

ffi rs.indd 08/07/2014 Page iv

ffi rs.indd 08/07/2014 Page i

PROFESSIONAL

CUDA® C Programming

John Cheng
Max Grossman
Ty McKercher

ffi rs.indd 08/07/2014 Page ii

Professional CUDA® C Programming

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-73932-7

ISBN: 978-1-118-73927-3 (ebk)

ISBN: 978-1-118-73931-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014937184

Trademarks: Wiley, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or regis-
tered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may not be
used without written permission. CUDA is a registered trademark of NVIDIA Corporation. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in
this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://book-support.wiley.com
http://www.wiley.com

ffi rs.indd 08/07/2014 Page iii

ACQUISITIONS EDITOR
Mary James

PROJECT EDITOR
Martin V. Minner

TECHNICAL EDITORS
Wei Zhang
Chao Zhao

PRODUCTION MANAGER
Kathleen Wisor

COPY EDITOR
Katherine Burt

MANAGER OF CONTENT DEVELOPMENT AND
ASSEMBLY
Mary Beth Wakefi eld

DIRECTOR OF COMMUNITY MARKETING
David Mayhew

MARKETING MANAGER
Carrie Sherrill

BUSINESS MANAGER
Amy Knies

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Patrick Redmond

PROOFREADER
Nancy Carrasco

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
© iStock.com/fatido

CREDITS

ffi rs.indd 08/07/2014 Page iv

ffi rs.indd 08/07/2014 Page v

ABOUT THE AUTHORS

JOHN (RUNWEI) CHENG is a research scientist with extensive industry experience
in high-performance computing on heterogeneous computing platforms. Before
joining the oil and gas industry, John worked in the fi nance industry for more than
ten years as an expert in computational intelligence, providing advanced solutions
based on genetic algorithms hybridized with data mining and statistical learning to
solve real world business challenges. As an internationally recognized researcher in

the fi eld of genetic algorithms and their application to industrial engineering, John has co-authored
three books. John’s fi rst book, Genetic Algorithms and Engineering Design, published by John
Wiley and Sons in 1997, is still used as a textbook in universities worldwide. John has a wide range
of experience in both academic research and industry development, and is gifted in making complex
subjects accessible to readers with a concise, illustrative, and edifying approach. John earned his
doctoral degree in computational intelligence from the Tokyo Institute of Technology.

MAX GROSSMAN has been working as a developer with various GPU programming
models for nearly a decade. His experience is focused in developing novel GPU pro-
gramming models and implementing scientifi c algorithms on GPU hardware. Max
has applied GPUs to a wide range of domains, including geoscience, plasma phys-
ics, medical imaging, and machine learning, and enjoys understanding the compu-
tational patterns of new domains and fi nding new and unusual ways to apply GPUs

to them. Lessons learned from these domains help to guide Max’s work in programming models and
frameworks. Max earned his degree in computer science from Rice University with a focus in paral-
lel computing.

TY MCKERCHER is a Principal Solution Architect with NVIDIA, leading a team
that specializes in visual computing systems architecture across multiple industries.
He often serves as a liaison between customer and product engineering teams dur-
ing emerging technology evaluations. He has been engaged in CUDA-based projects
since he participated in the fi rst CUDA kitchen training session held at NVIDIA
headquarters in 2006. Since then, Ty has helped architect GPU-based supercomput-

ing environments at some of the largest and most demanding production datacenters in the world.
Ty earned his mathematics degree with emphasis in geophysics and computer science from the
Colorado School of Mines.

ffi rs.indd 08/07/2014 Page vi

ABOUT THE TECHNICAL EDITORS

WEI ZHANG is a scientifi c programmer and has been working in the high-performance computing
area for 15 years. He has developed or co-developed many scientifi c software packages for molecu-
lar simulation, computer-aided drug design, EM structure reconstruction, and seismic depth imag-
ing. He is now focusing his effort on improving the performance of seismic data processing using
new technologies such as CUDA.

CHAO ZHAO joined Chevron in 2008 and currently serves as Geophysical Application Software
Development Specialist. In this role, Chao is responsible for designing and developing software
products for geoscientists. Prior to joining Chevron, Chao was a software developer for Knowledge
Systems Inc. and Seismic Micro Technology Inc. With more than 13 years of software developing
experience in the exploration and production industry, Chao has gained rich knowledge in the fi elds
of geology and geophysics. Having a broad education in science, Chao likes to see CUDA program-
ming used widely in scientifi c research and enjoys contributing to it as much as he can. He holds a
Bachelor of Science degree in chemistry from Peking University and a Master of Science in computer
science from the University of Rhode Island.

ffi rs.indd 08/07/2014 Page vii

ACKNOWLEDGMENTS

IT WOULD BE HARD TO IMAGINE this project making it to the fi nish line without the suggestions,
constructive criticisms, help, and resources of our colleagues and friends.

We would like to express our thanks to NVIDIA for granting access to many GTC conference pre-
sentations and CUDA technical documents that add both great value and authority to this book.

In particular, we owe much gratitude to Dr. Paulius Micikevicius and Dr. Peng Wang, Developer
Technology Engineers at NVIDIA, for their kind advice and help during the writing of this book.
Special thanks to Mark Ebersole, NVIDIA Chief CUDA Educator, for his guidance and feedback
during the review process.

We would like to thank Mr. Will Ramey, Sr. Product Manager at NVIDIA, and Mr. Nadeem
Mohammad, Product Marketing at NVIDIA, for their support and encouragement during the entire
project.

We would like to thank Mr. Paul Holzhauer, Director of Oil & Gas at NVIDIA, for his support
during the initial phase of this project.

Especially, we owe an enormous debt of gratitude to many presenters and speakers in past GTC con-
ferences for their inspiring and creative work on GPU computing technologies. We have recorded all
your credits in our suggested reading lists.

After years of work using GPUs in real production projects, John is very grateful to the people who
helped him become a GPU computing enthusiast. Especially, John would like to thank Dr. Nanxun
Dai and Dr. Bao Zhao for their encouragement, support, and guidance on seismic imaging projects
at BGP. John also would like to thank his colleagues Dr. Zhengzhen Zhou, Dr. Wei Zhang, Mrs.
Grace Zhang, and Mr. Kai Yang. They are truly brilliant and very pleasant to work with. John loves
the team and feels very privileged to be one of them. John would like to extend a special thanks to
Dr. Mitsuo Gen, an internationally well-known professor, the supervisor of John’s doctoral pro-
gram, for giving John the opportunity to teach at universities in Japan and co-author academic
books, especially for his fully supporting John during the years when John was running a startup
based on evolutionary computation technologies in Tokyo. John is very happy working on this proj-
ect with Ty and Max as a team and learned a lot from them during the process of book writing.
John owes a debt of gratitude to his wife, Joly, and his son, Rick, for their love, support, and consid-
erable patience during evenings and weekends over the past year while Dad was yet again “doing his
own book work.”

For over 25 years, Ty has been helping software developers solve HPC grand challenges. Ty is
delighted to work at NVIDIA to help clients extend their current knowledge to unlock the poten-
tial from massively parallel GPUs. There are so many NVIDIANs to thank, but Ty would like to
specifi cally recognize Dr. Paulius Micikevicius for his gifted insights and strong desire to always
improve while doing the heavy lifting for numerous projects. When John asked Ty to help share

ffi rs.indd 08/07/2014 Page viii

CUDA knowledge in a book project, he welcomed the challenge. Dave Jones, NVIDIA, senior direc-
tor approved Ty’s participation in this project, and sadly last year Dave lost his courageous battle
against cancer. Our hearts go out to Dave and his family — his memory serves to inspire, to press
on, and to pursue your passions. The encouragements from Shanker Trivedi and Marc Hamilton
have been especially helpful. Yearning to maintain his life/work balance, Ty recruited Max to join
this project. It was truly a pleasure to learn from John and Max as they developed the book content
that Ty helped review. Finally, Ty’s wife, Judy, and his four children deserve recognition for their
unconditional support and love — it is a blessing to receive encouragement and motivation while
pursuing those things that bring joy to your life.

Max has been fortunate to collaborate with and be guided by a number of brilliant and talented
engineers, researchers, and mentors. First, thanks have to go to Professor Vivek Sarkar and the
whole Habanero Research Group at Rice University. There, Max got his fi rst taste of HPC and
CUDA. The mentorship of Vivek and others in the group was invaluable in enabling him to explore
the exciting world of research. Max would also like to thank Mauricio Araya-Polo and Gladys
Gonzalez at Repsol. The experience gained under their mentorship was incredibly valuable in writ-
ing a book that would be truly useful to real-world work in science and engineering. Finally, Max
would like to thank John and Ty for inviting him along on this writing adventure in CUDA and for
the lessons this experience has provided in CUDA, writing, and life.

It would not be possible to make a quality professional book without input from technical editors,
development editors, and reviewers. We would like to extend our sincere appreciation to Mary E.
James, our acquisitions editor; Martin V. Minner, our project editor; Katherine Burt, our copy edi-
tor; and Wei Zhang and Chao Zhao, our technical editors. You are an insightful and professional
editorial team and this book would not be what it is without you. It was a great pleasure to work
with you on this project.

ACKNOWLEDGMENTS

ftoc.indd 08/07/2014 Page ix

CONTENTS

FOREWORD xvii

PREFACE xix

INTRODUCTION xxi

CHAPTER 1: HETEROGENEOUS PARALLEL COMPUTING WITH CUDA 1

Parallel Computing 2
Sequential and Parallel Programming 3
Parallelism 4
Computer Architecture 6

Heterogeneous Computing 8
Heterogeneous Architecture 9
Paradigm of Heterogeneous Computing 12
CUDA: A Platform for Heterogeneous Computing 14

Hello World from GPU 17
Is CUDA C Programming Diffi cult? 20
Summary 21

CHAPTER 2: CUDA PROGRAMMING MODEL 23

Introducing the CUDA Programming Model 23
CUDA Programming Structure 25
Managing Memory 26
Organizing Threads 30
Launching a CUDA Kernel 36
Writing Your Kernel 37
Verifying Your Kernel 39
Handling Errors 40
Compiling and Executing 40

Timing Your Kernel 43
Timing with CPU Timer 44
Timing with nvprof 47

Organizing Parallel Threads 49
Indexing Matrices with Blocks and Threads 49
Summing Matrices with a 2D Grid and 2D Blocks 53
Summing Matrices with a 1D Grid and 1D Blocks 57
Summing Matrices with a 2D Grid and 1D Blocks 58

x

CONTENTS

ftoc.indd 08/07/2014 Page x

Managing Devices 60
Using the Runtime API to Query GPU Information 61
Determining the Best GPU 63
Using nvidia-smi to Query GPU Information 63
Setting Devices at Runtime 64

Summary 65

CHAPTER 3: CUDA EXECUTION MODEL 67

Introducing the CUDA Execution Model 67
GPU Architecture Overview 68
The Fermi Architecture 71
The Kepler Architecture 73
Profi le-Driven Optimization 78

Understanding the Nature of Warp Execution 80
Warps and Thread Blocks 80
Warp Divergence 82
Resource Partitioning 87
Latency Hiding 90
Occupancy 93
Synchronization 97
Scalability 98

Exposing Parallelism 98
Checking Active Warps with nvprof 100
Checking Memory Operations with nvprof 100
Exposing More Parallelism 101

Avoiding Branch Divergence 104
The Parallel Reduction Problem 104
Divergence in Parallel Reduction 106
Improving Divergence in Parallel Reduction 110
Reducing with Interleaved Pairs 112

Unrolling Loops 114
Reducing with Unrolling 115
Reducing with Unrolled Warps 117
Reducing with Complete Unrolling 119
Reducing with Template Functions 120

Dynamic Parallelism 122
Nested Execution 123
Nested Hello World on the GPU 124
Nested Reduction 128

Summary 132

xi

CONTENTS

ftoc.indd 08/07/2014 Page xi

CHAPTER 4: GLOBAL MEMORY 135

Introducing the CUDA Memory Model 136
Benefi ts of a Memory Hierarchy 136
CUDA Memory Model 137

Memory Management 145
Memory Allocation and Deallocation 146
Memory Transfer 146
Pinned Memory 148
Zero-Copy Memory 150
Unifi ed Virtual Addressing 156
Unifi ed Memory 157

Memory Access Patterns 158
Aligned and Coalesced Access 158
Global Memory Reads 160
Global Memory Writes 169
Array of Structures versus Structure of Arrays 171
Performance Tuning 176

What Bandwidth Can a Kernel Achieve? 179
Memory Bandwidth 179
Matrix Transpose Problem 180

Matrix Addition with Unifi ed Memory 195
Summary 199

CHAPTER 5: SHARED MEMORY AND CONSTANT MEMORY 203

Introducing CUDA Shared Memory 204
Shared Memory 204
Shared Memory Allocation 206
Shared Memory Banks and Access Mode 206
Confi guring the Amount of Shared Memory 212
Synchronization 214

Checking the Data Layout of Shared Memory 216
Square Shared Memory 217
Rectangular Shared Memory 225

Reducing Global Memory Access 232
Parallel Reduction with Shared Memory 232
Parallel Reduction with Unrolling 236
Parallel Reduction with Dynamic Shared Memory 238
Effective Bandwidth 239

xii

CONTENTS

ftoc.indd 08/07/2014 Page xii

Coalescing Global Memory Accesses 239
Baseline Transpose Kernel 240
Matrix Transpose with Shared Memory 241
Matrix Transpose with Padded Shared Memory 245
Matrix Transpose with Unrolling 246
Exposing More Parallelism 249

Constant Memory 250
Implementing a 1D Stencil with Constant Memory 250
Comparing with the Read-Only Cache 253

The Warp Shuffl e Instruction 255
Variants of the Warp Shuffl e Instruction 256
Sharing Data within a Warp 258
Parallel Reduction Using the Warp Shuffl e Instruction 262

Summary 264

CHAPTER 6: STREAMS AND CONCURRENCY 267

Introducing Streams and Events 268
CUDA Streams 269
Stream Scheduling 271
Stream Priorities 273
CUDA Events 273
Stream Synchronization 275

Concurrent Kernel Execution 279
Concurrent Kernels in Non-NULL Streams 279
False Dependencies on Fermi GPUs 281
Dispatching Operations with OpenMP 283
Adjusting Stream Behavior Using Environment Variables 284
Concurrency-Limiting GPU Resources 286
Blocking Behavior of the Default Stream 287
Creating Inter-Stream Dependencies 288

Overlapping Kernel Execution and Data Transfer 289
Overlap Using Depth-First Scheduling 289
Overlap Using Breadth-First Scheduling 293

Overlapping GPU and CPU Execution 294
Stream Callbacks 295
Summary 297

xiii

CONTENTS

ftoc.indd 08/07/2014 Page xiii

CHAPTER 7: TUNING INSTRUCTION-LEVEL PRIMITIVES 299

Introducing CUDA Instructions 300
Floating-Point Instructions 301
Intrinsic and Standard Functions 303
Atomic Instructions 304

Optimizing Instructions for Your Application 306
Single-Precision vs. Double-Precision 306
Standard vs. Intrinsic Functions 309
Understanding Atomic Instructions 315
Bringing It All Together 322

Summary 324

CHAPTER 8: GPU-ACCELERATED CUDA LIBRARIES AND OPENACC 327

Introducing the CUDA Libraries 328
Supported Domains for CUDA Libraries 329
A Common Library Workfl ow 330

The CUSPARSE Library 332
cuSPARSE Data Storage Formats 333
Formatting Conversion with cuSPARSE 337
Demonstrating cuSPARSE 338
Important Topics in cuSPARSE Development 340
cuSPARSE Summary 341

The cuBLAS Library 341
Managing cuBLAS Data 342
Demonstrating cuBLAS 343
Important Topics in cuBLAS Development 345
cuBLAS Summary 346

The cuFFT Library 346
Using the cuFFT API 347
Demonstrating cuFFT 348
cuFFT Summary 349

The cuRAND Library 349
Choosing Pseudo- or Quasi- Random Numbers 349
Overview of the cuRAND Library 350
Demonstrating cuRAND 354
Important Topics in cuRAND Development 357

xiv

CONTENTS

ftoc.indd 08/07/2014 Page xiv

CUDA Library Features Introduced in CUDA 6 358
Drop-In CUDA Libraries 358
Multi-GPU Libraries 359

A Survey of CUDA Library Performance 361
cuSPARSE versus MKL 361
cuBLAS versus MKL BLAS 362
cuFFT versus FFTW versus MKL 363
CUDA Library Performance Summary 364

Using OpenACC 365
Using OpenACC Compute Directives 367
Using OpenACC Data Directives 375
The OpenACC Runtime API 380
Combining OpenACC and the CUDA Libraries 382
Summary of OpenACC 384

Summary 384

CHAPTER 9: MULTI-GPU PROGRAMMING 387

Moving to Multiple GPUs 388
Executing on Multiple GPUs 389
Peer-to-Peer Communication 391
Synchronizing across Multi-GPUs 392

Subdividing Computation across Multiple GPUs 393
Allocating Memory on Multiple Devices 393
Distributing Work from a Single Host Thread 394
Compiling and Executing 395

Peer-to-Peer Communication on Multiple GPUs 396
Enabling Peer-to-Peer Access 396
Peer-to-Peer Memory Copy 396
Peer-to-Peer Memory Access with Unifi ed Virtual Addressing 398

Finite Difference on Multi-GPU 400
Stencil Calculation for 2D Wave Equation 400
Typical Patterns for Multi-GPU Programs 401
2D Stencil Computation with Multiple GPUs 403
Overlapping Computation and Communication 405
Compiling and Executing 406

Scaling Applications across GPU Clusters 409
CPU-to-CPU Data Transfer 410
GPU-to-GPU Data Transfer Using Traditional MPI 413

xv

CONTENTS

ftoc.indd 08/07/2014 Page xv

GPU-to-GPU Data Transfer with CUDA-aware MPI 416
Intra-Node GPU-to-GPU Data Transfer with CUDA-Aware MPI 417
Adjusting Message Chunk Size 418
GPU to GPU Data Transfer with GPUDirect RDMA 419

Summary 422

CHAPTER 10: IMPLEMENTATION CONSIDERATIONS 425

The CUDA C Development Process 426
APOD Development Cycle 426
Optimization Opportunities 429
CUDA Code Compilation 432
CUDA Error Handling 437

Profi le-Driven Optimization 438
Finding Optimization Opportunities Using nvprof 439
Guiding Optimization Using nvvp 443
NVIDIA Tools Extension 446

CUDA Debugging 448
Kernel Debugging 448
Memory Debugging 456
Debugging Summary 462

A Case Study in Porting C Programs to CUDA C 462
Assessing crypt 463
Parallelizing crypt 464
Optimizing crypt 465
Deploying Crypt 472
Summary of Porting crypt 475

Summary 476

APPENDIX: SUGGESTED READINGS 477

INDEX 481

fl ast.indd 08/07/2014 Page xvii

FOREWORD

GPUs have come a long way. From their origins as specialized graphics processors that could rap-
idly produce images for output to a display unit, they have become a go-to technology when ultra-
fast processing is needed. In the past few years, GPUs have increasingly been attached to CPUs to
accelerate a broad array of computations in so-called heterogeneous computing. Today, GPUs are
confi gured on many desktop systems, on compute clusters, and even on many of the largest super-
computers in the world. In their extended role as a provider of large amounts of compute power for
technical computing, GPUs have enabled advances in science and engineering in a broad variety of
disciplines. They have done so by making it possible for huge numbers of compute cores to work in
parallel while keeping the power budgets very reasonable.

Fortunately, the interfaces for programming GPUs have kept up with this rapid change. In the past,
a major effort was required to use them for anything outside the narrow range of applications they
were intended for, and the GPU programmer needed to be familiar with many concepts that made
good sense only to the graphics programmer. Today’s systems provide a much more convenient
means to create application software that will run on them. In short, we have CUDA.

CUDA is one of the most popular application programming interfaces for accelerating a range of
compute kernels on the GPU. It can enable code written in C or C++ to run effi ciently on a GPU
with very reasonable programming effort. It strikes a balance between the need to know about the
architecture in order to exploit it well, and the need to have a programming interface that is easy to
use and results in readable programs.

This book will be a valuable resource for anyone who wants to use GPUs for scientifi c and technical
programming. It provides a comprehensive introduction to the CUDA programming interface and
its usage. For a start, it describes the basics of parallel computing on heterogeneous architectures
and introduces the features of CUDA. It then explains how CUDA programs are executed. CUDA
exposes the execution and memory model to the programmer; as a result, the CUDA programmer
has direct control of the massively parallel environment. In addition to giving details of the CUDA
memory model, the text provides a wealth of information on how it can be utilized. The follow-
ing chapter discusses streams, as well as how to execute concurrent and overlapping kernels. Next
comes information on tuning, on using CUDA libraries, and on using OpenACC directives to pro-
gram GPUs. After a chapter on multi-GPU programming, the book concludes by discussing some
implementation considerations. Moreover, a variety of examples are given to help the reader get
started, many of which can be downloaded and executed.

CUDA provides a nice balance between expressivity and programmability that has proven itself
in practice. However, those of us who have made it their mission to simplify application develop-
ment know that this is an on-going story. For the past few years, CUDA researchers have worked
to improve heterogeneous programming tools. CUDA 6 introduces many new features, including
unifi ed memory and plug-in libraries, to make GPU programming even easier. They have also pro-
vided a set of directives called OpenACC, which is introduced in this book. OpenACC promises to

xviii

fl ast.indd 08/07/2014 Page xviii

complement CUDA by offering an even simpler means to exploit GPU programming power when
less direct control over the execution is needed. Results so far are very promising. OpenACC, CUDA
6, and other topics covered in this book will allow CUDA developers to accelerate their applications
for more performance than ever. This book will need to have a permanent place on your bookshelf.

Happy programming!

BARBARA CHAPMAN

CACDS and Department of Computer Science
University of Houston

FOREWORD

fl ast.indd 08/07/2014 Page xix

PREFACE

Years ago when we were porting our production code from legacy C programs to CUDA C, we
encountered many troubles as any beginner does, problems with solutions that were far beyond
what you could dig out of a simple web search. At that time, we thought that it would be great if
there were a book written by programmers, for programmers, that focused on what programmers
need for production CUDA development. Fulfi lling that need with lessons from our own experiences
in CUDA is the motivation for this book. This book is specially designed to address the needs of the
high-performance and scientifi c computing communities.

When learning a new framework or programming language, most programmers drag out a piece
of code from anywhere, test it, and then build up their own code based on that trial. Learning by
example with a trial-and-error approach is a quintessential learning technique for many software
developers. This book is designed to fi t these habits. Each chapter focuses on one topic, using con-
cise explanations to provide foundational knowledge, and illustrating concepts with simple and fully
workable code samples. Learning concepts and code side-by-side empowers you to quickly start
experimenting with these topics. This book uses a profi le-driven approach to guide you deeper and
deeper into each topic.

The major difference between parallel programming in C and parallel programming in CUDA C is
that CUDA architectural features, such as memory and execution models, are exposed directly to
programmers. This enables you to have more control over the massively parallel GPU environment.
Even though some still consider CUDA concepts to be low-level, having some knowledge of the
underlying architecture is a necessity for harnessing the power of GPUs. Actually, the CUDA plat-
form can perform well even if you have limited knowledge of the architecture.

Parallel programming is always motivated by performance and driven by profi ling. CUDA program-
ming is unique in that the exposed architectural features enable you, the programmer, to extract
every iota of performance from this powerful hardware platform, if you so choose. After you have
mastered the skills taught through the exercises provided in this book, you will fi nd that program-
ming in CUDA C is easy, enjoyable, and rewarding.

fl ast.indd 08/07/2014 Page xxi

INTRODUCTION

WELCOME TO THE WONDERFUL WORLD of heterogeneous parallel programming with CUDA C!

Modern heterogeneous systems are evolving toward a future of intriguing computational possibili-
ties. Heterogeneous computing is constantly being applied to new fi elds of computation — everything
from science to databases to machine learning. The future of programming is heterogeneous parallel
programming!

This book gets you started quickly with GPU (Graphical Processing Unit) computing using the
CUDA platform, CUDA Toolkit, and CUDA C language. The examples and exercises in this book
are designed to jump-start your CUDA expertise to a professional level!

WHO THIS BOOK IS FOR

This book is for anyone who wants to leverage the power of GPU computing to accelerate applica-
tions. It covers the most up-to-date technologies in CUDA C programming, with a focus on:

 ➤ Concise style

 ➤ Straightforward approach

 ➤ Illustrative description

 ➤ Extensive examples

 ➤ Deliberately designed exercises

 ➤ Comprehensive coverage

 ➤ Content well-focused for the needs of high-performance computing

If you are an experienced C programmer who wants to add high-performance computing to your
repertoire by learning CUDA C, the examples and exercises in the book will build on your exist-
ing knowledge so as to simplify mastering CUDA C programming. Using just a handful of CUDA
extensions to C, you can benefi t from the power of massively parallel hardware. The CUDA plat-
form, programming models, tools, and libraries make programming heterogeneous architectures
straightforward and immediately rewarding.

If you are a professional with domain expertise outside of computer science who wants to quickly
get up to speed with parallel programming on GPUs, maximize your productivity, and enhance the
performance of your applications, you have picked the right book. The clear and concise explana-
tions in this book, supported by well-designed examples and guided by a profi le-driven approach,
will help you gain insight into GPU programming and quickly become profi cient with CUDA.

xxii

INTRODUCTION

fl ast.indd 08/07/2014 Page xxii

If you are a professor or a researcher in any discipline and wish to accelerate discovery and innova-
tion through GPU computing, this book will improve your time-to-solution. With minimal past
programming experience, parallel computing concepts, and knowledge of computer science, you can
quickly dive into the exciting world of parallel programming with heterogeneous architectures.

If you are new to C but are interested in exploring heterogeneous programming, this book does not
assume copious amounts of experience in C programming. While the CUDA C and C programming
languages obviously share some syntax, the abstractions and underlying hardware for each are dif-
ferent enough that experience with one does not make the other signifi cantly easier to learn. As long
as you have an interest in heterogeneous programming, are excited about new topics and new ways
of thinking, and have a passion for deep understanding of technical topics, this book is a great fi t
for you.

Even if you have experience with CUDA C, this book can still be a useful tool to refresh your
knowledge, discover new tools, and gain insight into the latest CUDA features. While this book is
designed to create CUDA professionals from scratch, it also provides a comprehensive overview of
many advanced CUDA concepts, tools, and frameworks that will benefi t existing CUDA developers.

WHAT THIS BOOK COVERS

This book provides foundational concepts and techniques of CUDA C programming for people that
need to drastically accelerate the performance of their applications. This book covers the newest
features released with CUDA Toolkit 6.0 and NVIDIA Kepler GPUs. After briefl y introducing the
paradigm shift in parallel programming from homogeneous architectures to heterogeneous archi-
tectures, this book guides you through essential programming skills and best practices in CUDA,
including but not limited to the CUDA programming model, GPU execution model, GPU memory
model, CUDA streams and events, techniques for programming multiple GPUs, CUDA-aware MPI
programming, and NVIDIA development tools.

This book takes a unique approach to teaching CUDA by mingling foundational descriptions of
concepts with illustrative examples that use a profi le-driven approach to guide you toward opti-
mal performance. Each topic is thoroughly covered in a step-by-step process based heavily on code
examples. This book will help you quickly master the CUDA development process by teaching you
not only how to use CUDA-based tools, but also how to interpret results in each step of the develop-
ment process based on insights and intuitions from the abstract programming model.

Each chapter handles one main topic with workable code examples to demonstrate the basic features
and techniques of GPU programming, followed by well-designed exercises that facilitate your explo-
ration of each topic to deepen your understanding.

All examples are developed using a Linux system with CUDA 5.0 or higher and a Kepler or Fermi
GPU. Since CUDA C is a cross-platform language, examples in the book are also applicable to other
platforms, such as embedded systems, tablets, notebooks, PCs, workstations, and high-performance
computing servers. Many OEM suppliers support NVIDIA GPUs in a variety of form-factors.

xxiii

INTRODUCTION

fl ast.indd 08/07/2014 Page xxiii

HOW THIS BOOK IS STRUCTURED

This book consists of ten chapters, and covers the following topics:

Chapter 1: Heterogeneous Parallel Computing with CUDA begins with a brief introduction to
the heterogeneous architecture that complements CPUs with GPUs, as well as the paradigm shift
towards heterogeneous parallel programming.

Chapter 2: CUDA Programming Model introduces the CUDA programming model and the gen-
eral structure of a CUDA program. It explains the logical view for massively parallel computing in
CUDA: two levels of thread hierarchy exposed intuitively through the programming model. It also
discusses thread confi guration heuristics and their impact on performance.

Chapter 3: CUDA Execution Model inspects kernel execution from the hardware point of view by
studying how thousands of threads are scheduled on a GPU. It explains how compute resources are
partitioned among threads at multiple granularities. It also shows how the hardware view can be
used to guide kernel design, and guides you in developing and optimizing a kernel using a profi le-
driven approach. Then, CUDA dynamic parallelism and nested execution are illustrated with
examples.

Chapter 4: Global Memory introduces the CUDA memory model, probes the global memory data
layout, and analyzes access patterns to global memory. This chapter explains the performance impli-
cations of various memory access patterns and demonstrates how a new feature in CUDA 6, Unifi ed
Memory, can simplify CUDA programming and improve your productivity.

Chapter 5: Shared Memory and Constant Memory explains how shared memory, a program-
managed low-latency cache, can be used to improve kernel performance. It describes the optimal
data layout for shared memory and illustrates how to avoid poor performance. Last, it illustrates
how to perform low-latency communication between neighboring threads.

Chapter 6: Streams and Concurrency describes how multi-kernel concurrency can be implemented
with CUDA streams, how to overlap communication and computation, and how different job dis-
patching strategies affect inter-kernel concurrency.

Chapter 7: Tuning Instruction-Level Primitives explains the nature of fl oating-point operations,
standard and intrinsic mathematical functions, and CUDA atomic operations. It shows how to use
relatively low-level CUDA primitives and compiler fl ags to tune the performance, accuracy, and cor-
rectness of an application.

Chapter 8: GPU-Accelerated CUDA Libraries and OpenACC introduces a new level of parallelism
with CUDA domain-specifi c libraries, including specifi c examples in linear algebra, Fourier trans-
forms, and random number generation. It explains how OpenACC, a compiler-directive-based GPU
programming model, complements CUDA by offering a simpler means to exploit GPU computa-
tional power.

Chapter 9: Multi-GPU Programming introduces GPUDirect technology for peer-to-peer GPU
memory access. It explains how to manage and execute computation across multiple GPUs. It also

xxiv

INTRODUCTION

fl ast.indd 08/07/2014 Page xxiv

illustrates how to scale applications across a GPU-accelerated compute cluster by using CUDA-
aware MPI with GPUDirect RDMA to realize near linear performance scalability.

Chapter 10: Implementation Considerations discusses the CUDA development process and a vari-
ety of profi le-driven optimization strategies. It demonstrates how to use CUDA debugging tools to
debug kernel and memory errors. It also provides a case study in porting a legacy C application to
CUDA C using step-by-step instructions to help solidify your understanding of the methodology,
visualize the process, and demonstrate the tools.

WHAT YOU NEED TO USE THIS BOOK

This book does not require either GPU or parallel programming experience. Before you jump in, it
would be best if you have basic experience working with Linux. To run all examples in the book,
the ideal environment is:

 ➤ A Linux system

 ➤ A C/C++ compiler

 ➤ CUDA 6.0 Toolkit installed

 ➤ NVIDIA Kepler GPU

 However, most examples will run on Fermi devices, though some examples using CUDA 6 features
might require Kepler GPUs. Most of these examples can be compiled with CUDA 5.5.

CUDA TOOLKIT DOWNLOAD

You can download the CUDA 6.0 Toolkit from https://developer.nvidia.com/cuda-toolkit.

The CUDA Toolkit includes a compiler for NVIDIA GPUs, CUDA math libraries, and tools for
debugging and optimizing the performance of your applications. You will also fi nd programming
guides, user manuals, an API reference, and other documentation to help you start accelerating your
application with GPUs.

CONVENTIONS

To help you get the most from the text, we have used a number of conventions throughout the book.

We highlight new terms and important words when we they are introduced.

We show fi le names, URLs, and code within the text like so: this_is_a_kernel_file.cu.

https://developer.nvidia.com/cuda-toolkit

xxv

INTRODUCTION

fl ast.indd 08/07/2014 Page xxv

We present code in following way:

// distributing jobs among devices
for (int i = 0; i < ngpus; i++)
{
 cudaSetDevice(i);
 cudaMemcpyAsync(d_A[i], h_A[i], iBytes, cudaMemcpyDefault,stream[i]);
 cudaMemcpyAsync(d_B[i], h_B[i], iBytes, cudaMemcpyDefault,stream[i]);
 iKernel<<<grid, block,0,stream[i]>>> (d_A[i], d_B[i], d_C[i],iSize);
 cudaMemcpyAsync(gpuRef[i], d_C[i], iBytes, cudaMemcpyDefault,stream[i]);
}

We introduce CUDA runtime functions in the following way:

cudaError_t cudaDeviceSynchronize (void);

We present the output of programs as follows:

./reduce starting reduction at device 0: Tesla M2070
 with array size 16777216 grid 32768 block 512
cpu reduce elapsed 0.029138 sec cpu_sum: 2139353471
gpu Warmup elapsed 0.011745 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>
gpu Neighbored elapsed 0.011722 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>

We give command-line instructions as follows:

$ nvprof --devices 0 --metrics branch_efficiency ./reduce

SOURCE CODE

As you work through the examples in this book, you might choose either to type in all the code
manually or to use the source code fi les that accompany the book. All of the source code used in this
book is available for download at www.wrox.com/go/procudac. Once at the site, simply locate the
book’s title (either by using the Search box or by using one of the title lists) and click the Download
Code link on the book’s detail page to obtain all the source code for the book.

When you work on the exercises at the end of each chapter, we highly encourage you to try to write
them yourself by referencing the example codes. All the exercise code fi les are also downloadable
from the Wrox website.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you might
save another reader hours of frustration and at the same time you will be helping us provide even
higher quality information.

http://www.wrox.com/go/procudac

xxvi

INTRODUCTION

fl ast.indd 08/07/2014 Page xxvi

To fi nd the errata page for this book, go to www.wrox.com/go/procudac. Then, on the book’s
details page, click the Book Errata link. On this page you can view all errata that has been submit-
ted for this book and posted by Wrox editors.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature where topics of inter-
est of your choosing when new posts are made to the forums can be sent to you via e-mail. Wrox
authors, editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages,
you must join. Once you join, you can post new messages and respond to messages other users post.
You can read messages at any time on the web. If you would like to have new messages from a par-
ticular forum sent to your e-mail address, click the “Subscribe to this Forum” icon by the forum
name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

USEFUL LINKS

GTC On-Demand: http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php

GTC Express Webinar Program: https://developer.nvidia.com/gpu-computing-webinars

Developer Zone: www.gputechconf.com/resources/developer-zone

NVIDIA Parallel Programming Blog: http://devblogs.nvidia.com/parallelforall

NVIDIA Developer Zone Forums: devtalk.nvidia.com

NVIDIA support e-mail: devtools-support@nvidia.com

http://www.wrox.com/go/procudac
http://p2p.wrox.com
http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php
https://developer.nvidia.com/gpu-computing-webinars
http://www.gputechconf.com/resources/developer-zone
http://devblogs.nvidia.com/parallelforall
mailto:support@nvidia.com

c01.indd 08/19/2014 Page 1

Heterogeneous Parallel
Computing with CUDA

WHAT’S IN THIS CHAPTER?

 ➤ Understanding heterogeneous computing architectures

 ➤ Recognizing the paradigm shift of parallel programming

 ➤ Grasping the basic elements of GPU programming

 ➤ Knowing the differences between CPU and GPU programming

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/procudac on the Download Code tab. The code is in the
Chapter 1 download and individually named according to the names throughout
the chapter.

The high-performance computing (HPC) landscape is always changing as new technologies
and processes become commonplace, and the defi nition of HPC changes accordingly. In gen-
eral, it pertains to the use of multiple processors or computers to accomplish a complex task
concurrently with high throughput and effi ciency. It is common to consider HPC as not only
a computing architecture but also as a set of elements, including hardware systems, software
tools, programming platforms, and parallel programming paradigms.

Over the last decade, high-performance computing has evolved signifi cantly, particularly
because of the emergence of GPU-CPU heterogeneous architectures, which have led to a fun-
damental paradigm shift in parallel programming. This chapter begins your understanding of
heterogeneous parallel programming.

1

http://www.wrox.com/go/procudac

2 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

c01.indd 08/19/2014 Page 2

PARALLEL COMPUTING

During the past several decades, there has been ever-increasing interest in parallel computation. The
primary goal of parallel computing is to improve the speed of computation.

From a pure calculation perspective, parallel computing can be defi ned as a form of computation in
which many calculations are carried out simultaneously, operating on the principle that large prob-
lems can often be divided into smaller ones, which are then solved concurrently.

From the programmer’s perspective, a natural question is how to map the concurrent calculations
onto computers. Suppose you have multiple computing resources. Parallel computing can then be
defi ned as the simultaneous use of multiple computing resources (cores or computers) to perform the
concurrent calculations. A large problem is broken down into smaller ones, and each smaller one is
then solved concurrently on different computing resources. The software and hardware aspects of
parallel computing are closely intertwined together. In fact, parallel computing usually involves two
distinct areas of computing technologies:

 ➤ Computer architecture (hardware aspect)

 ➤ Parallel programming (software aspect)

Computer architecture focuses on supporting parallelism at an architectural level, while parallel
programming focuses on solving a problem concurrently by fully using the computational power
of the computer architecture. In order to achieve parallel execution in software, the hardware must
provide a platform that supports concurrent execution of multiple processes or multiple threads.

Most modern processors implement the Harvard architecture, as shown in Figure 1-1, which is com-
prised of three main components:

 ➤ Memory (instruction memory and data memory)

 ➤ Central processing unit (control unit and arithmetic logic unit)

 ➤ Input/Output interfaces

CPU

Arithmetic
Logic Unit

Control UnitInstruction
Memory Data Memory

Input/Output

FIGURE 1-1

