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FOREWORD

GPUs have come a long way. From their origins as specialized graphics processors that could rap-
idly produce images for output to a display unit, they have become a go-to technology when ultra-
fast processing is needed. In the past few years, GPUs have increasingly been attached to CPUs to 
accelerate a broad array of computations in so-called heterogeneous computing. Today, GPUs are 
confi gured on many desktop systems, on compute clusters, and even on many of the largest super-
computers in the world. In their extended role as a provider of large amounts of compute power for 
technical computing, GPUs have enabled advances in science and engineering in a broad variety of 
disciplines. They have done so by making it possible for huge numbers of compute cores to work in 
parallel while keeping the power budgets very reasonable.

Fortunately, the interfaces for programming GPUs have kept up with this rapid change. In the past, 
a major effort was required to use them for anything outside the narrow range of applications they 
were intended for, and the GPU programmer needed to be familiar with many concepts that made 
good sense only to the graphics programmer. Today’s systems provide a much more convenient 
means to create application software that will run on them. In short, we have CUDA.

CUDA is one of the most popular application programming interfaces for accelerating a range of 
compute kernels on the GPU. It can enable code written in C or C++ to run effi ciently on a GPU 
with very reasonable programming effort. It strikes a balance between the need to know about the 
architecture in order to exploit it well, and the need to have a programming interface that is easy to 
use and results in readable programs.

This book will be a valuable resource for anyone who wants to use GPUs for scientifi c and technical 
programming. It provides a comprehensive introduction to the CUDA programming interface and 
its usage.  For a start, it describes the basics of parallel computing on heterogeneous architectures 
and introduces the features of CUDA. It then explains how CUDA programs are executed. CUDA 
exposes the execution and memory model to the programmer; as a result, the CUDA programmer 
has direct control of the massively parallel environment. In addition to giving details of the CUDA 
memory model, the text provides a wealth of information on how it can be utilized. The follow-
ing chapter discusses streams, as well as how to execute concurrent and overlapping kernels. Next 
comes information on tuning, on using CUDA libraries, and on using OpenACC directives to pro-
gram GPUs. After a chapter on multi-GPU programming, the book concludes by discussing some 
implementation considerations. Moreover, a variety of examples are given to help the reader get 
started, many of which can be downloaded and executed.

CUDA provides a nice balance between expressivity and programmability that has proven itself 
in practice.  However, those of us who have made it their mission to simplify application develop-
ment know that this is an on-going story. For the past few years, CUDA researchers have worked 
to improve heterogeneous programming tools. CUDA 6 introduces many new features, including 
unifi ed memory and plug-in libraries, to make GPU programming even easier. They have also pro-
vided a set of directives called OpenACC, which is introduced in this book. OpenACC promises to 
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complement CUDA by offering an even simpler means to exploit GPU programming power when 
less direct control over the execution is needed. Results so far are very promising. OpenACC, CUDA 
6, and other topics covered in this book will allow CUDA developers to accelerate their applications 
for more performance than ever. This book will need to have a permanent place on your bookshelf.

Happy programming!

BARBARA CHAPMAN

CACDS and Department of Computer Science
University of Houston

FOREWORD
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PREFACE

Years ago when we were porting our production code from legacy C programs to CUDA C, we 
encountered many troubles as any beginner does, problems with solutions that were far beyond 
what you could dig out of a simple web search. At that time, we thought that it would be great if 
there were a book written by programmers, for programmers, that focused on what programmers 
need for production CUDA development. Fulfi lling that need with lessons from our own experiences 
in CUDA is the motivation for this book. This book is specially designed to address the needs of the 
high-performance and scientifi c computing communities.

When learning a new framework or programming language, most programmers drag out a piece 
of code from anywhere, test it, and then build up their own code based on that trial. Learning by 
example with a trial-and-error approach is a quintessential learning technique for many software 
developers. This book is designed to fi t these habits. Each chapter focuses on one topic, using con-
cise explanations to provide foundational knowledge, and illustrating concepts with simple and fully 
workable code samples. Learning concepts and code side-by-side empowers you to quickly start 
experimenting with these topics. This book uses a profi le-driven approach to guide you deeper and 
deeper into each topic.

The major difference between parallel programming in C and parallel programming in CUDA C is 
that CUDA architectural features, such as memory and execution models, are exposed directly to 
programmers. This enables you to have more control over the massively parallel GPU environment. 
Even though some still consider CUDA concepts to be low-level, having some knowledge of the 
underlying architecture is a necessity for harnessing the power of GPUs. Actually, the CUDA plat-
form can perform well even if you have limited knowledge of the architecture. 

Parallel programming is always motivated by performance and driven by profi ling. CUDA program-
ming is unique in that the exposed architectural features enable you, the programmer, to extract 
every iota of performance from this powerful hardware platform, if you so choose. After you have 
mastered the skills taught through the exercises provided in this book, you will fi nd that program-
ming in CUDA C is easy, enjoyable, and rewarding.
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INTRODUCTION

WELCOME TO THE WONDERFUL WORLD of heterogeneous parallel programming with CUDA C!

Modern heterogeneous systems are evolving toward a future of intriguing computational possibili-
ties. Heterogeneous computing is constantly being applied to new fi elds of computation — everything 
from science to databases to machine learning. The future of programming is heterogeneous parallel 
programming!

This book gets you started quickly with GPU (Graphical Processing Unit) computing using the 
CUDA platform, CUDA Toolkit, and CUDA C language. The examples and exercises in this book 
are designed to jump-start your CUDA expertise to a professional level!

WHO THIS BOOK IS FOR

This book   is for anyone who wants to leverage the power of GPU computing to accelerate applica-
tions. It covers the most up-to-date technologies in CUDA C programming, with a focus on:

 ➤ Concise style

 ➤ Straightforward approach

 ➤ Illustrative description

 ➤ Extensive examples

 ➤ Deliberately designed exercises

 ➤ Comprehensive coverage

 ➤ Content well-focused for the needs of high-performance computing

If you are an experienced C programmer who wants to add high-performance computing to your 
repertoire by learning CUDA C, the examples and exercises in the book will build on your exist-
ing knowledge so as to simplify mastering CUDA C programming. Using just a handful of CUDA 
extensions to C, you can benefi t from the power of massively parallel hardware. The CUDA plat-
form, programming models, tools, and libraries make programming heterogeneous architectures 
straightforward and immediately rewarding.

If you are   a professional with domain expertise outside of computer science who wants to quickly 
get up to speed with parallel programming on GPUs, maximize your productivity, and enhance the 
performance of your applications, you have picked the right book. The clear and concise explana-
tions in this book, supported by well-designed examples and guided by a profi le-driven approach, 
will help you gain insight into GPU programming and quickly become profi cient with CUDA.
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If you are a professor or a researcher in any discipline and wish to accelerate discovery and innova-
tion through GPU computing, this book will improve your time-to-solution. With minimal past 
programming experience, parallel computing concepts, and knowledge of computer science, you can 
quickly dive into the exciting world of parallel programming with heterogeneous architectures.

If you are new to C but are interested in exploring heterogeneous programming, this book does not 
assume copious amounts of experience in C programming. While the CUDA C and C programming 
languages obviously share some syntax, the abstractions and underlying hardware for each are dif-
ferent enough that experience with one does not make the other signifi cantly easier to learn. As long 
as you have an interest in heterogeneous programming, are excited about new topics and new ways 
of thinking, and have a passion for deep understanding of technical topics, this book is a great fi t 
for you.

Even if you have experience with CUDA C, this book can still be a useful tool to refresh your 
knowledge, discover new tools, and gain insight into the latest CUDA features. While this book is 
designed to create CUDA professionals from scratch, it also provides a comprehensive overview of 
many advanced CUDA concepts, tools, and frameworks that will benefi t existing CUDA developers.

WHAT THIS BOOK COVERS

This book provides foundational concepts and techniques of CUDA C programming for people that 
need to drastically accelerate the performance of their applications. This book covers the newest 
features released with CUDA Toolkit 6.0 and NVIDIA Kepler GPUs. After briefl y introducing the 
paradigm shift in parallel programming from homogeneous architectures to heterogeneous archi-
tectures, this book guides you through essential programming skills and best practices in CUDA, 
including but not limited to the CUDA programming model, GPU execution model, GPU memory 
model, CUDA streams and events, techniques for programming multiple GPUs, CUDA-aware MPI 
programming, and NVIDIA development tools.

This book takes a unique approach to teaching CUDA by mingling foundational descriptions of 
concepts with illustrative examples that use a profi le-driven approach to guide you toward opti-
mal performance. Each topic is thoroughly covered in a step-by-step process based heavily on code 
examples. This book will help you quickly master the CUDA development process by teaching you 
not only how to use CUDA-based tools, but also how to interpret results in each step of the develop-
ment process based on insights and intuitions from the abstract programming model. 

Each chapter handles one main topic with workable code examples to demonstrate the basic features 
and techniques of GPU programming, followed by well-designed exercises that facilitate your explo-
ration of each topic to deepen your understanding.

All examples are developed using a Linux system with CUDA 5.0 or higher and a Kepler or Fermi 
GPU. Since CUDA C is a cross-platform language, examples in the book are also applicable to other 
platforms, such as embedded systems, tablets, notebooks, PCs, workstations, and high-performance 
computing servers. Many OEM suppliers support NVIDIA GPUs in a variety of form-factors.
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HOW THIS BOOK IS STRUCTURED

This book consists of ten chapters, and covers the following topics:

Chapter 1: Heterogeneous Parallel Computing with CUDA begins with a brief introduction to 
the heterogeneous architecture that complements CPUs with GPUs, as well as the paradigm shift 
towards heterogeneous parallel programming.

Chapter 2: CUDA Programming Model introduces the CUDA programming model and the gen-
eral structure of a CUDA program. It explains the logical view for massively parallel computing in 
CUDA: two levels of thread hierarchy exposed intuitively through the programming model. It also 
discusses thread confi guration heuristics and their impact on performance.

Chapter 3: CUDA Execution Model inspects kernel execution from the hardware point of view by 
studying how thousands of threads are scheduled on a GPU. It explains how compute resources are 
partitioned among threads at multiple granularities. It also shows how the hardware view can be 
used to guide kernel design, and guides you in developing and optimizing a kernel using a profi le-
driven approach. Then, CUDA dynamic parallelism and nested execution are illustrated with 
examples.

Chapter 4: Global Memory introduces the CUDA memory model, probes the global memory data 
layout, and analyzes access patterns to global memory. This chapter explains the performance impli-
cations of various memory access patterns and demonstrates how a new feature in CUDA 6, Unifi ed 
Memory, can simplify CUDA programming and improve your productivity.

Chapter 5: Shared Memory and Constant Memory explains how shared memory, a program-
managed low-latency cache, can be used to improve kernel performance. It describes the optimal 
data layout for shared memory and illustrates how to avoid poor performance. Last, it illustrates 
how to perform low-latency communication between neighboring threads.

Chapter 6: Streams and Concurrency describes how multi-kernel concurrency can be implemented 
with CUDA streams, how to overlap communication and computation, and how different job dis-
patching strategies affect inter-kernel concurrency.

Chapter 7: Tuning Instruction-Level Primitives explains the nature of fl oating-point operations, 
standard and intrinsic mathematical functions, and CUDA atomic operations. It shows how to use 
relatively low-level CUDA primitives and compiler fl ags to tune the performance, accuracy, and cor-
rectness of an application.

Chapter 8: GPU-Accelerated CUDA Libraries and OpenACC introduces a new level of parallelism 
with CUDA domain-specifi c libraries, including specifi c examples in linear algebra, Fourier trans-
forms, and random number generation. It explains how OpenACC, a compiler-directive-based GPU 
programming model, complements CUDA by offering a simpler means to exploit GPU computa-
tional power.

Chapter 9: Multi-GPU Programming introduces GPUDirect technology for peer-to-peer GPU 
memory access. It explains how to manage and execute computation across multiple GPUs. It also 
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illustrates how to scale applications across a GPU-accelerated compute cluster by using CUDA-
aware MPI with GPUDirect RDMA to realize near linear performance scalability.

Chapter 10: Implementation Considerations discusses the CUDA development process and a vari-
ety of profi le-driven optimization strategies. It demonstrates how to use CUDA debugging tools to 
debug kernel and memory errors. It also provides a case study in porting a legacy C application to 
CUDA C using step-by-step instructions to help solidify your understanding of the methodology, 
visualize the process, and demonstrate the tools.

WHAT YOU NEED TO USE THIS BOOK

This book does not require either GPU or parallel programming experience. Before you jump in, it 
would be best if you have basic experience working with Linux. To run all examples in the book, 
the ideal environment is:

 ➤ A Linux system

 ➤ A C/C++ compiler

 ➤ CUDA 6.0 Toolkit installed

 ➤ NVIDIA Kepler GPU

  However, most examples will run on Fermi devices, though some examples using CUDA 6 features 
might require Kepler GPUs. Most of these examples can be compiled with CUDA 5.5.

CUDA TOOLKIT DOWNLOAD

You can download the CUDA 6.0 Toolkit from https://developer.nvidia.com/cuda-toolkit.

The CUDA Toolkit includes a compiler for NVIDIA GPUs, CUDA math libraries, and tools for 
debugging and optimizing the performance of your applications. You will also fi nd programming 
guides, user manuals, an API reference, and other documentation to help you start accelerating your 
application with GPUs.

CONVENTIONS

To help you get the most from the text, we have used a number of conventions throughout the book.

We highlight new terms and important words when we they are introduced.

We show fi le names, URLs, and code within the text like so: this_is_a_kernel_file.cu.

https://developer.nvidia.com/cuda-toolkit
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We present code in following way:

// distributing jobs among devices
for (int i = 0; i < ngpus; i++)
{
   cudaSetDevice(i); 
   cudaMemcpyAsync(d_A[i], h_A[i], iBytes, cudaMemcpyDefault,stream[i]); 
   cudaMemcpyAsync(d_B[i], h_B[i], iBytes, cudaMemcpyDefault,stream[i]); 
   iKernel<<<grid, block,0,stream[i]>>> (d_A[i], d_B[i], d_C[i],iSize);
   cudaMemcpyAsync(gpuRef[i], d_C[i], iBytes, cudaMemcpyDefault,stream[i]); 
}

We introduce CUDA runtime functions in the following way:

cudaError_t cudaDeviceSynchronize (void); 

We present the output of programs as follows:

./reduce starting reduction at device 0: Tesla M2070
     with array size 16777216  grid 32768 block 512
cpu reduce      elapsed 0.029138 sec cpu_sum: 2139353471
gpu Warmup      elapsed 0.011745 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>
gpu Neighbored  elapsed 0.011722 sec gpu_sum: 2139353471 <<<grid 32768 block 512>>>

We give command-line instructions as follows:

$ nvprof --devices 0 --metrics branch_efficiency ./reduce

SOURCE CODE

As you work through the examples in this book, you might choose either to type in all the code 
manually or to use the source code fi les that accompany the book. All of the source code used in this 
book is available for download at www.wrox.com/go/procudac. Once at the site, simply locate the 
book’s title (either by using the Search box or by using one of the title lists) and click the Download 
Code link on the book’s detail page to obtain all the source code for the book.

When you work on the exercises at the end of each chapter, we highly encourage you to try to write 
them yourself by referencing the example codes. All the exercise code fi les are also downloadable 
from the Wrox website.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one 
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or 
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you might 
save another reader hours of frustration and at the same time you will be helping us provide even 
higher quality information.

http://www.wrox.com/go/procudac
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To fi nd the errata page for this book, go to www.wrox.com/go/procudac. Then, on the book’s 
details page, click the Book Errata link. On this page you can view all errata that has been submit-
ted for this book and posted by Wrox editors.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based 
system for you to post messages relating to Wrox books and related technologies and interact with 
other readers and technology users. The forums offer a subscription feature where topics of inter-
est of your choosing when new posts are made to the forums can be sent to you via e-mail. Wrox 
authors, editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as 
you read this book, but also as you develop your own applications. To join the forums, just follow 
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to 
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, 
you must join. Once you join, you can post new messages and respond to messages other users post. 
You can read messages at any time on the web. If you would like to have new messages from a par-
ticular forum sent to your e-mail address, click the “Subscribe to this Forum” icon by the forum 
name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to 
questions about how the forum software works as well as many common questions specifi c to P2P 
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

USEFUL LINKS

GTC On-Demand: http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php

GTC Express Webinar Program: https://developer.nvidia.com/gpu-computing-webinars

Developer Zone: www.gputechconf.com/resources/developer-zone

NVIDIA Parallel Programming Blog: http://devblogs.nvidia.com/parallelforall

NVIDIA Developer Zone Forums: devtalk.nvidia.com

NVIDIA support e-mail: devtools-support@nvidia.com

http://www.wrox.com/go/procudac
http://p2p.wrox.com
http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php
https://developer.nvidia.com/gpu-computing-webinars
http://www.gputechconf.com/resources/developer-zone
http://devblogs.nvidia.com/parallelforall
mailto:support@nvidia.com
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Heterogeneous Parallel 
Computing with CUDA

WHAT’S IN THIS CHAPTER?

 ➤ Understanding heterogeneous computing architectures

 ➤ Recognizing the paradigm shift of parallel programming

 ➤ Grasping the basic elements of GPU programming

 ➤ Knowing the differences between CPU and GPU programming

CODE DOWNLOAD  The wrox.com code downloads for this chapter are found 
at www.wrox.com/go/procudac on the Download Code tab. The code is in the 
Chapter 1 download and individually named according to the names throughout 
the chapter.

The high-performance computing (HPC) landscape is always changing as new technologies 
and processes become commonplace, and the defi nition of HPC changes accordingly. In gen-
eral, it pertains to the use of multiple processors or computers to accomplish a complex task 
concurrently with high throughput and effi ciency. It is common to consider HPC as not only 
a computing architecture but also as a set of elements, including hardware systems, software 
tools, programming platforms, and parallel programming paradigms.

Over the last decade, high-performance computing has evolved signifi cantly, particularly 
because of the emergence of GPU-CPU heterogeneous architectures, which have led to a fun-
damental paradigm shift in parallel programming. This chapter begins your understanding of 
heterogeneous parallel programming.

1

http://www.wrox.com/go/procudac
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PARALLEL COMPUTING

During the past several decades, there has been ever-increasing interest in parallel computation. The 
primary goal of parallel computing is to improve the speed of computation.

From a pure calculation perspective, parallel computing can be defi ned as a form of computation in 
which many calculations are carried out simultaneously, operating on the principle that large prob-
lems can often be divided into smaller ones, which are then solved concurrently.

From the programmer’s perspective, a natural question is how to map the concurrent calculations 
onto computers. Suppose you have multiple computing resources. Parallel computing can then be 
defi ned as the simultaneous use of multiple computing resources (cores or computers) to perform the 
concurrent calculations. A large problem is broken down into smaller ones, and each smaller one is 
then solved concurrently on different computing resources. The software and hardware aspects of 
parallel computing are closely intertwined together. In fact, parallel computing usually involves two 
distinct areas of computing technologies:

 ➤ Computer architecture (hardware aspect)

 ➤ Parallel programming (software aspect)

Computer architecture focuses on supporting parallelism at an architectural level, while parallel 
programming focuses on solving a problem concurrently by fully using the computational power 
of the computer architecture. In order to achieve parallel execution in software, the hardware must 
provide a platform that supports concurrent execution of multiple processes or multiple threads.

Most modern processors implement the Harvard architecture, as shown in Figure 1-1, which is com-
prised of three main components:

 ➤ Memory (instruction memory and data memory)

 ➤ Central processing unit (control unit and arithmetic logic unit)

 ➤ Input/Output interfaces

CPU

Arithmetic
Logic Unit

Control UnitInstruction
Memory Data Memory

Input/Output

FIGURE 1-1


