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PREFACE

This manual provides the statements and complete solutions to all of the odd
numbered problems in the textbook Combinatorial Reasoning: An Introduction
to the Art of Counting. The definitions, theorems, figures, and other problems
referenced in the solutions contained in this manual are to that book.

HOW TO USE THIS MANUAL

The most important thing to remember is that you should not turn to any solution
in this manual without first attempting to solve the problem on your own. Many of
the problems are subtle or complex and therefore require considerable thought—
and time!—before you can expect to find a correct method of solution. You will
learn best by trying to solve a problem on your own, even if you are unsuccessful.
We hope that most often you will consult this manual simply to confirm your own
answer. Often your answer will be the same as ours, but sometimes you may have
found a different method of solution that is not only correct, but may even be better
than ours (if so, please send us your alternative solution at the address below).
If the answer to a problem eludes you even after a good effort, then take a look
at the solution offered here. Even in this case, it is best only to read the beginning
of the solution and see if you can continue to solve the problem on your own.
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viii PREFACE

TIPS FOR SOLVING COMBINATORIAL PROBLEMS

Many students wonder how to go about attacking nonroutine problems. We have
listed some suggestions below that may be helpful for solving combinatorial
problems and more generally for solving problems in any branch of mathematics.

� Try small cases and look for patterns
� Separate a problem into cases
� Draw a figure
� Make a table of values
� Look for a similar or related problem, one you already know how to solve
� For combinatorial problems, apply one of the strategies explored in the

textbook: use the addition and multiplication principles; identify the problem
as a permutation, combination, or distribution; find and solve a recurrence
relation; use a generating function; use the principle of inclusion/exclusion;
restate the problem to relate it to a problem answered by well known numbers
such as binomial coefficients, Fibonacci numbers, Stirling numbers, partition
numbers, Catalan numbers, and so on.

For a more complete discussion of mathematical problem solving, you are encour-
aged to consult How to Solve It, the classic, but still useful, book of George Pólya.

Duane DeTemple
William Webb

Washington State University, Pullman, WA
detemple@wsu.edu and webb@math.wsu.edu

mailto:detemple@wsu.edu
mailto:webb@math.wsu.edu


PART I

THE BASICS OF ENUMERATIVE
COMBINATORICS





1
INITIAL EnCOUNTers WITH
COMBINATORIAL REASONING

PROBLEM SET 1.2

1.2.1. A bag contains 7 blue, 4 red, and 9 green marbles. How many marbles
must be drawn from the bag without looking to be sure that we have drawn

(a) a pair of red marbles?

(b) a pair of marbles of the same color?

(c) a pair of marbles with different colors?

(d) three marbles of the same color?

(e) a red, blue, and green marble?

Answer
(a) 18 (b) 4 (c) 10 (d) 7 (e) 17

1.2.3. There are 10 people at a dinner party. Show that at least two people have
the same number of acquaintances at the party.

Answer
Each person can know any where from 0 (no one) to 9 (everyone) people.
But if someone knows no one, there cannot be someone who knows

Solutions Manual to Accompany Combinatorial Reasoning: An Introduction to the Art of Counting,
First Edition. Duane DeTemple and William Webb.
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4 INITIAL EnCOUNTers WITH COMBINATORIAL REASONING

everyone, and vice versa. Thus, place the 10 people into the 9 boxes that
are labeled 1, 2,… , 8, and 0|9. By the pigeonhole principle, some box has
at least 2 members. That is, there are at least two people at the party with
the same number of acquaintances.

1.2.5. Given any five points in the plane, with no three on the same line,
show that there exists a subset of four of the points that form a convex
quadrilateral.

[Hint: Consider the convex hull of the points; that is, consider the convex
polygon with vertices at some or all of the given points that encloses all five
points. This scenario can be imagined as the figure obtained by bundling
the points within a taut rubber band that has been snapped around all five
points. There are then three cases to consider, depending on whether the
convex hull is a pentagon, a quadrilateral containing the fifth point, or a
triangle containing the other two given points.]

Answer
If the convex hull is a pentagon, each set of 4 points are the vertices of
a convex quadrilateral. If the convex hull is a quadrilateral, the convex
hull itself is the sought quadrilateral. If the convex hull is a triangle, the
line formed by the two points within the triangle separates the vertices of
the triangle into opposite half planes. By the pigeonhole principle, there
are two points of the triangle in the same half plane. These two points,
together with the two points within the triangle, can be combined to form
the desired convex quadrilateral.

1.2.7. Given five points on a sphere, show that some four of the points lie in a
closed hemisphere.

[Note: A closed hemisphere includes the points on the bounding great
circle.]

Answer
Pick any two of the five points and draw a great circle through them.
At least two of the remaining three points belong to the same closed
hemisphere determined by the great circle. These two points, and the two
starting points, are four points in the same closed hemisphere.

1.2.9. Suppose that 51 numbers are chosen randomly from [100] = {1, 2,… ,
100}. Show that two of the numbers have the sum 101.

Answer
Each of the 51 numbers belongs to one of the 50 sets {1, 100}, {2, 99},… ,
{50, 51}. Some set contains two of the chosen numbers, and these sum
to 101.
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1.2.11. Choose any 51 numbers from [100] = {1, 2,… , 100}. Show that there are
two of the chosen numbers that are relatively prime (i.e., have no common
divisor other than 1).

Answer
Place each of the 51 numbers into one of the 50 sets {1, 2}, {3, 4},… ,
{99, 100}. One of the sets contains a pair of consecutive integers that are
relatively prime.

1.2.13. Choose any 51 numbers from [100] = {1, 2,… , 100}. Show that there
are two of the chosen numbers for which one divides the other.

Answer
Any natural number has the form m = 2dm km, where dm ≥ 0 and km is odd.
Call km the odd factor of m. For example, the odd factor of 100 = 22 ⋅ 25
is k100 = 25. Thus, the odd factors of the 51 chosen numbers are in the
set {1, 3, 5,… , 99}. Since this is a set with 50 members, two of the 51
chosen numbers have the same odd factor. The smaller is then a divisor
of the larger, with a quotient that is a power of two.

1.2.15. Consider a string of 3n consecutive natural numbers. Show that any subset
of n + 1 of the numbers has two members that differ by at most 2.

Answer
Suppose the 3n consecutive numbers are a, a + 1,… , b. Each of the n + 1
numbers in the given subset belongs to one of the sets {a, a + 1, a + 2},
{a + 3, a + 4, a + 5}.… , {b – 2, b – 1, b}. By the pigeonhole principle,
one of these sets has two members of the subset and these differ by at
most 2.

1.2.17. Suppose that the numbering of the squares along the spiral path shown
in Example 1.9 is continued. What number k is assigned to the square S
whose lower left corner is at the point (9, 5)?

Answer
We want to find a solution to the equations k = 11i + 9 and k = 16j + 5
for some integers i and j. This gives us 11i + 4 = 16j. Both 4 and 16 are
divisible by 4, so we see that i is divisible by 4. If we let i = 4, then j = 3
and we obtain the solution k = 53. The next multiple of 4 giving a solution
is i = 20, but then k = 229 and we see that the spiral is overlapping itself
with repeated squares covered a second time.

1.2.19. Generalize the results of Problem 1.2.18.

(a) How many spiral paths exist on the torus if m = n?

(b) Suppose d ≥ 2 is the largest common divisor of m and n. How many
distinct spiral paths exist on the torus?
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Answer
(a) Any path returns to its starting position in m steps, so there are m

spirals each covering m squares. For example, there are three paths
when m = n = 3, as shown here.

(b) Since m/d and n/d are relatively prime, there is a unique spiral with
mn/d2 steps that covers a d by d square at each step. For example,
if m = 6 and n = 9, then d = 3, and there is a unique spiral of

length
mn
d2

= 6 ⋅ 9
32

= 6 of 3 × 3 squares that covers the torus. This

is seen at the left in the figure below. By part (a) we see there are d
nonintersecting spirals on the torus, each of length

mn
d

. The case m =
6, n = 9, d = 3, is shown at the right below, with the d = 3 paths each

of length
mn
d

= 6 ⋅ 9
3

= 18 shown in black, white, and gray.

1

2

3

4

5

6

PROBLEM SET 1.3

1.3.1. Consider an m × n chessboard, where m is even and n is odd. Prove that if
two opposite corners of the board are removed, the trimmed board can be
tiled with dominoes.

Answer
The left and right hand columns of height n – 1 of the trimmed board can
each be tiled with vertical dominoes. The remaining board is has all of its
rows of even length m – 2, so it can be tiled with horizontal dominoes.
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1.3.3. Suppose that the lower left j × k rectangle is removed from an m × n
chessboard, leaving an angle-shaped chessboard. Prove that that angular
board can be tiled with dominoes if it contains an even number of squares.

Answer
Since mn − jk = (m − k) n + (n − j) k is even, (m − k) n and (n − j) k have
the same parity. If both are even, we can tile the resulting (m − k) ×
n and (n − j) × k rectangles. If both are odd, then n and k are odd thus
m and j must be even. We can then tile the m × (n − j) n and (m − k) × j
rectangles.

Alternate answer
View the angular region as the union of rectangles A, B, and C, where
the corner rectangle B shares an edge with each of A and C. If all three
rectangles have even area, the angle can be tiled since A, B, and C can
each be tiled individually. If A and B, or B and C, each have odd area, then
combining the odd rectangles shows that the angle is a union of two even
area rectangles and therefore can be tiled. If A and C are odd, their edges
are all of odd length and therefore rectangle B is also odd; the angular board
therefore is not of even area.

1.3.5. Consider a rectangular solid of size l × m × n, where l, m, and n are all
odd positive integers. Imagine that the unit cubes forming the solid are
alternately colored gray and black, with a black cube at the corner in the
first column, first row, and first layer.

(a) What is the color of each of the remaining corner cubes of the solid?

(b) How can the color of the cube in column j, row k, and layer h of the
solid be determined?

(c) Prove that removing any black cube leaves a trimmed solid that can be
filled with solid 1 × 1 × 2 dominoes.

Answer
(a) Since the colors alternate, all eight corners of the solid are black.

(b) The cube is black if and only if the sum j + k + h is odd. For example,
the cube in column 1, row 1, and layer 1 is black since 1 + 1 + 1 = 3,
an odd number. That is, j, k, and h must all be odd, or one must be odd
and the other two even.

(c) If the cube that is removed is black, and is in column j, row k, and layer
h, then j, k, and h are all odd or two are even and one is odd. With no
loss in generality assume that j + k is even and h is odd. Theorem 1.21
tells us that layer h can be tiled with dominoes confined to that layer.
When layer h is removed it leaves two (possibly one if h = 1 or n)
rectangular solids with an even dimension and so it can be tiled with
solid dominoes.
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1.3.7. A tetromino is formed with four squares joined along common edges. For
example, the O and the Z tetromino are shown here.

(a) Find the three other tetrominoes, called the I, J, and T tetrominoes.

(b) The set of five tetrominoes has a total area of 20 square units. Explain
why it is not possible to tile a 4 × 5 rectangle with a set of tetrominoes.

(c) Show that a 4 × 10 rectangle can be tiled with two sets of tetrominoes.

(d) Show that a 5 × 8 rectangle can be tiled with two sets of tetrominoes.

Answer
(a)

(b) A 4 × 5 chessboard has 10 unit squares of each color. The O, Z, I, and J
tetrominoes each cover 2 unit squares of each color, but the T tetromino
covers 3 squares of one color and one of the other color. Therefore the
4 × 5 square cannot be tiled with a set of tetrominoes.

(c)

(d)
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PROBLEM SET 1.4

1.4.1. The following diagram illustrates that t2m = m(2m + 1)

2m

=2m

2m + 1

m

Create a similar diagram that illustrates the formula
t2m+1 = (2m + 1)(m + 1).

Answer

m+1

2m+12m+1

2m+1 =

1.4.3. Use both algebra and dot patterns to show that the square of an odd integer
is congruent to 1 modulo 8. That is, show that s2n+1 = 8un + 1 for some
integer un. Be sure to identify the integer un by its well-known name.

Answer
The answer is s2n+1 = 8tn + 1, since (2n + 1)2 = 4n2 + 4n + 1 =

8
n(n + 1)

2
+ 1 = 8tn + 1. See the following diagram:
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1.4.5. The centered square numbers are obtained much like the centered triangle
numbers of Problem 1.4.4, except that squares with an increasing number
of dots per side surround a center dot.

(a) Create a diagram that shows the sequence of centered square numbers
beginning with 1, 5, 13, 25, and 41.

(b) Color the dots in the diagram from part (a) to show that the nth centered
square number is given by (n + 1)2 + n2.

(c) Shade your diagram from part (a) to shows that every centered square
number is congruent to 1 modulo 4.

(d) Verify part (c) with algebra.

Answer

(a) (b) (c)

(d) (n + 1)2 + n2 = 2n2 + 2n + 1 = 1 + 2n(n + 1) = 1 + 4
n(n + 1)

2
=

1 + 4tn

1.4.7. The first three trapezoidal numbers are 1, 5, and 12, as shown by the dot
pattern here.

1251

(a) Continue the trapezoidal pattern to find the next three trapezoidal num-
bers.


