the request. Due to the limited
length of URLs in some browsers, which only support 256
characters, not much data can be submitted with GET.
Also, the actual data is visible in the URL’s Address bar
when the new page loads.

Common Environment Variables

Several environment variables are available to you that are passed in the context of CGI. The HTTP request headers and
the Web browser populate most of these variables, but the Web server also provides some of them. You can use them
within a Perl CGI script to control the interaction with the user within the CGI protocol.

VARIABLE NAME DESCRIPTION

SERVER_NAME The server name responding, according to the browser

REQUEST_METHOD The method of the request (GET or POST)

HTTP_USER_AGENT A string identifying the user’s browser

HTTP_COOKIE A string of active cookies relative to the user’s session

QUERY_STRING Any additional data passed after the question-mark (?) in the URL for GET requests

SCRIPT_NAME The script being executed, from the perspective of the server

REQUEST_URI The script being executed, from the perspective of the browser

REQUEST_ADDR The user’s IP address that originated the request

SERVER_ADDR The server’s IP address that received the request

Additional environment variables may be available; this depends on the type of the request, the content, the Web server, the
Web browser, and any other technologies such as secure sockets layer (SSL) encryption, or server-side includes (SSI).

03_556801-ch01.indd 503_556801-ch01.indd 5 8/31/10 9:16 AM8/31/10 9:16 AM

6

Accessing the CGI Source Code

When you properly configure a CGI protocol on the Web
server, any requests by the user to access a CGI program by
its URL are met with the program’s output, not the program’s
file content.

In the case of a Perl script, a user may access the URL as
http://servername/cgi-bin/search.pl. The CGI
handler knows that any files in the cgi-bin directory should
be executed, and not read. If your Perl script exists in another
directory, one that does not have the CGI handler enabled,
then the full source is visible.

For this reason, you need to properly secure your server
hardware, and ensure that only appropriate people have
access to the Web site source code on the server. In the
previous example, if someone were to carelessly copy
search.pl into another directory that lacks a CGI handler,
all sensitive data within would be exposed online.

Accessing the HTML Source Code

The Web site’s HTML code is the only source-level content
the user can access directly. Most Web browsers support an
option to view the page’s source code by simply right-clicking
on the page and selecting View Source.

There is nothing you can do to prevent this. Regardless of
whether a page is static or dynamic, the user can always view
the HTML content.

Naturally, if a CGI program generated this content, there
should be no indication of what program you used, or the
contents of the CGI program’s source code.

The HTML Interface

W hen a user directs her Web browser to a
particular page, she may never know if she is
requesting a dynamic CGI program or static

file, or have any idea about the CGI programming
language being used on the server. Even if she does
recognize that the page is dynamically generated, it is
nearly impossible to identify what program is being used
behind the CGI interface on the Web server.
Any astute user who has an idea about CGI development
and Web servers may identify several clues from a Web
site, thus identifying what software it runs. Even as you

start generating CGI pages, you may start to notice some
of these subtle clues on other Web sites and infer what
they use to generate and display their content and
services.
The problem with these “subtle clues” is that malicious
users may be able to take advantage of your Web site,
after identifying what software it runs, and leverage any
number of known security attacks against your server.
Ultimately, these types of attacks are fairly easy to
circumvent. See Chapter 22 for simple tips on preventing
common attacks.

Understanding CGI from
the End-User’s Point of View

When most users visit your Web site, they only experience and interact with it through their Web browser’s window. By default, this
is all most users can see; however, users who are interested in how your Web site is constructed can still access the actual HTML
code and syntax used.

03_556801-ch01.indd 603_556801-ch01.indd 6 8/31/10 9:16 AM8/31/10 9:16 AM

7

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

This can be useful if one CGI program originally generated
the HTML form, and it needs to send additional data to
another CGI program that will process the form.

Submit Buttons

All forms should have some sort of Submit button. This is
what the user clicks to send the form to the Web server.
You can often use <input type=submit>, but a button
with the literal text, “Submit Query,” displays. To change
the button text, add the attribute value=text.

It may look weird in that this is the only input element that
may have a value attribute, but not a name attribute. If
you include a name, then the CGI program will receive the
button’s value as an input field. This can be particularly
useful if you have multiple buttons on the same form, each
with different processing functionality.

Finish the Form

Complete the HTML form with a closing </form> tag.
This instructs the browser that the form is complete.

Viewing Data Returned by the Server

Once the data has been populated by the user, and
submitted to a CGI program, the program should display
something useful or intelligent to the user to indicate the
results of their request. This may be as simple as
displaying a “Thank You” message, maybe even stating
that all information was received correctly. Or, if the user
failed to correctly populate a field, the CGI program needs
to inform the user which field was incorrect and why, and
re-display the form. It is always good etiquette to have your
CGI program pre-populate the fields that were correctly
submitted with the original value, and to highlight the fields
that were incomplete or incorrect.

Building an HTML Form

Most HTML forms follow the same structure. A form
element introduces the form and surrounds several input
elements, which collect data in the browser. The following
is just an introduction to basic HTML forms. For more
information, consult the W3C HTML specification.

Start a New Form

An HTML form always begins with <form method=
method action=url>. The method is either GET or
POST, and the action url should be a CGI script that
opens when the user submits the form.

Single-Line Text Input

You can use the HTML element <input type=text
name=text> to create a single-line text input field. The
name attribute is used later by the CGI script as a key to
the value provided by the user. You can use an additional
attribute, value=text, to pre-populate the form with a
default value in the field.

Multi-Line Text Input

To handle multiple lines of input from the user, use
<textarea name=text></textarea>. The name
attribute works the same way as the single-line input, but
any default text should instead be defined between the
opening and closing textarea elements. Additional
attributes such as rows=num and cols=num can control
the dimensions of the multi-line text input box.

Hidden Text Input

Use the HTML tag <input type=hidden name=text
value=text> to pass additional information in the HTML
form, but not allow the user to see it or change it directly.

Prompting for User-Submitted Data

A CGI program needs to be developed that accepts any user-submitted data provided by an HTML form. When the browser
first displays the form to the user, the form defines which URL should receive the data, and the method to use. It is that URL
that the browser goes to when the users clicks the Submit button. The CGI program responding to that URL must collect the
data, process it, and display an appropriate message back to the user.

03_556801-ch01.indd 703_556801-ch01.indd 7 8/31/10 9:16 AM8/31/10 9:16 AM

8

MIME Types

All content delivered by Web servers is preceded with a special Multipurpose Internet Mail Extension (MIME) type header. This
introduces the HTTP content coming from the Web server to the user’s browser. As the name implies, MIME originated in the
realm of e-mail, allowing for multiple message content blocks to be bundled into a single e-mail message. This allows the client
to choose how to display the content by announcing its content type. The HTTP protocol uses a subset of MIME and requires all
content delivered by a Web server to specify an appropriate content-type HTTP response header called an Internet Media Type.

INTERNET MEDIA TYPE / MIME TYPE DESCRIPTION COMMON FILE EXTENSIONS

text/plain A plain-text file with no special
formatting

.txt

text/html An HTML-formatted Web page .html .htm

image/jpeg An image saved in the JPEG format .jpeg .jpg

application/zip A compressed ZIP archive .zip

T he Web browser actually receives a lot more
information from the Web server than it displays.
The user is completely unaware of the subtle

interactions between the browser and server, including

various CGI communications. As a dynamic Web site
author, you need to be aware of what is going on here so
that you can better interact with your user’s browser and
provide a dynamic Web site experience.

Understanding CGI from the
Web Browser’s Point of View

Environment Variables

All CGI programs have access to several environment
variables related to each Web page request. The Web
server provides some of these variables, while the Web
browser provides others.

Apache comes with a useful CGI script called printenv.
pl, which you can use to see all environment variables
that are in use, and to validate that CGI program execution
is working correctly. To enable this script, you must first
enable the CGI handler in Apache; see Chapter 10 for more
information.

The Web browser provides the CGI with several
environment variables including the following: the current
URL (HTTP_REQUEST_URI), the referring URL (HTTP_
REFERER), the browser’s language (HTTP_ACCEPT_
LANGUAGE), and the browser’s software (HTTP_USER_
AGENT). By reading these environment variables, your CGI
program knows what URL the user is requesting, what
URL he is coming from, what languages are supported,
and the browsing software version, respectively.

Cookies

Cookies are portions of data that a Web server or CGI
program can assign to a user’s Web browser, allowing it to
“remember” a user from an earlier Web site visit. When a
CGI program wants to remember a user, it sends an initial
cookie to that user’s browser using the HTTP response
headers. This could include Web site preference
information such as the user’s preferred language, or a
uniquely generated authentication token.

The Web browser’s job is to accept and store the newly
assigned cookie. The Web browser does not care about the
cookie’s content, only that it must relay that same cookie
back to the Web server on any subsequent Web page
request using the HTTP request headers.

If that same CGI program receives its cookie back again, it
knows that this user has visited before, and retrieves the
data that it asked the browser to store. It is possible for a
user to configure her Web browser to reject new cookies,
or manually delete existing cookies. Doing so makes it
impossible for the CGI program to remember the user,
forcing it to treat the user like a first-time visitor.

03_556801-ch01.indd 803_556801-ch01.indd 8 8/31/10 9:16 AM8/31/10 9:16 AM

9

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

MIME Types (continued)

At first glance, MIME types in HTTP headers seem redundant; the Web browser should be able to identify the file type
based upon its extension. When the user requests the address http://mysite.com/index.html, she is obviously
viewing an HTML file as the Web page. However, if the user requests a CGI address such as http://mysite.com/
index.pl, the Web browser does not know what format .pl files represent, and neither does the Web server. Instead,
the Web server blindly executes the program, relaying all output back to the browser. The CGI program provides the
content-type response header in its output, and the Web server relays this to the browser. So, if the CGI program
announces content-type text/html, then the browser knows to render the CGI’s output as an HTML page.

Processing User-Submitted Data

Encoding the HTML Form’s Values

The data being sent is encapsulated within a format that
uses special characters to separate fields and values. If the
user happens to type in a character that is sensitive to this
format, a macro must replace that character so that it does
not interfere with the expected formatting.

Fortunately, all alphanumeric characters are generally safe
as-is, but some non-alphanumeric characters must be
converted into their percent-hexadecimal-ASCII format by
the Web browser. For example, the equals sign (=) is
represented in ASCII as value 61, or in hexadecimal as 3D.
If a user types an equals sign into an HTML form, the
browser encodes the character as %3D.

Some of the characters that require conversion include the
equals sign, plus sign (%2B), carriage return (%0D), line
feed (%0A), question mark (%3F), and ampersand (%26).

The only exception to this rule is the space character. While
%20 is perfectly legal, Web browsers often convert it into a
literal plus sign (+).

Receiving Data from the Web Server

The Web server never handles form data directly. Instead,
a CGI program is responsible for processing the data. The
program simply reverses the process performed by the Web

browser: it splits the name=value pairs by the ampersand,
and then decodes all of the percent-hexadecimal-ASCII
values back into their original character values.

Sending Data to the Web Server

Before the data is sent to the Web server, the Web
browser serializes the HTML form’s fields into a string of
name=value pairs, joining each pair with an ampersand
(&). Because each value has had any sensitive non-
alphanumeric characters encoded, these characters cannot
affect the overlying structure of each pair, and the user’s
original value is maintained.

FORM FIELD
NAME

USER VALUE ENCODED STRING

name John Smith name=John+Smith&
age=40&children=
Chris+%26+Jason

age 40

children Chris & Jason

If the HTML form specifies the GET method to send the
data, the URL is appended with a question mark (?)
followed by the encoded string of names and values.

If the HTML form specifies the POST method, the URL is
not appended. Instead, the encoded string is sent after the
standard HTTP request headers.

When an HTML form displays on the browser, the user is prompted to populate its fields and click a button to submit the data
to the server. Each field has an identifier that is used as a lookup to match the field’s value. The Web browser’s role is to
collect the information from the fields and encode them in a way that can be transmitted safely to the Web server.

03_556801-ch01.indd 903_556801-ch01.indd 9 8/31/10 9:16 AM8/31/10 9:16 AM

10

T he Web server’s role is to facilitate the flow of
information between the Web browser and the
online content hosted by the server. This may

require the Web server to execute a CGI program to
provide the dynamic features of a Web site. Fortunately,
because the CGI protocol has been standard for years, it
does not matter which Web server or Web browser is
used.
This section, in fact this entire book, uses Apache as the
example Web server. If you compare it to another Web

server such as Microsoft Internet Information Server (IIS),
you will see that the majority of the concepts revolving
around CGI are basically the same. The only real
difference is the implementation and configuration of the
actual Web server.
The Web server’s role is basically transparent to the Web
browser and CGI program. Its sole purpose is to forward
request information being sent from the browser to the
CGI program, and to relay response information from
the CGI program back to the browser.

Understanding CGI from the
Web Server’s Point of View

Receiving Data from the Browser

When the user goes to a Web site, his browser generates an
HTTP GET or POST request and sends it to the site’s Web
server. This request consists of the specific site URL and the
user’s current HTTP environment settings, along with any
cookies, secure socket layer (SSL) encryption status, and any
other relevant information.

This information is bundled up into an HTTP request message
and sent over the Internet. The Web server receives the HTTP
request, reads the information that it deems relevant, and
identifies if either a static file or a CGI program is needed to

complete the request. So, if the user requests a static HTML
file, then a CGI program does not run. The contents of the
static file are relayed back to the user, encapsulated in an
HTTP response message.

If the user requests a file that identifies itself as a CGI
program, then Apache recognizes this, locates the program on
the Web server’s hard drive, and executes it appropriately. The
program’s output is sent back to the Web server, which it
bundles with a similar HTTP response message.

Executing a CGI Program

A CGI program can be either a compiled binary or a standalone script. The Web server needs to know how to execute the
program so that the intended output is sent back to the user.

In order for the Web server to identify if a CGI program is required, the server must have an understanding on the various ways
a CGI program can be called. For example, it could be called directly, by the user specifying a Perl script in the Web browser’s
URL, or indirectly, hidden within an SHTML file using server-side includes. Once the CGI program is identified and located, it is
executed.

03_556801-ch01.indd 1003_556801-ch01.indd 10 8/31/10 9:16 AM8/31/10 9:16 AM

11

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
tSending Data to the End User

After the initial request for the Web page, the user sits and
waits for his Web browser to render the page. The Web
browser waits for the Web server to return the results of
the request. The Web server in turn waits for the CGI
program to return its output. All this time, the CGI program
may be using the server’s CPU processing power,
calculating some complex task. Only when the CGI
program finishes does the process unravel: the program’s
output is sent to the Web server, then to the Web browser,
and then to the user.

As data flows back to the user, it changes slightly with
each step. The Web server actually appends additional
HTTP response header fields to what it receives from the
CGI program, completing the HTTP response message.

Naturally, problems can happen in this process. Most
often, it may be due to a problem in the actual CGI

program’s execution. If the program crashes, then no
output is sent back to Apache, which in turn sends a
generic error message back to the user, something like
“Error 500: Internal server error.”

Or, if the CGI program takes too long to respond, Apache
simply gives up waiting. Instead, it sends a timeout error
back to the user, perhaps with some bundled text asking
the user to try again later.

Regardless of the response from the CGI program, Apache
needs to send something back to the user’s Web browser
as its HTTP response message. Apache constructs the
response data, based upon conditions set out by the
request. It tacks on the data received from the CGI program
if applicable, or the contents of the file requested, sending
everything back to the requesting user’s Web browser over
the Internet.

Executing a CGI Program (continued)

Receiving Data from the CGI Program

Once the CGI program is launched and performs its
function, it sends its generated output back to the Web
server by way of standard-output. In other words, the CGI
program simply prints the output back to the Web server.

Prior to sending any of the actual data, though, the first
line of the CGI program’s output must define a content-
type MIME header. Because a CGI program can technically
output any type of content, be it an HTML-formatted Web
page, a JPEG image, or a Zip file, it must introduce the
content type to the Web browser. This is required because
the CGI program cannot output the extension to the actual
file format, such as HTML, JPEG, or XML. The extension
simply does not exist in the HTTP response message.

By providing the content-type, the Web server knows the
formatting of the CGI program’s output, and can relay this
information back to the Web browser, which then handles
it appropriately given the content. Ultimately, the Web
server does not care about the format of the data it
receives from the CGI program. Its sole purpose is to send
that data back to the user’s Web browser.

Forwarding Data to the CGI Program

The Web server relays the CGI data to the CGI program in
multiple ways. Regardless of the HTTP method used, the
program’s environment settings are populated with CGI
data. Also, if the HTTP POST method is used, additional
information can be found on standard-input.

It is the CGI program’s responsibility to interpret, parse,
and analyze the CGI data into usable segments. In the case
of a Perl CGI script, it should relay this information to the
programmer in a way that is easily accessible.

The information being sent to the CGI program includes
any request data, cookies, HTML form fields and values,
the user’s environment settings, the Web server’s
environment settings, and any other information relevant
to the request.

03_556801-ch01.indd 1103_556801-ch01.indd 11 8/31/10 9:16 AM8/31/10 9:16 AM

12

A Web site’s author may choose to build her site
with HTML content split into several individual
files, such as index.html or aboutus.html.

Static files are relatively easy to construct, but makes it
difficult to provide any type of dynamic content. Instead,
the author may create one or more CGI programs to
dynamically generate each Web page.
The CGI approach has the advantage of controlling what
information displays, and making it unique to the end-
user given his particular session. This may be as simple
as including the current date and time in the top-right

corner of the Web site, or as complex as an e-commerce
store with a shopping cart and a credit-card processing
checkout.
The CGI handler provides the conduit between a CGI
program, such as a Perl script, and the user. The program
must collect the incoming information provided by the
Web server through the CGI handler including the user’s
environment, cookies, and session. The program must
analyze this information, process it, and generate output
from it, like a dynamic Web page.

Understanding CGI from the
CGI Program’s Point of View

CGI Handler Executes the Perl Interpreter

For every user who requests a Web page that is dynamically
generated, the Apache CGI handler must launch a new
instance of the Perl interpreter into memory to process the
request. The CGI handler also instructs the Perl interpreter
which Perl script it needs to execute, and finally forwards the
incoming CGI data to the script’s run-time input.

Naturally, if the user references a Perl script filename in the
URL, Apache does not necessarily know that it is executing a
Perl script, or a binary file written in machine language.
Because a script file is nothing more than text that follows a
specific syntax, it cannot be executed directly by the operating
system like a compiled binary.

In the Unix world, when a program file is launched on the
command line, the operating system relies the system shell to
identify if the file is binary and can be executed directly, or if it
requires a helper program. To do this, the shell reads the first
line of the file, looking for a shebang (#!) interpreter directive.
This is why all Perl scripts begin with the following line:

#!/usr/bin/perl

The shell sees this and knows that it must execute /usr/
bin/perl first, as this is the program that can properly
interpret the contents of the script file.

In the Windows world, the same basic thing happens, except
the explorer.exe “shell” does not look for an interpreter
directive. Instead, it recognizes Perl scripts by way of a .pl
extension. It knows that .pl files first require the program
C:\Perl\bin\perl.exe. When executing CGI scripts on
Windows, Apache does not use explorer.exe, but instead
assumes the role of a Unix system shell. Apache opens the file
being referenced and looks for a shebang interpreter directive,
which must describe the location of the Perl interpreter binary
installed on Windows:

#!C:/Perl/bin/perl.exe

Reading Data Sent from the CGI Handler

Once the Perl interpreter is running, and it has parsed the Perl script and executed it, the first thing the script should do is read
introductory information about the HTTP request session from the CGI handler.

The CGI handler supplies most of its information to Perl by way of environment variables into the Perl interpreter session. The
CGI handler provides the URL requested, the user’s IP address, the Web browser name and version, all cookies related to the
Web site, and so on. All of this information is gleaned from the Perl session’s global environment variable.

03_556801-ch01.indd 1203_556801-ch01.indd 12 8/31/10 9:16 AM8/31/10 9:16 AM

13

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

Sending Data Back to the CGI Handler

the Perl script to communicate directly to the user’s
browser, within the guidelines of the HTTP specifications.

At a minimum, the Perl script must print the content-type
MIME header. This is absolutely required, and enforced by
Apache. If it is missing, Apache sends a generic error code
back to the user, regardless of the Perl script’s output.

Additional headers may also be provided to further fine-
tune the HTTP session. Cookies, for example, are also
created by way of the outgoing HTTP headers. After the
Perl script defines any outgoing headers, it must print one
blank line, followed by the actual generated content.

It is the Perl script’s job to enhance the user’s Web-
browsing experience. Usually this happens by way of
dynamically generated HTML, but it could be any type of
formatted data, composed by the Perl script’s logic. The
Perl script simply “prints” this information on its standard-
output handle, with Apache listening intently to this handle
while the Perl script is running.

However, prior to printing any HTML code, the Perl script
must first print any outgoing HTTP headers. Apache relays
these HTTP headers back to the user’s Web browser in the
HTTP response message. In essence, these headers allow

Shutting Down

Given enough traffic on a dynamic Web site, constantly
starting up and shutting down the same group of CGI
programs can be rather demanding on the CPU. In the case
of a Perl script, the Perl interpreter is the actual binary
program that is being launched on each request. For every
single request, the interpreter parses the script into
machine code, executes it, and exits. It is possible to
configure Apache to actually embed Perl directly into itself.
This means that the Perl interpreter is persistently running
in RAM within every process of Apache, so you can avoid
the actual startup and shutdown of Perl; the interpreter
simply remains idle until a CGI request is received. This
feature is provided by an extension module for Apache
called mod_perl. See Chapter 23 for more information on
implementing mod_perl on your Web site.

Once the Perl script has finished, and its output has been
sent back to Apache for relaying to the user’s Web
browser, the Perl interpreter closes its connection to the
CGI handler and shuts down.

Normally, Apache waits until the Perl interpreter has exited
before sending any data back to the user. Apache actually
buffers the Perl script’s output and only sends it once the
CGI program is complete. Most of the time this is not an
issue; however, if you have a Perl script that takes several
seconds, or even minutes, to run, the user will be waiting
for some time before the browser displays the results of
the Web page request. If the delay is unavoidable, you can
at least instruct Apache to provide some content back to
the user, such as a “Please wait...” message, by flushing
the output buffer in the middle of program execution.

03_556801-ch01.indd 1303_556801-ch01.indd 13 8/31/10 9:16 AM8/31/10 9:16 AM

14

A lthough this book focuses on using Perl as a CGI
language, Perl is certainly not your only option.
Technically speaking, any programming

language that can access environment variables, read
incoming data, and write outgoing data will support the
Apache CGI handler.
Not all programming languages are created equal. Some
have libraries specially designed to access CGI data, while
others have modules that make constructing HTML very

easy. Some have a language syntax that is very easy to
remember, and others have third-party modules that
make complex calculations very simple.
You may find that as you experiment with different
languages, some work better than others. There is no rule
that says you must select one specific language for an
entire Web site. Feel free to mix and match languages
and technologies and see for yourself what works best.

Compare Perl to Other
CGI Languages

PHP

PHP is an interpretive language that was designed to
specialize in CGI development. While influenced by other
languages such as C, JavaScript, and even Perl, PHP makes
building dynamic Web sites very easy.

PHP’s strength comes mainly from its ability to embed itself
directly within an HTML file. Static Web site content is
represented as standard HTML in a PHP script. Content that
is dynamic is written as PHP code, contained within special
<? ... ?> tags.

A lot of the mundane CGI handler interactions are automated
by PHP. For example, the PHP interpreter takes care of tasks

such as parsing HTML forms for values, and accessing details
from the CGI environment. At a minimum, Perl requires you to
either import its CGI library, or to produce 15 to 20 lines of
code by hand, to accomplish the same thing.

PHP does have its flaws. For example, its ability to parse, sort,
and organize raw data is not as efficient as that of Perl. Also,
its library of third-party modules is not as robust or mature as
the Perl CPAN repository. For simple CGI programming,
however, many developers find PHP to be more than
adequate.

Active Server Pages

Active Server Pages, or ASP, is a Microsoft framework for
dynamically executing server-side code in-between standard
HTML. First released in 1996, ASP refers to the engine on the
Web server; the underlying language is actually VBScript.

At first glance, ASP-formatted files look like PHP files, using the
tags <% ... %> instead of PHP’s <? ... ?>. However, the
feature set available to VBScript is much more robust than PHP,
especially with the ASP engine providing a series of object
handles that you can use to manage the application, as well as
request, response, server, and session classes.

The VBScript language is limited to running on Microsoft
Windows-based hosts; however, it is not limited to IIS. A
third-party module is available for making ASP and VBScript
Web sites run under Apache on Windows.

VBScript supports many standard functions found in most
programming languages, such as built-in file, date, math,
string, and binary methods. ActiveX objects provide additional
functionality, but design problems in ActiveX and VBScript
have led to problems with malicious third-party code, and
several security advisories and patches.

ASP.NET replaced ASP in 2002. The shift to ASP.NET meant
that it is no longer an interpretive language; code must now
be compiled natively within the .NET framework. While this
does mean more overhead in terms of memory utilization, the
code is generally faster and more responsive than the original
ASP. Many ASP.NET developers have chosen to continue
using classic ASP, especially to develop simple Web sites.

03_556801-ch01.indd 1403_556801-ch01.indd 14 8/31/10 9:16 AM8/31/10 9:16 AM

15

Ch
apter 1: In

trodu
cin

g Perl an
d A

pach
e W

eb Site D
evelopm

en
t

Ruby on Rails

group the Web site development into interaction, display,
and structure components. By forcing the programmer to
separate her code into these three components, Ruby on
Rails developers argue that Web sites can be built more
efficiently and quickly. Perl CGI does not mandate that you
design using this model, but you are welcome to if you
prefer this type of organization.

Some developers of larger Web sites have criticized Ruby
on Rails for not scaling efficiently, even opting to mix
technologies such as Perl on more resource-intensive
operations.

Ruby on Rails is an application framework for developing
dynamic Web sites using the Ruby programming language.
Ruby is an interpretive language that has been around for
years, and is influenced by other languages such as Perl
and Python. However, Ruby on Rails is a fairly recent
framework that is gaining in popularity. It makes key
assumptions about common features and functionality, and
strives to maximize code re-use.

Directly comparing Ruby on Rails to Perl is not exactly fair.
Ruby on Rails enforces a specific architecture method to

C, C++, C#, and .NET

The disadvantage to using a native language is that there is
more work involved in creating and debugging a program,
as compared to a similar program that you would write
using an interpretive language. It is more tedious because
the programmer must manually compile the binary object
before installing it in a location where the Web server can
access it. With an interpretive language, the compile-and-
install steps are not applicable.

The programmer must also worry about lower-level
memory management, and system-level hardware
interaction — something that is taken care of automatically
by a higher-level interpretive language such as Perl or PHP.

Ultimately, for established Web sites that are larger, busier,
and make significant resource demands on server
hardware, a natively compiled binary is a better long-term
solution, provided that you can invest the extra effort into
writing and maintaining the program. For a newer Web site
with little traffic or resource demands, using an interpretive
language such as Perl will help you develop the site more
quickly.

Programs written in C, C++, C#, or .NET are compiled into
binary-code, which is executed natively by the operating
system. With these languages, there is no interpretive
program involved. Instead, these programs need to be
compiled once, and then executed by the Web server each
time it receives a CGI request.

This method of developing CGI programs is very different
from the other examples in this section; however, natively
compiled programs do have their own unique strengths
and weaknesses that you should consider.

One huge advantage to using one of these languages is
that the program is already converted into a format that the
CPU can quickly and efficiently execute. This means that
larger programs can run much faster and are generally
more responsive than interpretive-based languages.

Strictly speaking, using an interpreter means that your
source code is re-compiled for every single CGI request
that the Web server receives. In addition, the actual
execution of the interpreter affects the server’s memory
and CPU resources.

03_556801-ch01.indd 1503_556801-ch01.indd 15 8/31/10 9:16 AM8/31/10 9:16 AM

16

Just as many other languages have implementations of
the CGI protocol, so do many Web servers. As of the
March 2010 Netcraft survey of Web server software,

Apache represented a 54 percent market share of all Web
sites surveyed — over 112 million servers. Naturally, the
software must be good if so many people are using it;
however, some find it overly complicated and difficult to
set up, especially with its text-based configuration files.
Programs such as Microsoft Internet Information Server
(IIS) have stolen market share from Apache partly because
they are easier to configure and deploy.
Unless you run your own server hardware on the Internet,
you may not have much of a choice regarding which Web

server to run on your Web-hosting provider’s servers.
Apache is the standard on practically all Unix-based
hosting providers. Windows-based hosting providers tend
to only provide IIS as an option. However, it is strongly
recommended that you install a Web server locally on
your workstation for development and testing purposes.
When choosing a Web server, at a minimum you need
something that supports CGI. Additional support for
features such as server-side includes, secure socket layer
encryption, virtual domain hosting, and basic/digest
authentication are all certainly nice to have, but your
specific application may not require them.

Compare Apache to
Other Web Servers

Internet Information Server

Microsoft first released IIS 1.0 in 1995 with Windows NT
3.51. Since then, the program has been steadily upgraded and
improved with each new release of Windows. The most recent
major version is IIS 7.5 for Windows Server 2008.

As of March 2010, about 24 percent, or roughly 50 million
Web sites, use IIS. This is impressive because only Windows
servers can deploy the program; however, IIS’s level of
adoption has bounced between 20 percent and 40 percent
since late 1997. Since peaking in late 2007, its market share
has dropped to a new four-year low.

IIS and Apache have been competing for market share for
many years. In fact, the two programs have become so
synonymous with their respective operating systems that
many Web site developers have simply accepted either
program as the default option — immediately after selecting a
development platform. The key advantage Apache has over
IIS, with respect to market share, is that Apache can run on
either Windows or Unix servers, whereas IIS is limited to
Windows-server platforms only.

Unlike Apache, IIS’s license and source code are proprietary,
and not freely available. Rather than charging for it, Microsoft

has been shipping it out as a standard component of all
Windows installs since Windows XP.

Strictly speaking, as a CGI Web server, IIS is fully compatible
with Apache in terms of handling Perl or other interpretive
languages. In other words, if you use IIS on your personal
workstation to develop and test your Web site, and Apache on
your Web-hosting provider’s server to deploy it publically,
your CGI scripts should be equally usable at both sites,
regardless of any minor compatibility adjustments to the CGI
source code.

Depending on whom you ask, several studies have been
released that argue that Apache is better than IIS and vice
versa when compared on similar hardware. The only real
disadvantage to IIS may be its performance serving CGI
scripts under high-volume conditions; after all, IIS is designed
to run ASP, a competitor to the CGI standard. You can use a
third-party program called FastCGI to address this CGI
deficiency on IIS. FastCGI runs underneath IIS and acts as
sub-server for all CGI traffic deferred by IIS. FastCGI is also
available for Apache.

03_556801-ch01.indd 1603_556801-ch01.indd 16 8/31/10 9:16 AM8/31/10 9:16 AM

