Wolfgang Hackbusch

Hierarchische Matrizen Algorithmen und Analysis

Hierarchische Matrizen

W. Hackbusch

Hierarchische Matrizen

Algorithmen und Analysis

Wolfgang Hackbusch Max-Planck-Institut für Mathematik in den Naturwissenschaften Abteilung Wissenschaftliches Rechnen Inselstr. 22-26 04103 Leipzig Deutschland wh@mis.mpg.de

ISBN 978-3-642-00221-2 e-ISBN 978-3-642-00222-9 DOI 10.1007/978-3-642-00222-9 Springer Dordrecht Heidelberg London New York

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Mathematics Subject Classification (2000): 65F05, 65F30, 65F50, 65F10, 15A09, 15A24, 15A99, 15A18, 47A56, 68P05, 65N22, 65N38, 65R20, 45B05

© Springer-Verlag Berlin Heidelberg 2009

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Einbandentwurf: WMXDesign GmbH, Heidelberg

Printed on acid-free paper

Springer ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Meiner Frau Ingrid gewidmet

Vorwort

Operationen mit großen Matrizen werden in der Numerik weitgehend vermieden. Stattdessen wird in der Regel versucht, alle Algorithmen auf Matrix-*Vektor*-Multiplikationen zurückzuführen. Der Grund ist der hohe Aufwand von z.B. $\mathcal{O}(n^3)$ Gleitkommaoperationen für eine Multiplikation von $n \times n$ -Matrizen. Beginnend mit dem Strassen-Algorithmus wurde versucht, den Aufwand auf $\mathcal{O}(n^{\gamma})$ mit $\gamma < 3$ zu reduzieren. Diese Bemühungen können aber nicht zum Ziel führen, da die theoretische untere Schranke $\gamma \geq 2$ besteht, und selbst quadratischer Aufwand bei großskaligen Matrizen inakzeptabel ist.

Dass die Matrixoperationen im hier beschriebenen \mathcal{H} -Matrix-Format trotzdem mit fast linearem Aufwand $\mathcal{O}(n \log^* n)$ ausführbar sind, ist kein Widerspruch zu der vorherigen Aussage, da oben die exakte Berechnung unterstellt wird, während die \mathcal{H} -Matrix-Operationen Approximationen enthalten. Die Approximationsfehler sind jedoch akzeptabel, da großskalige Matrizen von Diskretisierungen stammen, die ohnehin Diskretisierungsfehler enthalten. Die mit der \mathcal{H} -Matrix-Technik ermöglichten Operationen sind nicht nur die Matrixaddition und -multiplikation, sondern auch die Matrixinversion und die LU- oder Cholesky-Zerlegung.

Verwendet man die \mathcal{H} -Matrix-Technik zur Lösung von linearen Gleichungssystemen, so nimmt sie eine Stellung zwischen direkten Verfahren und Iterationsverfahren ein. Auf der einen Seite kann die approximative Inverse oder LU-Zerlegung mit wählbarer Genauigkeit bestimmt und damit das Gleichungssystem gelöst werden. Auf der anderen Seite reicht eine Inverse oder LU-Zerlegung mit mäßiger Genauigkeit, um eine schnelle Iteration zu konstruieren.

Hat man die Matrixoperationen zur Verfügung, lässt sich eine wesentlich größere Problemklasse behandeln, als dass mit der Beschränkung auf Matrix-Vektor-Multiplikationen möglich ist. Hierzu gehören die Berechnung von matrixwertigen Funktionen, zum Beispiel der Matrix-Exponentialfunktion, und die Lösung von Matrixgleichungen, etwa der Riccati-Gleichung.

Die approximative Durchführung der Operationen kann nur erfolgreich sein, wenn der Aufwand für eine Genauigkeit ε nur schwach mit $\varepsilon \to 0$ wächst.

Für die Inversen von Diskretisierungsmatrizen elliptischer Randwertprobleme und für zugehörige Randintegralgleichungen lässt zeigen, dass der Aufwand nur logarithmisch von ε abhängt. Für allgemeine, große Matrizen ist diese Aussage falsch, d.h. die \mathcal{H} -Matrix-Technik ist nicht für allgemeine Matrizen anwendbar. Trotzdem zeigen numerische Tests ein sehr robustes Verhalten. Für die praktische Durchführung ist es zudem sehr wichtig, dass die \mathcal{H} -Matrix-Technik in hohem Maße blackbox-artig ist.

Die Tatsache, dass nicht alle Matrizen (mit verbessertem Aufwand) dargestellt werden können, entspricht nicht dem klassischen Verständnis der Linearen Algebra. Dort ist man es gewohnt, dass Verfahren möglichst auf sämtliche Elemente eines endlichdimensionalen Vektorraumes anwendbar sind. Andererseits ist der Approximationsgedanke der Ursprung der Analysis. Da die Objekte wie zum Beispiel Funktionen im Allgemeinen unendlich viele Daten enthalten, verwendet man seit Anbeginn der Analysis Approximation aufgrund von partiellen Informationen (Beispiel Interpolation), wobei man in Kauf nimmt, dass die Approximation nur unter geeigneten Glattheitsvoraussetzungen möglich ist.

Die \mathcal{H} -Matrix-Technik beruht auf drei verschiedenen Komponenten. Die erste, analytische Komponente ist die lokale, separable Approximation der Greenschen Funktion beziehungsweise der Integralkernfunktion. Derartige Techniken sind in der Vergangenheit in verschiedenen Versionen bei der Behandlung diskreter Integraloperatoren angewandt worden: bei der Paneel-Clusterungstechnik, bei Multipolentwicklungen, aber auch bei der Matrixkompression von Wavelet-Matrizen. Nur mit Hilfe dieser Techniken kann die Matrix-Vektor-Multiplikation mit der an sich vollen Matrix in fast linearem Aufwand durchgeführt werden. Die zweite Komponente gehört der linearen Algebra an. Techniken der Singulärwertzerlegung und der QR-Zerlegung spielen eine wichtige Rolle bei der Organisation der lokalen Matrixdaten. Die dritte Komponente betrifft die diskreten Strukturen. Die ersten beiden Komponenten werden auf Teilmatrizen angewandt. Die geeignete Partition der Matrix in Teilmatrizen der richtigen Größe ist für die Matrixoperationen der entscheidende Schritt. Die diskreten Strukturen stellen sich in Form vom Bäumen, den Cluster- und Blockclusterbäumen dar.

Ziel dieser Monographie ist die umfassende Einführung in die Technik hierarchischer Matrizen. Da diese insbesondere für die großskaligen Matrizen aus dem Umfeld von Randwertaufgaben entwickelt worden sind, muss auch knapp auf die Diskretisierung von Randwertaufgaben und auf die Randintegralmethode eingegangen werden. Den oben aufgezählten, sehr unterschiedlichen Komponenten entsprechend widmen sich die ersten Kapitel den verschiedenen Fragen zur Analysis, zur Linearen Algebra und den Strukturen, die dann die Grundlage der Algorithmen bilden. Um die Kapitel einerseits nicht zu umfangreich werden zu lassen und andererseits hinreichend Hintergrundmaterial bereitzustellen, enthält das Buch fünf Anhänge. Hier findet der Leser den benötigten Hintergrund zu Themen aus dem Hauptteil. Das letzte Kapitel gibt einen kleinen Einstieg in die Behandlung großskaliger Tensoren. Hier werden nur Anwendungen angesprochen, die direkt mit hierarchischen Matrizen verbunden sind. Andererseits besteht die herausfordernde Aufgabe, die im Umfeld der hierarchischen Matrizen entwickelten Techniken auf Tensoren zu übertragen. Da der Speicher- und Rechenaufwand bei großskaligen Tensoren den Anwender vor noch größere Schwierigkeiten als bei Matrizen stellt, sind geeignete Darstellungsmethoden und Algorithmen zur Approximation der Operationen dringend erforderlich. Die in diesem Bereich erzielten Resultate passen thematisch nicht in diese Monographie und gäben Stoff für ein weiteres Buch.

In zahlreichen Hinweisen wird verbal auf Details der Implementierung eingegangen. Eine konkrete Beschreibung der in C geschriebenen Algorithmen wird hier vermieden, da hierfür die Lecture Notes [26] und ein zukünftiges, hieraus hervorzugehendes Buchprojekt heranzuziehen sind. Letzteres ist auch ein besserer Platz für konkrete numerische Beispiele und Vergleiche.

Lesehinweis: Unterkapitel, die mit einem Stern^{*} versehen sind, können beim ersten Lesen übersprungen werden, da sie eher der thematischen Vertiefung dienen.

Algorithmen sind in einer Notation angegeben, die sich an Algol und Pascal anlehnt. Man beachte, dass die geschweiften Klammern Kommentare enthalten. Der Einfachheit halber werden die Parameter nicht mit einer Typenbeschreibung versehen, sondern verbal erklärt. Für die (wenigen) Hilfsvariablen wird ebenfalls keine explizite Spezifikation gegeben, da sie sich aus dem Zusammenhang ergibt.

Der Autor entwickelte die Technik der hierarchischen Matrizen Ende der 90er Jahre. Die erste Arbeit [69] hierzu erschien 1999. Ein wesentlicher Schritt war die Implementierung der Methode in der Dissertation [50] von Dr. L. Grasedyck, die 2001 verteidigt wurde. Die Grundlagen zu dieser Monographie wurde durch Manuskripte zu Vorlesungen an der Universität Leipzig (Sommersemester 2004 und Wintersemester 2006/7) und an der Christian-Albrechts-Universität zu Kiel (Sommersemester 2004) gelegt. Das Material wurde entscheidend anreichert durch die Beiträge der Drs. S. Börm, M. Bebendorf, R. Kriemann und B. Khoromskij. Insgesamt sind zum Thema der hierarchischen Matrizen und seinem Umfeld zwei Dissertationen und eine Habilitationsarbeit an der Christian-Albrechts-Universität zu Kiel und vier Dissertationen und eine Habilitationsarbeit an der Universität Leipzig geschrieben worden. Die neuartigen Möglichkeiten, die die \mathcal{H} -Matrix-Technik bietet, haben zu einem Programmpaket \mathcal{H} -Lib^{pro} geführt, das für kommerzielle Zwecke zur Verfügung steht (siehe http://www.scai.fraunhofer.de/hlibpro.html).

Neben den oben Genannten danke ich Dr. L. Banjai, Dr. Wendy Kreß, Prof. Sabine Le Borne, Dr. Maike Löhndorf, Prof. J.M. Melenk, Prof. S. Sauter, sowie weiteren Mitarbeitern und Gästen des Leipziger Max-Planck-Institutes, die wesentlich zum Inhalt dieses Buches beigetragen haben. Herrn Dr. Ronald Kriemann gilt mein Dank für die Gestaltung des Umschlagbildes.

X Vorwort

Dem Springer-Verlag danke ich für die unkomplizierte Kooperation bei der Fertigstellung dieses Werkes.

November 2008

Wolfgang Hackbusch

Inhaltsverzeichnis

1	\mathbf{Ein}	leitun	g	1
	1.1	Was i	st die zu lösende Aufgabe, wo liegen die Schwierigkeiten?	1
		1.1.1	Aufgabenbeispiele	1
		1.1.2	Größenordnung der Dimension	3
		1.1.3	Exakte oder näherungsweise Berechnung	3
	1.2	Komp	blexität der Algorithmen	3
		1.2.1	Komplexität	3
		1.2.2	Warum braucht man (fast) lineare Komplexität für	
			großskalige Probleme?	5
	1.3	Zugru	indeliegende Strukturen und	
		Imple	mentierungsdarstellungen	6
		1.3.1	Vektor- und Matrixnotation	6
		1.3.2	Implementierungsdarstellungen	7
		1.3.3	Darstellungen und Operationen	12
	1.4	In we	lchen Fällen ist lineare Komplexität erreichbar?	13
		1.4.1	Familie der Diagonalmatrizen	13
		1.4.2	Anwendung der schnellen Fourier-Transformation	13
		1.4.3	Schwierigkeiten in anderen Fällen	14
	1.5	Wo er	ntstehen großskalige Probleme?	15
		1.5.1	Diskretisierung elliptischer Differentialgleichungen	15
		1.5.2	Integralgleichungen und ihre Diskretisierung	17
	1.6	Angeo	ordnete bzw. nicht angeordnete Indexmengen	21
		1.6.1	Indexmengen	21
		1.6.2	Vektoren $x \in \mathbb{R}^{I}$	22
		1.6.3	Matrizen $A \in \mathbb{R}^{I \times I}$	22
		1.6.4	Anordnung bzw. Nichtanordnung bei hierarchischen	
			Matrizen	23
	1.7	Ubers	sicht über die weiteren Kapitel	23
		1.7.1	Lokale Rang-k-Matrizen	23
		1.7.2	Hierarchie und Matrixoperationen	24

2	Rar	ng-k-Matrizen	25
	2.1	Allgemeines	26
	2.2	Darstellung und Kosten	26
	2.3	Operationen und ihre Kosten	28
	2.4	Bestapproximation durch Rang-k-Matrizen	30
	2.5	Bestapproximation von Rang- <i>l</i> -Matrizen durch Rang- <i>k</i> -	
		Matrizen	33
	2.6	Rang-k-Matrix-Addition mit anschließender Kürzung	35
		2.6.1 Formatierte Addition	35
		2.6.2 Formatierte Agglomeration	36
		2.6.3 Mehr als zwei Terme	36
		2.6.4 Stufenweise ausgeführte Agglomeration	38
	2.7	Varianten der Rang-k-Matrixdarstellungen	39
		2.7.1 AKB-Darstellung	39
		2.7.2 SVD-Darstellung	41
		0	
3	\mathbf{Ein}	führendes Beispiel	43
	3.1	Das Modellformat \mathcal{H}_p	43
	3.2	Zahl der Blöcke	44
	3.3	Speicheraufwand	45
	3.4	Matrix-Vektor-Multiplikation	45
	3.5	Matrix-Addition	45
	3.6	Matrix-Matrix-Multiplikation	46
	3.7	Matrixinversion	48
	3.8	LU-Zerlegung	49
		3.8.1 Vorwärtssubstitution	49
		3.8.2 Rückwärtssubstitution	50
		3.8.3 Aufwand der LU-Zerlegung	50
	3.9	Weitere Eigenschaften der Modellmatrizen und	
		Semiseparabilität *	51
	a		
4	Sep	arable Entwicklung und ihr Bezug zu	
	Nie	drigrangmatrizen	55
	4.1	Grundbegriffe	50
		4.1.1 Separable Entwicklungen	50
		4.1.2 Exponentielle Konvergenz	57
	4.0	4.1.3 Zulassigkeitsbedingungen an X, Y	59
	4.2	Separable Polynom-Entwicklungen	60
		4.2.1 Taylor-Entwicklung	60
		4.2.2 Interpolation	62
		4.2.3 Exponentielle Fehlerabschatzung	63
		4.2.4 Asymptotisch glatte Kerne	64
		4.2.5 Taylor-Fehlerabschätzung	65
		4.2.6 Interpolationstehler für $d = 1$	66
		4.2.7 Verschärfte Fehlerabschätzung	68

		4.2.8	Interpolationsfehler für $d > 1$	69
	4.3	Weiter	re separable Entwicklungen	70
		4.3.1	Andere Interpolationsverfahren *	70
		4.3.2	Transformationen [*]	70
		4.3.3	Stückweise separable Entwicklung [*]	71
		4.3.4	Kerne, die von $x - y$ abhängen	72
		4.3.5	<i>L</i> -harmonische Funktionen [*]	72
		4.3.6	Separable Entwicklungen mittels Kreuzapproximation*	73
		4.3.7	Die optimale separable Entwicklung	73
	4.4	Diskre	etisierung von Integraloperatoren mit separablen	
		Kernfi	unktionen	74
		4.4.1	Einführung: Separable Entwicklung und Galerkin-	
			Diskretisierung	74
		4.4.2	Separable Entwicklung und allgemeine	
			Diskretisierungen *	76
	4.5	Appro	eximationsfehler *	78
		4.5.1	Operatornormen	78
		4.5.2	Matrixnormen	79
		4.5.3	Sachgerechte Normen	81
5	Mat	rixpa	rtition	83
	5.1	Einleit	tung	83
		5.1.1	Ziele	83
		5.1.2	Eindimensionales Modellbeispiel	84
	5.2	Zuläss	sige Blöcke	85
		5.2.1	Metrik der Cluster	85
		5.2.2	Zulässigkeit	87
		5.2.3	Verallgemeinerte Zulässigkeit	89
		5.2.4	Erläuterung am Beispiel aus §5.1.2	90
	5.3	Cluste	$\operatorname{rbaum} T(I) \dots \dots$	91
		5.3.1	Definitionen	91
		5.3.2	Beispiel	92
		5.3.3	Blockzerlegung eines Vektors	93
	<u> </u>	5.3.4	Speicherkosten für $T(I)$	94
	5.4	Konst	ruktion des Clusterbaums $T(I)$	96
		5.4.1	Notwendige Daten	96
		5.4.2	Geometriebasierte Konstruktion mittels Minimalquader	97
		5.4.3	Kardinalitätsbasierte Konstruktion	101
		5.4.4	Implementierung und Aufwand	101
		5.4.5	Auswertung der Zulässigkeitsbedingung	102
	5.5	Block	clusterbaum $T(I \times J)$	104
		5.5.1	Definition des stufentreuen Blockclusterbaums	104
		5.5.2	Verallgemeinerung der Definition	105
		5.5.3	Alternative Konstruktion von $T(I \times J)$ aus $T(I)$ und	
			T(J)	107

		5.5.4	Matrixpartition	. 108
		5.5.5	Beispiele	. 111
	5.6	Altern	native Clusterbaumkonstruktionen und Partitionen	. 112
6	Def	inition	und Eigenschaften der hierarchischen Matrizen	. 113
	6.1	Menge	$\mathcal{H}(k, P)$ der hierarchischen Matrizen	. 113
	6.2	Eleme	entare Eigenschaften	. 115
	6.3	Schwa	chbesetztheit und Speicherbedarf	. 116
		6.3.1	Definition	. 116
		6.3.2	Speicherbedarf einer hierarchischen Matrix	. 118
	6.4	Absch	ätzung von $C_{\rm sp}$ *	. 120
		6.4.1	Erster Zugang	. 120
		6.4.2	Abschätzung zu Konstruktion (5.30)	. 123
		6.4.3	Anmerkung zu Konstruktion (5.34)	. 127
	6.5	Fehler	abschätzungen	. 128
		6.5.1	Frobenius-Norm	. 128
		6.5.2	Vorbereitende Lemmata	. 128
		6.5.3	Spektralnorm	. 135
		6.5.4	Norm $\ \cdot \ $. 136
	6.6	Adapt	vive Rangbestimmung	. 138
	6.7	Rekon	npressionstechniken	. 140
		6.7.1	Kompression durch $\mathcal{T}_{\varepsilon}^{\mathcal{H}}$. 140
		6.7.2	Vergröberung der Blöcke	. 141
	6.8	Modif	ikationen des \mathcal{H} -Matrixformates	. 141
		6.8.1	\mathcal{H} -Matrizen mit Gleichungsnebenbedingungen	. 141
		6.8.2	Positive Definitheit	. 143
		6.8.3	Positivität von Matrizen	. 144
		6.8.4	Orthogonalität von Matrizen	. 146
7	For	matier	te Matrixoperationen für hierarchische Matrizen	. 147
	7.1	Matrix	x-Vektor-Multiplikation	. 148
	7.2	Kürzu	ingen und Konvertierungen	. 148
		7.2.1	Kürzungen $\mathcal{T}_{k \leftarrow \ell}^{\mathcal{R}}, \mathcal{T}_{k}^{\mathcal{R}}$ und $\mathcal{T}_{k \leftarrow \ell}^{\mathcal{H}}$. 148
		7.2.2	Agglomeration	. 150
		7.2.3	Konvertierung $\mathcal{T}_{k}^{\mathcal{R} \leftarrow \mathcal{H}}$. 150
		7.2.4	Konvertierung $\mathcal{T}_{P'\leftarrow P}^{\mathcal{H}\leftarrow \mathcal{H}}$. 152
		7.2.5	Konvertierung $\mathcal{T}_{P' \leftarrow P}^{\mathcal{H} \leftarrow \mathcal{H}}$ bei unterschiedlichen	
			Blockclusterbäumen [*]	. 152
	7.3	Addit	ion	. 154
	7.4	Matrix	x-Matrix-Multiplikation	. 155
		7.4.1	Komplikationen bei der Matrix-Matrix-Multiplikation .	. 155
		7.4.2	Algorithmus im konsistenten Fall	. 157
		7.4.3	Algorithmus im stufentreuen Fall	. 167
	7.5	Matrix	x-Inversion	. 170
		7.5.1	Rekursiver Algorithmus	. 170

		7.5.2	Alternativer Algorithmus mittels Gebietszerlegung 172
		7.5.3	Newton-Verfahren
	7.6	LU- b	zw. Cholesky-Zerlegung173
		7.6.1	Format der Dreiecksmatrizen173
		7.6.2	Auflösung von $LUx = b \dots 174$
		7.6.3	Matrixwertige Lösung von $LX = Z$ und $XU = Z \dots 176$
		7.6.4	Erzeugung der LU- bzw. Cholesky-Zerlegung
	7.7	Hadai	mard-Produkt
	7.8	Aufwa	and der Algorithmen
		7.8.1	Matrix-Vektor-Multiplikation
		7.8.2	Matrix-Addition
		7.8.3	Matrix-Multiplikation
		7.8.4	Matrix-Inversion
		7.8.5	LU- bzw. Cholesky-Zerlegung
8	\mathcal{H}^2 -	Matri	zen
	8.1	Erster	Schritt: $M _b \in \mathcal{V}_b \otimes \mathcal{W}_b \dots \dots$
	8.2	Zweit	er Schritt: $M _{\tau \times \sigma} \in \mathcal{V}_{\tau} \otimes \mathcal{W}_{\sigma} \dots \dots \dots 195$
	8.3	Defini	tion der \mathcal{H}^2 -Matrizen
		8.3.1	Definition
		8.3.2	Transformationen
		8.3.3	Speicherbedarf
		8.3.4	Projektion auf \mathcal{H}^2 -Format
	8.4	Hinre	ichende Bedingungen für geschachtelte Basen
		8.4.1	Allgemeiner Fall
		8.4.2	Beispiel: Approximation von Integraloperatoren durch
			Interpolation
	8.5	Matri	x-Vektor-Multiplikation mit \mathcal{H}^2 -Matrizen
		8.5.1	Vorwärtstransformation
		8.5.2	Multiplikationsphase
		8.5.3	Rücktransformation
		8.5.4	Gesamtalgorithmus
	8.6	\mathcal{H}^2 -M	atrizen mit linearem Aufwand
	8.7	Adapt	tive Bestimmung der \mathcal{H}^2 -Räume \mathcal{V}_{τ} und \mathcal{W}_{σ}
	8.8	Matri	x-Matrix-Multiplikation von \mathcal{H}^2 -Matrizen
		8.8.1	Multiplikation bei gegebenem \mathcal{H}^2 -Format
		8.8.2	Multiplikation bei gesuchtem \mathcal{H}^2 -Format
	8.9	Nume	risches Beispiel
9	Ver	schied	ene Ergänzungen
	9.1	Konst	ruktion schneller Iterationsverfahren
	9.2	Modif	izierte Clusterbäume für schwach besetzte Matrizen $\dots 219$
		9.2.1	Problembeschreibung
		9.2.2	Finite-Element-Matrizen
		9.2.3	Separierbarkeit der Matrix

		9.2.4	Konstruktion des Clusterbaums	224
		9.2.5	Anwendung auf Invertierung	226
		9.2.6	Zulässigkeitsbedingung	226
		9.2.7	LU-Zerlegung	227
		9.2.8	<i>H</i> -Matrixeigenschaften der LU-Faktoren	228
		9.2.9	Geometriefreie Konstruktion der Partition	231
	9.3	Schwa	che Zulässigkeit	232
		9.3.1	Definition und Abschätzungen	232
		9.3.2	Beispiel $k(x, y) = \log x - y $	234
		9.3.3	Zusammenhang mit der Matrixfamilie $\mathcal{M}_{k,\tau}$	235
	9.4	Kreuza	approximation	238
		9.4.1	Basisverfahren und theoretische Aussagen	238
		9.4.2	Praktische Durchführung der Kreuzapproximation	239
		9.4.3	Adaptive Kreuzapproximation	241
		9.4.4	Erzeugung separabler Entwicklungen mittels	
			Kreuzapproximation	243
		9.4.5	Die hybride Kreuzapproximation	245
	9.5	Kriter	ien für Approximierbarkeit in $\mathcal{H}(k, P)$	246
	9.6	Änder	ung der Matrizen bei Gitterverfeinerung	249
10	A			951
10	Anv	vendur T:	igen auf diskretisierte Integraloperatoren	201
	10.1	1 y pise	Den dwentenschlem und Fundementellägung	201
		10.1.1 10.1.2	Finfach Schicht Dotontial für das Dirichlot Problem	202
		10.1.2 10.1.2	Direkte Methode, Doppelschicht Operator	252
		10.1.3 10.1.4	Hypersingulärer Operator	257
		10.1.4	Calderón-Projektion	254
	10.2	Newto	n-Potential	255
	10.2	Rande	lementdiskretisjerung und Erzeugung der Systemmatrix	200
	10.0	in hier	archischer Form	255
	10.4	Helmh	oltz-Gleichung für hohe Frequenzen	257
	10.5	Allgen	neine Fredholm-Integraloperatoren	258
	10.6	Anwer	ndungen auf Volterra-Integraloperatoren	258
	10.0	10.6.1	Diskretisjerungen von Volterra-Integraloperatoren	258
		10.6.1	Implementierung als Standard-H-Matrix	260
		10.6.3	Niedrigrangdarstellung von Profilmatrizen	261
		10.6.4	Matrix-Vektor-Multiplikation	262
	10.7	Faltun	gsintegrale	265
	10.11	1 010 011		-00
11	Anv	vendur	ngen auf Finite-Element-Matrizen	267
	11.1	Inverse	e der Massematrix	267
	11.2	Der G	reen-Operator und seine Galerkin-Diskretisierung	271
		11.2.1	Das elliptische Problem	271
		11.2.2	Die Green-Funktion	272
		11.2.3	Der Green-Operator \mathcal{G}	272

		11.2.4 Galerkin-Diskretisierung von \mathcal{G} und der	
		Zusammenhang mit A^{-1}	
		11.2.5 Folgerungen aus separabler Approximati	on der
		Greenschen Funktion	
	11.3	Analysis der Greenschen Funktion	
		11.3.1 L-harmonische Funktionen und innere Re	egularität 280
		11.3.2 Approximation durch endlich-dimensiona	le Unterräume 282
		11.3.3 Hauptresultat	
		11.3.4 Anwendung auf die Randelementmethode	e
		11.3.5 FEM-BEM-Kopplung	
19	Torre	ncion mit pontiallon Auguentung	201
14	19 1	Baum der Cabiotszerlegung und zugehörige Spu	rabbildungan 202
	12.1	Daum der Gebietszerlegung und zugenörige Spu Diskrote Veriente – Übersicht	204 nabbildungen
	12.2	Diskiete variante - Obersicht	294
	12.0	12.3.1 Finite Floment Diskretisjorung und Matr	ivformuliorung 205
		12.3.2 Zorlogung der Indexmonge	295 207
		12.3.2 Die Abbildung Φ	
		12.3.5 Die Höblidung Ψ_{ω}	208
		12.3.4 Naturnene Handbeumgung	200
		12.3.5 Die Abbildung W	200
		12.3.0 Die Abbildung Ψ_{ω}	300
		12.3.1 Konstruktion von Ψ_{ω} aus Ψ_{ω_1} und Ψ_{ω_2} .	303
	12.4	Basisalgorithmus	304
	12.1	12.4.1 Definitionsphase	
		12.4.2 Auswertungsphase	
		12.4.3 Homogene Differentialgleichung	
	12.5	Verwendung hierarchischer Matrizen	
	12.6	Partielle Auswertung	
		12.6.1 Basisverfahren	
		12.6.2 Realisierung mit hierarchischen Matrizen	
		12.6.3 Vergröberung des Ansatzraumes für die i	echte Seite 311
		12.6.4 Berechnung von Funktionalen	
1.0	3.5		21.2
13	Mat		
	13.1	Definitionen	
		13.1.1 Funktionserweiterung mittels Diagonalma	atrizen
		13.1.2 Potenzreihen	
		13.1.3 Cauchy-Integraldarstellung	
	10.0	13.1.4 Spezialfälle	
	13.2	Konstruktionen spezieller Funktionen	
		13.2.1 Approximation von Matrixtunktionen	
		13.2.2 Matrix-Exponentialfunktion	
		13.2.3 Inverse Funktion $1/z$	
		13.2.4 Anwendung von Newton-artigen Verfahre	en

	13.3 \mathcal{H} -Matrix-Approximation
	13.3.1 Matrix-Exponentialfunktion
	13.3.2 Approximation nichtglatter Matrixfunktionen
14	Matrixgleichungen
	14.1 Ljapunow- und Sylvester-Gleichung
	14.1.1 Definition und Lösbarkeit
	14.1.2 Andere Lösungsverfahren
	14.2 Riccati-Gleichung
	14.2.1 Definition und Eigenschaften
	14.2.2 Lösung mittels der Signumfunktion
	14.3 Newton-artige Verfahren zur Lösung nichtlinearer
	Matrixgleichungen
	14.3.1 Beispiel der Quadratwurzel einer Matrix
	14.3.2 Einfluss der Kürzung bei Fixpunktiterationen
	Ŭ Î
15	Tensorprodukte
	15.1 Tensor-Vektorraum
	15.1.1 Notationen
	15.1.2 Hilbert-Raum-Struktur
	15.1.3 Datenkomplexität
	15.2 Approximation im Tensorraum
	15.2.1 k-Term-Darstellung $\dots 341$
	15.2.2 k -Term-Approximation
	15.2.3 Darstellung mit Tensorprodukten von Unterräumen343
	15.3 Kronecker-Produkte von Matrizen
	15.3.1 Definitionen
	15.3.2 Anwendung auf die Exponentialfunktion
	15.3.3 Hierarchische Kronecker-Tensorproduktdarstellung346
	15.4 Der Fall $d = 2$
	15.4.1 Tensoren
	15.4.2 Kronecker-Matrixprodukte
	15.4.3 Komplexitätsbetrachtungen
	15.4.4 HKT-Darstellung
	15.5 Der Fall $d > 2$
	15.5.1 Spezielle Eigenschaften
	15.5.2 Inverse eines separablen Differentialoperators
\mathbf{A}	Graphen und Bäume
	A.1 Graphen
	A.2 Bäume
	A.3 Teilbäume
	A.4 Bäume zu Mengenzerlegungen

В	Poly	ynome.	
	B.1	Multiin	dizes
		B.1.1 1	Notation
		B.1.2 I	Formelsammlung
	B.2	Polynor	napproximation
	B.3	Polynor	ninterpolation
		B.3.1 I	Eindimensionale Interpolation
		B.3.2	Tensorprodukt-Interpolation 369
С	Tin	anna Al	cohra Funktionalanalysis
U	Sind	rulärwo	rtzerlegung 371
	C 1	Matrixr	armen 371
	C_{2}	Singulä	rwertzerlegung von Matrizen 373
	C.2	Hilbert_	Räume L^2 -Operatoren 377
	C.4	Singuläi	rwertzerlegung kompakter Operatoren 379
	0.1	C 4 1 S	Singulärwertzerlegung 379
		C42 F	Hilbert-Schmidt-Operatoren 381
	C.5	Abbildu	ingen zu Galerkin-Unterräumen 383
	0.0	C 5 1	Orthogonale Projektion 383
		C52 I	Unterraumbasis Prolongation Restriction Massematrix383
		C.5.3	Norm $\ \cdot\ $
		C.5.4 H	Bilinearformen. Diskretisierung
			, 0
D	Sinc	c-Interp	olation und -Quadratur
	D.1	Element	tare Funktionen
	D.2	Interpol	lation
		D.2.1 I	Definitionen
		D.2.2 S	Stabilität der Sinc-Interpolation
		D.2.3 A	Abschätzungen im Streifen \mathfrak{D}_d
		D.2.4 A	Abschätzungen durch $e^{-CH/\log W}$
		D.2.5 A	Approximation der Ableitung
		D.2.6 I	Meromorphes f
	Ъĝ	D.2.7 A	Andere Singularitaten
	D.3	Separab	Die Sinc-Entwicklungen
		D.3.1 I	Direkte Interpolation
		D.3.2 I	Transformation und Skallerung
		D.3.3 I	$\frac{1}{404}$
		D.3.4 I	$\begin{array}{l} \text{Beispiel } 1/(x+y) \dots 404 \\ \text{Deigniel } \log(x+y) \dots 408 \end{array}$
	D 4	D.3.3 I Sinc O	Despite $\log(x+y)$
	D.4	$D_{4.1}$	auratur
		D.4.1 (guauratur vertamen unu Anaryse
		D.4.2 C	$\begin{array}{llllllllllllllllllllllllllllllllllll$
		D 4 4 J	Despie: Integrand $\exp(-tt)$
		D.4.4 I	Deletion integration $\exp\left(-\tau t\right)$

\mathbf{E}	Asy	mptot	isch glatte Funktionen
	E.1	Beispi	el $ x-y ^{-a}$
		E.1.1	Richtungsableitungen
		E.1.2	Gemischte Ableitungen
		E.1.3	Analytizität
	E.2	Asym	ptotische Glattheit weiterer Funktionen $\dots \dots \dots 425$
	E.3	Allger	neine Eigenschaften asymptotisch glatter Funktionen $\dots 427$
		E.3.1	Hilfsabschätzungen
		E.3.2	Abschätzung für Richtungsableitungen
		E.3.3	Aussagen für beschränkte Gebiete
		E.3.4	Produkte asymptotisch glatter Funktionen
\mathbf{Lit}	eratı	irverze	eichnis
No	tatio	nen	
Sac	hver	zeichn	is

Einleitung

1.1 Was ist die zu lösende Aufgabe, wo liegen die Schwierigkeiten?

1.1.1 Aufgabenbeispiele

Aufgaben der linearen Algebra treten bei verschiedensten Anwendungen auf. Im Zusammenhang mit Vektoren (z.B.¹ im \mathbb{R}^n) sind die Vektorraum-Operationen

$$\begin{aligned} x, y \in \mathbb{R}^n & \mapsto \quad x + y \in \mathbb{R}^n, \\ \lambda \in \mathbb{R}, \, x \in \mathbb{R}^n & \mapsto \quad \lambda x \in \mathbb{R}^n \end{aligned}$$

gefordert, was im Allgemeinen die geringsten Mühen bereitet.

Im Zusammenhang mit Matrizen (quadratischen $n \times n$ -Matrizen wie rechteckigen $n \times m$ -Matrizen) kann schon die Abspeicherung ein Problem darstellen, wenn n^2 bzw. nm groß sind.

Unter den Operationen mit Matrizen ist die häufigste die Matrix-Vektor-Multiplikation

$$A \in \mathbb{R}^{n \times m}, x \in \mathbb{R}^m \quad \mapsto \quad Ax \in \mathbb{R}^n, \tag{1.1}$$

die der Realisierung der mit A beschriebenen linearen Abbildung entspricht.

Da Matrizen einen Ring beschreiben, möchte man auch die Ringoperationen durchführen:

$$A, B \in \mathbb{R}^{n \times m} \quad \mapsto \quad A + B \in \mathbb{R}^{n \times m}, \tag{1.2}$$

$$A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times p} \quad \mapsto \quad A \cdot B \in \mathbb{R}^{n \times p} \tag{1.3}$$

© Springer-Verlag Berlin Heidelberg 2009

¹ Für den zugrundeliegenden Körper nehmen wir im Folgenden stets \mathbb{R} an. Gelegentlich ist auch der Körper \mathbb{C} der komplexen Zahlen notwendig, aber die Verallgemeinerung auf \mathbb{C} bringt keine prinzipiell neuen Probleme, sodass eine Beschränkung auf \mathbb{R} Sinn macht. Völlig andersartige Körper wie z.B. \mathbb{Z}_p werden explizit ausgeschlossen, da man hierin exakt rechnen müsste, während im Folgenden Approximationen angewandt werden sollen.

(die Skalarmultiplikation $A \in \mathbb{R}^{n \times m}, \lambda \in \mathbb{R} \mapsto \lambda A \in \mathbb{R}^{n \times m}$ gehört auch dazu, ist aber nicht so bemerkenswert). Schließlich möchte man für reguläre Matrizen die Inverse berechnen:

$$A \in \mathbb{R}^{n \times n}$$
 regulär $\mapsto A^{-1} \in \mathbb{R}^{n \times n}$. (1.4)

Daneben gibt es weitere Aufgaben wie die LU-Zerlegung

$$A \in \mathbb{R}^{n \times n} \text{ regulär } \mapsto A = LU,$$

L untere normierte und U obere Dreiecksmatrix, (1.5a)

die eventuell um die Pivotisierung ergänzt werden muss, sowie die Cholesky-Zerlegung^2

 $A \in \mathbb{R}^{n \times n} \text{ positiv definit } \mapsto A = LL^{\top},$ $L \text{ untere Dreiecksmatrix mit } L_{ii} > 0$ (1.5b)

(vgl. Stoer [129, Abschnitte 4.1 und 4.3]).

Im Falle eines Gleichungssystems Ax = b möchte man nicht die inverse Matrix berechnen, sondern nur das spezielle Bild $x = A^{-1}b$ ermitteln:

$$A \in \mathbb{R}^{n \times n}$$
 regulär, $b \in \mathbb{R}^n \quad \mapsto \quad x \in \mathbb{R}^n$ Lösung von $Ax = b.$ (1.6)

Mitunter sind auch Funktionen von Matrizen von Interesse. Das bekannteste Beispiel ist die *Matrix-Exponentialfunktion*

$$A \in \mathbb{R}^{n \times n} \quad \mapsto \quad \exp(A) := \sum_{\nu=0}^{\infty} \frac{1}{\nu!} A^{\nu}.$$
(1.7)

Schließlich gibt es noch (lineare oder nichtlineare) Gleichungssysteme für Matrizen. Eine bekannte lineare Gleichung in X ist die Ljapunow³-Gleichung

$$AX + XA^{\top} = B$$
 $(A, B \in \mathbb{R}^{n \times n} \text{ gegeben}, X \in \mathbb{R}^{n \times n} \text{ gesucht}).$ (1.8)

Die Riccati⁴-Gleichung

$$AX + XA^{\top} + XCX = B \quad (A, B, C \in \mathbb{R}^{n \times n} \text{ gegeben}, X \in \mathbb{R}^{n \times n} \text{ gesucht})$$
(1.9)

ist quadratisch in X und daher nichtlinear.

² André Louis Cholesky (geb. 15.10.1875 in Montguyon bei Bordeaux, gest. am 31.8.1918) setzte dieses Verfahren für Kleinste-Quadrate-Probleme ein, die bei geodätischen Vermessungen auftraten. Sein Verfahren wurde posthum von Benoît [16] veröffentlicht. Eine Beschreibung des Verfahrens findet sich auf handschriftlichen Notizen von Cholesky datiert auf den 2.12.1910.

³ Aleksandr Michailowitsch Ljapunow, geboren am 6. Juni 1857 in Yaroslavl, gestorben am 3. Nov. 1918 in Odessa.

⁴ Jacopo Francesco Riccati, geboren am 28. Mai 1676 in Venedig, gestorben am 15. April 1754 in Treviso (Venezianische Republik).

1.1.2 Größenordnung der Dimension

Solange n eine feste, kleine Zahl ist, stellen die genannten Aufgaben (wenn sie nicht schlecht konditioniert sind) keine Schwierigkeit dar. Es gibt aber eine große Klassen von Problemen der Linearen Algebra, die aus der Diskretisierung partieller Differentialgleichungen oder verwandter Integralgleichungen resultieren. Vor der Diskretisierung sind die Aufgaben unendlich-dimensional. Der durch die Diskretisierung induzierte Fehler (der sogenannte *Diskretisierungsfehler*) geht gegen null, wenn die Dimension n gegen ∞ geht. Daher wird man versuchen, n so groß wie möglich zu wählen, und das heißt, so groß, dass der Rechner-Speicherplatz ausreicht und das Resultat der Rechnung in einer Zeitspanne geliefert wird, die akzeptabel ist. Man hat sich die Größenordnung $n = 10^6$ und mehr vorzustellen, und eventuell benötigt der Rechner mehrere Tage für die Ausführung.

1.1.3 Exakte oder näherungsweise Berechnung

Die oben aufgezählten Aufgaben fragen nach dem exakten Resultat der jeweiligen Operation. Legt man den Körper \mathbb{R} zugrunde, so ist offensichtlich, dass Rundungsfehler in der Größenordnung der relativen Maschinengenauigkeit *eps* unvermeidbar sind. Viel entscheidender ist aber, dass wegen der in §1.1.2 angesprochenen Diskretisierung auch bei exakt ausgeführter linearer Algebra die Resultate nur Näherungen gegenüber der Lösung der eigentlichen partiellen Differentialgleichung darstellen. Wichtig ist in diesem Zusammenhang, dass der Diskretisierungsfehler $\varepsilon_{\text{Diskr}}$ im Allgemeinen um Größenordnungen größer als *eps* ist. Ein zusätzlicher Fehler infolge einer inexakten Auswertung der algebraischen Operationen in der Größenordnung von $\varepsilon_{\text{Diskr}}$ ist durchaus akzeptabel.

Die Tatsache, dass man beispielsweise ein Gleichungssystem (1.6) nicht exakt, sondern nur näherungsweise berechnen möchte, erlaubt iterative Verfahren, deren Iterationsfehler mit der Anzahl der Iterationsschritte und damit mit dem Rechenaufwand verbunden ist (vgl. Hackbusch [66]).

1.2 Komplexität der Algorithmen

Es reicht nicht aus zu wissen, dass ein Algorithmus prinzipiell durchführbar ist, sondern man muss auch sicherstellen, dass die Speicherkapazität und Rechengeschwindigkeit der zur Zeit verfügbaren Rechner ausreichen. Für diesen Zweck ist die Komplexität eines Algorithmus zu quantifizieren.

1.2.1 Komplexität

Sei $\Phi : x \in D \subset \mathbb{R}^n \mapsto y \in \mathbb{R}^m$ eine beliebige Abbildung. Ein Algorithmus \mathcal{A}_{Φ} zur Berechnung von $\Phi(x)$ ist eine Folge von *Elementaroperationen*, die durch die Implementierung festgelegt werden. Unter der vereinfachenden Annahme, dass alle als Elementaroperationen zugelassenen Operationen die gleiche Rechenzeit benötigen, ist die Rechenzeit durch die Anzahl N_{Φ} der Elementaroperationen charakterisiert. Im Allgemeinen kann N_{Φ} vom Argument x abhängen, sodass man dann zur maximalen Anzahl $\sup_x N_{\Phi}(x)$ übergehen sollte.⁵

Anmerkung 1.2.1. Die Abbildung $\Phi : x \in D \subset \mathbb{R}^n \mapsto y \in \mathbb{R}^m$ sei in dem Sinne nichtrivial, dass $\Phi(x)$ von allen Eingabedaten (d.h. allen Komponenten x_i) abhängt und y im Allgemeinen verschiedene Komponenten y_i besitzt und nicht die Identität $\Phi_j(x) = x_i$ (für gewisse Paare (i, j) und alle $x \in D$) zutrifft. Dann gilt $N_{\Phi} \geq \max\{n/2, m\}$.⁶

Beweis. Die Elementaroperationen haben höchstens zwei Argumente. Zu jedem i muss es eine Elementaroperation geben, die x_i als Argument enthält, da sonst $\Phi(x)$ nicht von x_i abhängt. Damit müssen mindestens n/2 Elementaroperationen auftreten. Außerdem muss jedes y_j Resultat einer Elementaroperation sein, sodass ihre Anzahl $\geq m$ ist.

Der vom Algorithmus in Anspruch genommene Speicher (Einheit ist der Speicherbedarf einer reellen Maschinenzahl) sei mit S_{Φ} bezeichnet. Dabei kann in günstigen Fällen S_{Φ} unabhängig von n, m sein (Beispiel: Summation aus Fußnote 6), ist in ungünstigen Situationen aber aufgrund von vielen simultan auftretenden Zwischenwerten wesentlich größer.

Zur Vereinfachung beschränken wir uns auf einen Dimensionsparameter n (d.h. n = m). Viele Algorithmen haben n als Parameter, d.h. die obige Abbildung Φ wird als $\Phi_n : x \in \mathbb{R}^n \mapsto y$ geschrieben, und man betrachtet die Familie aller { $\Phi_n : n \in \mathbb{N}$ }. Alle Aufgaben aus §1.1.1 sind von dieser Art. Damit werden N_{Φ} und S_{Φ} Funktionen von $n \in \mathbb{N}$:

$$N_{\Phi}(n) := N_{\Phi_n}, \qquad S_{\Phi}(n) := S_{\Phi_n}.$$

Folglich lässt sich das Verhalten von N_{Φ} und S_{Φ} bezüglich $n \to \infty$ diskutieren. Wir benutzen das Landau⁷-Symbol $\mathcal{O}: N_{\Phi}(n) = \mathcal{O}(g(n))$ bedeutet, dass Konstanten K und n_0 existieren, sodass $N_{\Phi}(n) \leq Kg(n)$ für alle $n \geq n_0$.

Gemäß Anmerkung 1.2.1 ist $N_{\Phi}(n) = \mathcal{O}(n)$ die bestmögliche Abschätzung. In diesem Falle spricht man von *linearer Komplexität*.

Die Matrix-Vektor-Multiplikation $x \in \mathbb{R}^n \mapsto y := Ax \in \mathbb{R}^n$ wird im Allgemeinen mit Hilfe der Summation $y_j = \sum_{j=1}^n A_{jk} x_k$ berechnet

⁵ Falls eine sinnvolle statistische Verteilung der Argumente x definiert werden kann, lässt sich auch ein Erwartungswert $E(N_{\Phi}(\cdot))$ definieren.

⁶ max{n/2, m} kann sogar durch max{n-1, m} ersetzt werden (Beweishintergrund: Ein binärer Baum mit n Blättern muss außer den Blättern noch n-1 weitere Knoten enthalten; vgl. Lemma A.3.4). Ein Beispiel für die Anzahl $N_{\Phi} = n-1$ ist $\Phi(x) = \sum_{i=1}^{n} x_i =: y \in \mathbb{R}^1$ (d.h. m = 1).

⁷ Edmund Georg Hermann Landau, geboren am 14. Februar 1877 in Berlin, gestorben am 19. Februar 1938 in Berlin.

und benötigt damit n^2 Multiplikationen und n(n-1) Additionen. Also ist $N_{\Phi}(n) = 2n^2 - n = \mathcal{O}(n^2)$, d.h. dieser Algorithmus hat quadratische Komplexität.

Für die Gleichungsauflösung $b \in \mathbb{R}^n \mapsto x := A^{-1}b \in \mathbb{R}^n$ aus (1.6) lässt sich die Gauß⁸-Elimination verwenden. Sie besitzt *kubische Komplexität*: $N_{\Phi}(n) = \mathcal{O}(n^3)$. Allerdings lässt sich diese Aufgabe auch anders interpretieren. Sieht man neben $b \in \mathbb{R}^n$ die Matrix $A \in \mathbb{R}^{n \times n}$ als Eingabe an, ist $n' := n^2 + n$ die Zahl der Eingabedaten und N_{Φ} gleich $\mathcal{O}(n'^{3/2})$.

Bisher traten nur Beispiele für polynomielle Komplexität auf, d.h. $\mathcal{O}(n^p)$. In der diskreten Optimierung sind die meisten interessanten Probleme schwierig in dem Sinne, dass $N_{\Phi}(n)$ nicht polynomiell beschränkt ist und beispielsweise exponentiell in n wächst. Ein Beispiel aus der Linearen Algebra ist der nicht nachahmenswerte Versuch, det(A) für $A \in \mathbb{R}^{n \times n}$ mittels der Laplaceschen⁹ Entwicklungsformel zu berechnen. Hierfür ermittelt man $N_{\Phi}(n) = \mathcal{O}(n!)$.

Die schnelle Fourier¹⁰-Transformation $\Phi_n : x \in \mathbb{R}^n \mapsto \hat{x} \in \mathbb{R}^n$ (siehe Übung 1.4.1) benötigt den Aufwand $\mathcal{O}(n \log n)$. Da der Logarithmus nur sehr schwach ansteigt, werden wir im Folgenden von *fast linearer Komplexität* sprechen, wenn $N_{\Phi}(n) = \mathcal{O}(n \log^q n)$ für ein von *n* unabhängiges $q \ge 0$ gilt.

1.2.2 Warum braucht man (fast) lineare Komplexität für großskalige Probleme?

Als großskalige Probleme werden solche bezeichnet, die man mit maximal möglichem n berechnen möchte. Ist S_{\max} der maximal verfügbare Speicher, so kann man an der Berechnung von Φ_n mit $n_{\max} := \max\{n' : S_{\Phi}(n') \leq S_{\max}\}$ interessiert sein. Es wurde schon bemerkt, dass Diskretisierungen partieller Differentialgleichungen zu derartigen großskaligen Problemen führen.

Weiterhin nehmen wir an, dass der Speicherbedarf der Algorithmen $S_{\Phi}(n) = \mathcal{O}(n)$ beträgt.

Um zu verstehen, dass nur Algorithmen von (fast) linearer Komplexität akzeptabel sind, hat man die zeitliche Entwicklung der Rechnertechnik einzubeziehen. Es ist eine empirische Beobachtung, dass sich sowohl die Speicherkapazität als auch die Rechengeschwindigkeit pro Zeiteinheit um einen konstanten Faktor verbessern. Für die folgenden Überlegungen ist es nur wichtig, dass beide um den gleichen Faktor ansteigen. Danach gibt es z.B. eine Zeitspanne Δt , in der sich der Speicher verdoppelt $(S_{\max}(t + \Delta t) = 2S_{\max}(t))$ und der Zeitbedarf für eine Elementaroperation halbiert. Das oben definierte n_{\max} ist damit auch zeitabhängig: wegen

⁸ Johann Carl Friedrich Gau
ß, geboren am 30. April 1777 in Braunschweig, gestorben am 23. Feb. 1855 in G
öttingen.

⁹ Pierre-Simon Laplace, geboren am 23. März 1749 in Beaumont-en-Auge, Normandy, gestorben am 5. März 1827 in Paris.

¹⁰ Jean Baptiste Joseph Fourier, geboren am 21. März 1769 in Auxerre (Bourgogne), gestorben am 16. Mai 1830 in Paris.

 $S_{\Phi}(n) = \mathcal{O}(n)$ gilt $n_{\max}(t + \Delta t) = 2n_{\max}(t)$. Auf einem Rechner zur Zeit $t + \Delta t$ berechnet man die Aufgabe mit dem gestiegenen n_{\max} . Die Zahl der Operationen ist

$$N_{\Phi}(n_{\max}(t + \Delta t)) = N_{\Phi}(2n_{\max}(t)).$$

Es sei nun eine polynomielle Komplexität $\mathcal{O}(n^p)$ angenommen. Dann ist $N_{\Phi}(n_{\max}(t+\Delta t)) = N_{\Phi}(2n_{\max}(t)) \approx 2^p N_{\Phi}(n_{\max}(t))$, d.h. der Aufwand steigt um den Faktor 2^p . Da gleichzeitig die Rechengeschwindigkeit verdoppelt ist, steigt die benötigte Rechenzeit nur um $2^p/2 = 2^{p-1}$.

Hieraus ergibt sich der folgende Schluss. Falls p > 1, benötigt der neue Rechner eine um den Faktor $2^{p-1} > 1$ vergrößerte Rechenzeit. Nur falls p = 1, bleibt die Rechenzeit konstant. Damit "überleben" nur die Algorithmen mit linearer Komplexität (wieder gilt, dass fast lineare Komplexität tolerierbar ist; hierbei steigt die Rechenzeit nur um eine additive Größe).

Es ist offenbar, dass ein zu großer Speicherbedarf die Verwendung eines Algorithmus ausschließt. Dies gilt aber auch hinsichtlich der Rechendauer. Für große n liegen die Rechenzeiten bei linearer und quadratischer Komplexität um den Faktor $\mathcal{O}(n)$ auseinander. Schon bei $n = 500\,000$ – einer Dimension, die heute durchaus auftritt – ist dies der Quotient zwischen einer Minute und einem Jahr.

1.3 Zugrundeliegende Strukturen und Implementierungsdarstellungen

Es gibt viele Aufgaben, für deren Lösung man in allgemeinen Fall keinen befriedigenden Algorithmus kennt; trotzdem können Spezialfälle¹¹ gut lösbar sein. Für eine gute Implementierung ist es wesentlich, dass die zugrundeliegenden Strukturen ausgenutzt werden.

1.3.1 Vektor- und Matrixnotation

Zunächst wird eine mathematische Notation eingeführt. Anstelle von $x\in\mathbb{R}^n$ verwenden wir die präzisere Schreibweise

$$x = (x_i)_{i \in I} \in \mathbb{R}^I, \tag{1.10a}$$

wobei I die zugrundeliegende (nicht notwendigerweise angeordnete) endliche Indexmenge ist. Wenn die Schreibweise \mathbb{R}^n verwendet wird, so ist sie ein Sammelbegriff für alle \mathbb{R}^I mit #I = n. Hierbei bezeichnet das Symbol #die Elementeanzahl (Kardinalität) einer Menge.

Analog zur Schreibweise \mathbb{R}^{I} für die Vektormenge, schreiben wir

¹¹ Die meisten in der Praxis auftretenden und zu lösenden Aufgaben sind in dem Sinne Spezialfälle, als sie spezifische Strukturen enthalten. Spezialfälle sind daher eher die Regel als die Ausnahme!

1.3 Zugrundeliegende Strukturen und Implementierungsdarstellungen

$$M \in \mathbb{R}^{I \times J} \tag{1.10b}$$

für Matrizen $(M_{i,j})_{i \in I, j \in J}$. Die sonst übliche Schreibweise $\mathbb{R}^{n \times m}$ wird als Sammelbegriff für alle Mengen $\mathbb{R}^{I \times J}$ mit #I = n und #J = m benutzt.

1.3.2 Implementierungsdarstellungen

Auch wenn ein mathematisches Objekt eindeutig definiert ist, so erlaubt es doch viele Darstellungen für die Implementierung auf dem Rechner. Jede der Darstellungen kann für Spezialfälle besonders vorteilhaft sein. Umgekehrt findet man selten Darstellungen, die in jedem Fall optimal sind. Die gewählte Darstellung ist einerseits wichtig für die Abspeicherung der Daten und bestimmt den Speicheraufwand. Andererseits werden mathematische Objekte mittels Operationen verknüpft, was je nach Wahl der Darstellung zu mehr oder weniger Rechenaufwand führen kann. Im Folgenden geben wir einige Beispiele für Implementierungsdarstellungen von Vektoren (\S §1.3.2.1-1.3.2.3) und Matrizen (\S §1.3.2.4-1.3.2.12). Außerdem werden Begriffe eingeführt, die später benötigt werden.

1.3.2.1 Voller Vektor

Die naheliegende Darstellung eines Vektors $x \in \mathbb{R}^{I}$ ist ein Tupel $(x_{i})_{i \in I}$ von **real**-Maschinenzahlen, wobei das Tupel entweder als **array** oder als Liste organisiert ist (auch die Information über *I* sollte verfügbar sein). Der damit verbundene Speicherplatz ist $S = \mathcal{O}(\#I)$. Diese Darstellung kann als Voller_Vektor(*I*) bezeichnet werden (falls $I = \{1, \ldots, n\}$, auch Voller_Vektor(*n*) genannt).

Anmerkung 1.3.1. Ein Skalarprodukt $(x, y) = \sum_{i \in I} x_i y_i$ zweier voll besetzter Vektoren $x, y \in \mathbb{R}^I$ kostet 2#I - 1 Operationen.

1.3.2.2 Schwach besetzter Vektor

Eine Alternative könnte ein schwach besetzter Vektor sein. Wenn nur ein kleiner Teil der Komponenten x_i von $x \in \mathbb{R}^I$ ungleich null ist, stellt dies eine Struktur dar, die man ausnutzen kann. Es wird eine Liste von Paaren

$$((i_1, x_{i_1}), (i_2, x_{i_2}), \dots, (i_p, x_{i_p}))$$

mit $0 \le p \le \#I$ abgespeichert, die alle Nicht-Null-Komponenten enthält. Falls die Indizes angeordnet sind, sollte zudem $i_1 < i_2 < \ldots < i_p$ vorausgesetzt werden. Dies definiert die Darstellung **Duenner_Vektor**(I). In diesem Format lässt sich z.B. ein Einheitsvektor als das 1-Tupel (i, 1) darstellen, hat also einen von n unabhängigen Speicheraufwand.

1.3.2.3 Blockvektor

Da die *Partition* einer Indexmenge auch später eine wichtige Rolle spielen wird, geben wir eine ausdrückliche Definition:

Definition 1.3.2 (Partition). I sei eine endliche Indexmenge. P ist eine Partition von I, falls $P = \{I_1, \ldots, I_p\} \subset \mathcal{P}(I) \setminus \{\emptyset\}$ (\mathcal{P} : Potenzmenge) die Eigenschaften

$$I_i \cap I_j = \emptyset \text{ für } i \neq j \text{ (Disjunktheit)}, \quad I = \bigcup_{j=1}^p I_j \text{ (Vollständigkeit)} \quad (1.11)$$

besitzt. Die angeordnete Menge $\{1, \ldots, p\}$ kann auch durch eine nicht angeordnete Indexmenge K ersetzt werden: $P = \{I_{\iota} : \iota \in K\}.$

Der Vektorblock von $x \in \mathbb{R}^I$ zu $\tau \in P$ ist

$$x|_{\tau} := (x_i)_{i \in \tau} \in \mathbb{R}^{\tau}. \tag{1.12}$$

Eine Darstellung von x als Blockvektor¹² ist durch $x = (x|_{I_j})_{j=1,...,p}$ gegeben. Jeder Vektorblock kann eine der bisher beschriebenen Darstellungen haben.

Während $x \in \mathbb{R}^I \mapsto x|_{I'} \in \mathbb{R}^{I'}$ $(I' \subset I)$ der Übergang zu einem Vektorblock ist, tritt auch der umgekehrte Prozess auf:

Definition 1.3.3 (Einbettung, Agglomeration). a) Seien $\tau \subset I$ und $z \in \mathbb{R}^{\tau}$. Die Einbettung von z in \mathbb{R}^{I} geschieht mittels

$$x := z|^{I} \in \mathbb{R}^{I}, \text{ wobei } x_{i} := \begin{cases} z_{i} \text{ für } i \in \tau, \\ 0 \text{ sonst.} \end{cases}$$
(1.13)

b) Seien $I_1, I_2 \in P$ zwei verschiedene Indexblöcke einer Partition von I und $y \in \mathbb{R}^{I_1}, z \in \mathbb{R}^{I_2}$. Dann wird die Summe $x := y|^I + z|^I$ auch als Agglomeration von y und z bezeichnet.

Man beachte, dass im zweiten Fall I_1 und I_2 disjunkt sind. Die Agglomeration des Blockvektors durch seine Vektorblöcke schreibt sich nun als $x = \sum_{i} (x|I_J) |^I$.

1.3.2.4 Volle Matrix

Matrizen können viele verschiedene Strukturen besitzen, die auf verschiedenen Ebenen ausgenutzt werden können. Die primitivste Form, die keine Strukturen aufzeigt, ist die Darstellung als volle Matrix, die in der Form $Volle_Matrix(I, J) = array(I)$ of $Voller_Vektor(J)$ konstruiert werden könnte, d.h. jede der #I Zeilen ist als voller Vektor wie oben dargestellt. Der Speicheraufwand ist S = #I#J.

¹² Man beachte den Unterschied von *Vektorblock* und *Blockvektor*. Ein Vektorblock ist ein Teilvektor zur Indexmenge I_j , ein Blockvektor dagegen der Gesamtvektor mit einer Blockstruktur.

Anmerkung 1.3.4. a) Seien $M \in \mathbb{R}^{I \times J}$ eine volle Matrix und $x \in \mathbb{R}^{J}$. Die Matrix-Vektor-Multiplikation $M \cdot x$ kostet #I(2#J-1) Operationen. b) Seien $A \in \mathbb{R}^{I \times J}$ und $B \in \mathbb{R}^{J \times K}$ zwei volle Matrizen. Die Matrix-Matrix-

b) Seien $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times n}$ zwei volle Matrizen. Die Matrix-Matrix-Multiplikation $A \cdot B$ kostet #I # K (2# J - 1) Operationen.

Beweis. Die obigen Berechnungen erfordern a
)#Ibzw. b)#I#KSkalarprodukte von J-Vektoren.

Übung 1.3.5. Das Produkt dreier Matrizen $A \in \mathbb{R}^{I \times J}$, $B \in \mathbb{R}^{J \times K}$ und $C \in \mathbb{R}^{K \times L}$ ist wegen der Kommutativität auf zwei Arten berechenbar: als $A \cdot (B \cdot C)$ oder $(A \cdot B) \cdot C$. Sind die Kosten gleich? Falls nicht, was ist billiger?

1.3.2.5 Schwach besetzte Matrix

Die Finite-Element-Diskretisierung von partiellen Differentialgleichungen liefert schwach besetzte Matrizen, das heißt, jede Zeile enthält nur wenige Nicht-Null-Einträge. Hier bietet sich das Format $\operatorname{array}(I)$ of Duenner_Vektor(J) an. Wenn, wie in diesem Beispiel, die Zahl der Nicht-Null-Einträge unabhängig von #J beschränkt ist, beträgt der Speicheraufwand $S = \mathcal{O}(\#I)$.

1.3.2.6 Bandmatrix

Spezielle schwach besetzte Matrix sind die Bandmatrizen, bei denen $I = J = \{1, 2, \ldots, n\}$ eine angeordnete Indexmenge ist und die Nicht-Null-Einträge auf die Positionen (i, j) mit $|i - j| \leq b$ beschränkt sind (b: Bandbreite). Pro Zeile sind 2b+1 Zahlen (z.B. im Format Voller_Vektor(2b+1)) abzulegen, sodass der Speicheraufwand $S = n(2b+1) = \mathcal{O}(bn)$ ist. Für b = 1 erhält man als Spezialfall die *tridiagonalen* Matrizen. Der Fall b = 0 wird nachfolgend behandelt.

1.3.2.7 Diagonalmatrix

Der angenehmste Fall ist die Diagonalmatrix $A = \text{diag}\{a_{ii} : i \in I\}$. Hier enthält die Darstellung mittels Voller_Vektor(I) alle notwendigen Daten. Der Speicheraufwand ist S = n.

1.3.2.8 Toeplitz-Matrix

Seien $I = \{1, \ldots, n\} \subset \mathbb{Z}$ und $J = \{1, \ldots, m\} \subset \mathbb{Z}$. Bei einer Toeplitz¹³-Matrix A hängen die Einträge A_{ij} nur von der Differenz i - j ab, d.h. in der Diagonalen sowie in jeder Nebendiagonalen stehen identische Werte:

¹³ Otto Toeplitz, geboren am 1. August 1881 in Breslau, gestorben am 15. Februar 1940 in Jerusalem. Er war Ordinarius an den Universitäten Kiel (bis 1928) und Bonn (bis 1933).

$$A = \begin{bmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{-1} & a_0 & a_1 & \dots \\ \vdots & \ddots & \ddots & \ddots \\ a_{1-n} & \dots & a_{-1} & a_0 \end{bmatrix}$$
(Toeplitz-Matrix für $n = m$).

Für $i \in I, j \in I$ variiert i-j in der Differenzmenge $K := \{1 - m, \dots, n-1\}$. Mit Voller_Vektor(K) werden die notwendigen Daten $(a_k)_{k \in K}$ bereitgestellt. Der Speicheraufwand beträgt S = #I + #J - 1.

1.3.2.9 Zirkulante Matrix

Ein Spezialfall einer quadratischen Toeplitz-Matrix ist die zirkulante Matrix. Hier hängt A_{ij} nur von der Differenz i - j modulo n ab:

$$A = \begin{bmatrix} a_0 & a_1 & & a_{n-1} \\ a_{n-1} & a_0 & a_1 & & \\ & \ddots & \ddots & \ddots & \\ a_1 & & a_{n-1} & a_0 \end{bmatrix}.$$
 (1.14)

Da die Werte (a_0, \ldots, a_{n-1}) eine zirkulante Matrix vollständig charakterisieren, ist die Darstellung Voller_Vektor(n) möglich und benötigt den Speicheraufwand S = n.

1.3.2.10 Rang-k-Matrix

Falls eine Matrix $A \in \mathbb{R}^{I \times J}$ einen Rang $\leq k$ besitzt, gibt es eine Faktorisierung

$$A = B \cdot C^{\top} \qquad \text{mit } B \in \mathbb{R}^{I \times \{1, \dots, k\}}, \ C \in \mathbb{R}^{J \times \{1, \dots, k\}},$$
(1.15)

die hilfreich ist, wenn $k \ll \min\{\#I, \#J\}$, d.h. wenn

schmale Formate haben. Die Darstellung Rang(k)Matrix(I, J) besteht aus dem Paar von Volle_Matrix(I, K) und Volle_Matrix(J, K), wobei $K = \{1, \ldots, k\}$. Der Fall k = 0 ist als Null-Matrix zu interpretieren.

Der Speicheraufwand im Falle des Formates $\operatorname{Rang}(k)\operatorname{Matrix}(I, J)$ ist S = k (#I + #J).

Im Namen "Rang-k-Matrix" ist k eine freie Variable, sodass auch von einer Rang- ℓ -Matrix oder Rang-16-Matrix gesprochen werden kann.

1.3.2.11 Blockmatrix

Was die Abspeicherung betrifft, könnte eine Matrix aus $\mathbb{R}^{I \times J}$ als ein Vektor zur Indexmenge $I \times J$ behandelt werden. Die zusätzliche Produktstruktur von $I \times J$ wird jedoch in der folgenden Definition der Blockpartition berücksichtigt (vgl. Definition 1.3.2).

Definition 1.3.6 (Blockpartitionierung). Seien I und J endliche Indexmengen. $P = \{b_1, \ldots, b_p\} \subset \mathcal{P}(I \times J) \setminus \{\emptyset\}$ ist eine Blockpartition von $I \times J$, falls

$$\begin{array}{ll} \textit{für alle } i \in \{1, \dots, p\} \textit{ ist } b_i = I' \times J' \textit{ mit } I' \subset I, J' \subset J & (\textit{Produktstruktur}), \\ b_i \cap b_j = \emptyset \textit{ für } i \neq j & (\textit{Disjunktheit}), \\ I \times J = \bigcup_{j=1}^p b_j & (\textit{Vollständigkeit}). \end{array}$$

Ein Beispiel einer Blockpartition sieht man in (3.3). Häufig wird eine wesentlich speziellere Blockpartition verwendet:

Anmerkung 1.3.7. Seien P_I und P_J Partitionen von I und J im Sinne von Definition 1.3.2. Dann definiert

$$P := \{ b = \tau \times \sigma : \tau \in P_I, \ \sigma \in P_J \}$$

die von P_I und P_J erzeugte Tensor-Blockpartition von $I \times J$.

b wird *Indexblock* (oder kürzer: Block) genannt. Die mittels einer Blockpartition strukturierte Matrix wird kurz als *Blockmatrix* bezeichnet. Der Name *Matrixblock* wird dagegen für die Untermatrix verwendet, die einem Block $b \in P$ entspricht. Wir führen hierfür die folgende Notation ein:

$$M|_b := (M_{ij})_{(i,j) \in b} \in \mathbb{R}^b \qquad \text{für ein } b \in P.$$
(1.16)

Die Blockmatrix kann demnach in der Form $M = (M|_b)_{b \in P}$ geschrieben werden. Jeder Matrixblock kann eine der bisher beschriebenen Darstellungen haben.

In völliger Analogie zu Definition 1.3.3 formulieren wir die

Definition 1.3.8 (Einbettung, Agglomeration). Sei eine Blockpartition P von $I \times J$ gegeben. a) Seien $b \in P$ und $Z \in \mathbb{R}^b$. Die Einbettung von Z in $\mathbb{R}^{I \times J}$ geschieht mittels

$$M := Z|^{I \times J} \in \mathbb{R}^{I \times J}, \text{ wobei } M_{i,j} := \begin{cases} Z_{i,j} \text{ für } (i,j) \in b, \\ 0 \text{ sonst.} \end{cases}$$
(1.17)

b) Scien $b_1, b_2 \in P$ zwei disjunkte Indexblöcke und $Y \in \mathbb{R}^{b_1}, Z \in \mathbb{R}^{b_2}$. Dann wird die Summe $M := Y|^{I \times J} + Z|^{I \times J}$ auch als Agglomeration von Y und Z bezeichnet.