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Preface

Discrete Mathematics1 refers to a range of mathematical disciplines that study discrete struc-
tures and phenomena, unlike other classical fields of mathematics, such as analysis, geometry
and topology, which study continuous structures, processes and transformations. Intuitively
put, discrete structures – such as the linear order of natural numbers or the set of cities and
towns in a country together with the roads between them – consists of separable, discretely
arranged objects, whereas continuous structures – such as the trajectory of amoving object, the
real line, the Euclidian plane or a sphere – are densely filled, with no “gaps”. The more impor-
tant distinction, however, is between the types of problems studied and solved in discrete and
continuous mathematics and also between the main ideas and techniques that underly and
characterize these two branches of mathematics. Nevertheless, this distinction is often blurred
andmany ideas, methods and results from each of these branches have been fruitfully applied
to the other.

The intuitive explanation above is not meant to define what should be classified as Dis-
crete Mathematics, as every such definition would be incomplete or debatable. A more useful
description would be to list what we consider to be the basic mathematical disciplines tradi-
tionally classified as Discrete Mathematics and included in most university courses on that
subject: the Theory of Sets and Relations, Mathematical Logic, Number Theory, Graph The-
ory and Combinatorics. These are the topics covered in this book. Sometimes textbooks and
courses on Discrete Mathematics also include Abstract Algebra, Classical Probability Theory,
Automata Theory, etc. These topics are not included here, mainly for practical reasons.

Logicwas born in theworks ofAristotle as a philosophical study of reasoning some 25 cen-
turies ago. Over the past 150 years it has gradually developed as a fundamental mathematical
discipline, which nowadays has deep andmature mathematical content and also applications
spreading far beyond foundational and methodological issues. While the field of Mathemat-
ical Logic is often regarded as included in the broad scope of Discrete Mathematics, in this
book it is treated essentially on a par with it.

As mathematical fields of their own importance, both Logic and Discrete Mathematics
are relatively young and very dynamically developing disciplines, especially since the mid
20th century, when the computer era began. Many of the most exciting current developments

1 Not to be confused with discreetly done mathematics!
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in Logic and Discrete Mathematics are motivated and inspired by applications in Computer
Science, Artificial Intelligence and Bioinformatics. We have accordingly included some such
selected applications in the book.

About the book

The work on this book started more than a decade ago as a loose collection of lecture notes
that we wrote and used to teach courses on Logic and Discrete Mathematics, partly because
we could not find available suitable textbooks that would meet our needs and requirements.
Eventually we decided to write a book of our own, which would best reflect the content and
features we consider most important:

1. Being logicians, we have provided a much more detailed and deeper treatment of
Logic than is usual in textbooks on Discrete Mathematics. We believe that such a treat-
ment is necessary for the proper understanding and use of Logic as a mathematical
and general reasoning tool, and we consider it a distinguishing feature of the book.

2. We included only what we consider to be the core disciplines within the field of Dis-
creteMathematics (without claiming that ours is the only good choice) but have treated
these disciplines in considerable depth for an undergraduate text. That enabled us to
keep the book within reasonable size limits without compromising on the content and
exposition of the topics included.

3. We have tried to keep the exposition clear and concise while still including the
necessary technical detail and illustrating concepts and techniques with numerous
examples.

4. We have included comprehensive sets of exercises, most of them provided with
answers or solutions in an accompanying solutions manual.

5. We have also included “boxes” at the end of each section. Some contain mathemat-
ics titbits or applications of the content in the section. Others are short biographies of
distinguished scientists who have made fundamental contributions to Discrete Math-
ematics. We hope the reader will find it inspiring to learn a little about their lives and
their contributions to the fields covered in the book.

To the instructor

We have aimed this book to be suitable for a variety of courses for students in both Mathe-
matics and Computer Science. Some parts of it are much more relevant to only one of these
audiences andwe have indicated them by introducing Mathematics Track and Computer Science
Track markers in the text. We regard everything not explicitly on either of these tracks to be
suitable for both groups.

In addition, the book can be used for designing courses on different undergraduate or
lower graduate levels. Some material that could reasonably be omitted in courses at a lower
undergraduate level is indicated with an Advances Track marker. These tracks are, of course,
only suggestions, which should serve as our recommendations to the instructor.
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The single stars shown in the exercises are deemed to be exercises that are more difficult,
while the double stars are considered to be exercises that are challenging.

Thewhole book can be comfortably covered in two semester courses, or various selections
can be made for a single semester course. Apart from assuming knowledge of the background
material in the preliminary Chapter 1, the chapters are essentially independent and can be
taught in any order. The only exception is Chapter 4 on first-order logic, which presupposes
knowledge of the material on propositional logic covered in Chapter 3. Also, much of the
content of Chapter 2 covers general mathematical background, useful for the rest of the book.
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Preliminaries

1.1. Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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Here we briefly review some minimal background knowledge that we will assume in the rest
of the book. Besides a small amount of that nebulous quality called “mathematical maturity”,
we only expect some basic concepts from set theory and mathematical indiction. The reader
who is familiar with these concepts can safely skip on to the next chapter.

Some notation

We denote the set of natural numbers {0‚ 1‚ 2‚…} by ℕ. There is some inconsistency in the
mathematical literature as to whether 0 belongs to the natural numbers or not: some authors
choose to include it, other do not. For our purposes it is convenient to include 0 as a natural
number. Other number sets which will be of importance to us include the sets of integers ℤ,
positive integers ℤ+, rational numbers ℚ, positive rational numbers ℚ+, real numbers ℝ, and
positive real numbers ℝ+.

The product 1 × 2 × 3 × · · · × n of the first n positive integers turns up in manymathemati-
cal situations. It is therefore convenient to have amore compact notation for it. We accordingly
define 0! = 1 and n! = 1 × 2 × 3 × · · · × n, for n ≥ 1. We read n! as ‘n factorial’. The definition of
0! as 1 is not supposed to carry any intuitive meaning: it is simply a useful convention.

Logic and Discrete Mathematics: A Concise Introduction, First Edition. Willem Conradie and Valentin Goranko.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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2 Logic and Discrete Mathematics: A Concise Introduction

1.1. Sets
Sets and elements. By a set we intuitively mean a collection of objects of any nature (num-
bers, people, concepts, sets themselves, etc.) that is considered as a single entity. The objects in
that collection are called elements of the set. If an object x is an element of a set A, we denote
that fact by

x ∈ A;

otherwise we write
x ∉ A.

We also say that x is a member of the set A or that x belongs to A. If a set has finitelymany elements
(here we rely on your intuition of what finite is), we can describe it precisely by listing all of
them, for example:

A = {3‚ 4‚ 5}.

We often rely on our common intuition and use ellipses, as in

A = {1‚ 2‚…‚ n}.

We sometimes go further and use the same for infinite sets; for example, the set of natural
numbers can be specified as

ℕ = {0‚ 1‚ 2‚ 3‚…}.

Further we will discuss a more universal method of describing sets.

Equality and containment of sets. Two sets are declared equal if and only if they have the
same elements. In other words, the sets A and B are equal, denoted as usual by A = B, if every
element of A is an element of B and every element of B is an element of A. For example, the
sets {a‚ b‚ c} and {b‚ c‚ a} are equal, and so are the sets {1‚ 9‚ 9‚ 7}, {1‚ 9‚ 7} and {7‚ 1‚ 9‚ 1‚ 7‚ 1}.

A set A is a subset of a set B, denoted A ⊆ B, if every element of A is an element of B. If
A ⊆ B, we also say that A is included in B, or that B containsA. For example, {3‚ 5} ⊆ {5‚ 4‚ 3}.
Note that every set is a subset of itself.

The following facts are very useful. They are direct consequences of the definitions of
equality and containment of sets.

• Two sets A and B are equal if, and only if, A ⊆ B and B ⊆ A.
• A set A is not a subset of a set B, denoted A ⊈ B, if, and only if, there is an element of A that
is not an element of B.

• A set A is not equal to a set B if A is not a subset of B or if B is not a subset of A.

A set A is a proper subset of a set B, denoted A ⊂ B or A ⫋ B, if A ⊆ B and A ≠ B. In other
words, A is a proper subset of B if A is a subset of B and B is not a subset of A, i.e. if at least
one element of B is not in A. In particular, no set is a proper subset of itself. If A is not a proper
subset of B, we denote that by A ⊈ B.

The empty set. Amongst all sets there is one that is particularly special. That is the empty
set, i.e. the set that has no elements. By definition of equality of sets, there is only one empty
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set. One might think that the empty set is a useless abstraction. On the contrary, it is a very
important set, and probably the most commonly used one in mathematics (like the number 0
is the most commonly used number). That is why it has a special notation: ∅.

Sets and properties. Set-builder notation. We cannot always list the elements of a set, even
if it is finite, so we need a more universal method for specifying sets. The commonly used
method is to describe the property that determines membership of the set, e.g.:

“A is the set of all objects x such that…x….”

where “…x…” is a certain property (predicate) involving x. We use the following convenient
notation, called the set-builder notation for the set described above:

A = {x ∣…x…}.

Here are some examples:

• {x ∣ x is a negative real number} defines the set of negative real numbers;
• {x ∣ x is a student in the MATH3029 class} defines the set of students in the MATH3029 class.
• {x ∣ x ∈ ℤ and 3 ≥ x > −2} defines the set {−1‚ 0‚ 1‚ 2‚ 3}.
• {x ∣ x = m

n
‚ where m ∈ ℤn ∈ ℤ and n ≠ 0} defines the set of rational numbers.

Sometimes, we use the set-builder notation more liberally and, for instance, describe the

set of rational numbers as
{

m
n
|||m and n are integers and n ≠ 0

}
or the set of positive real num-

bers as {x ∈ ℝ ∣ x > 0}.

Operations on sets. We describe below the basic operations on sets.

Intersection. The intersection of two sets A and B is the set

A ∩ B = {x ∣ x ∈ A and x ∈ B}

consisting of all elements that are both in A and in B. If A ∩ B = ∅, then A and B are called
disjoint.

Union. The union of two sets A and B is the set

A ∪ B = {x ∣ x ∈ A or x ∈ B}

consisting of all elements that are in at least one of A and B.
Difference. The difference of the sets A and B is the set

A − B = {x ∣ x ∈ A and x ∉ B}

consisting of all elements that are in A but not in B. An alternative notation for A − B is
A\B.

For example, if A = {1‚ 2‚ 3‚ 4} and B = {3‚ 4‚ 5‚ 6‚ 7} then A ∩ B = {3‚ 4}, A ∪ B =
{1‚ 2‚ 3‚ 4‚ 5‚ 6‚ 7}, A − B = {1‚ 2} and B − A = {5‚ 6‚ 7}.
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Universal sets and complements of sets. Often, all sets that we consider are subsets of one
set, called the domain of discourse. We also call that set the universe or the universal set. For
example, in arithmetic, the universe is usually the set of natural numbers or the set of integers,
while in algebra and calculus, the universe is the set of real numbers; talking about humans,
the universe is the set of all humans, etc.

Definition 1.1.1 Let a universal set U be fixed and A ⊆ U. The complement of A (with respect to
U) is the set

A′ = U − A.

The complement of a set A is sometimes also denoted by A.

Thus, the complement of A consists of those objects from the universal set that do not
belong to A. For example, if the universal set is ℝ, then the complement of the interval (0‚ 2] is
(−∞‚ 0] ∪ (2‚∞); the complement of ℚ is the set of irrational numbers.

Powersets. The power set of a set A is the set of all subsets of A:

𝒫 (A) = {X ∣ X ⊆ A}.
Here are some examples:

• 𝒫 (∅) = {∅};
• 𝒫 ({a}) = {∅‚ {a}}, in particular, 𝒫 ({∅}) = {∅‚ {∅}};
• 𝒫 ({a‚ b}) = {∅‚ {a}‚ {b}‚ {a‚ b}};
• 𝒫 ({a‚ b‚ c}) = {∅‚ {a}‚ {b}‚ {c}‚ {a‚ b}‚ {a‚ c}‚ {b‚ c}‚ {a‚ b‚ c}}.

Cartesian products of sets. In order to introduce the next operation we need the notion of
ordered pair. Let a, b be any objects. Intuitively, the ordered pair of a and b, denoted (a‚ b) (do
not confuse this with an open interval of real numbers!), is something like a set consisting of
a as a first element (or first component) and b as a second element (or second component). Thus,
if a ≠ b, then the ordered pair (a‚ b) is different from the ordered pair (b‚ a) and each of these
is different from the set {a‚ b} because the elements of a set are not ordered. In particular, the
ordered pair (a‚ a) is different from the set {a‚ a} = {a}. Here is a formal definition of an ordered
pair as a set that satisfies the intuition:

Definition 1.1.2 Given the objects a and b, the ordered pair (a‚ b) is the set {{a}‚ {a‚ b}}.

Here is the fundamental property of ordered pairs:

Proposition 1.1.3 The ordered pairs (a1‚ a2) and (b1‚ b2) are equal if and only if a1 = b1 and a2 = b2.

Proof: Exercise.

Definition 1.1.4 The Cartesian product of the sets A and B is the set

A × B = {(a‚ b) ∣ a ∈ A and b ∈ B}‚

consisting of all ordered pairs where the first component comes from A and the second component comes
from B. In particular, we denote A × A by A2 and call it the Cartesian square of A.
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For example, if A = {a‚ b}‚ B = {1‚ 2‚ 3}, then

A × B = {(a‚ 1)‚ (a‚ 2)‚ (a‚ 3)‚ (b‚ 1)‚ (b‚ 2)‚ (b‚ 3)}‚

while
B × A = {(1‚ a)‚ (1‚ b)‚ (2‚ a)‚ (2‚ b)‚ (3‚ a)‚ (3‚ b)}.

Note that if A or B is empty, then A × B is empty too. Moreover, if A has n elements and
B has m elements, then A × B has mn elements (why?). This is one of the reasons for the term
“product”.

The Cartesian coordinate system in the plane is a representation of the plane as the Carte-
sian1 square ℝ2 of the real line ℝ, where we associate a unique ordered pair of real numbers
(its coordinates) with every point in the plane.

The notion of an ordered pair can be generalized to ordered n-tuple, for any n ∈ ℕ+. An
n-tuple is an object of the type (a1‚ a2‚…‚ an) where the order of the components a1‚ a2‚…‚ an
matters. We will not give a formal set theoretic definition in the style of Definition 1.2.1, but
leave this as an exercise (Exercise 11).

Accordingly, the Cartesian product can be extended to n sets:

A1 × A2 × · · · × An = {(a1‚ a2‚…‚ an) ∣ a1 ∈ A1‚ a2 ∈ A2‚ · · · ‚ an ∈ An}.

As before, we will use the notation An for A × A × · · · × A
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

n times

.

Relations. Relations, also called predicates, are ubiquitous in mathematics. Relations
between numbers like “being equal”, “being less than” and “being divisible by” come to
mind at once. As these examples indicate, many of the relations we commonly encounter
are binary, i.e., relations relating two objects at a time. It will be convenient for us to identify
a binary relation with the set of all ordered pairs of elements that stand in that relation. We
thus have the following definition:

Definition 1.1.5 A binary relation on a set A is any subset of A2.

For example the relation < on the set ℕ of natural numbers is a binary relation, which we
identify with the set

{(a‚ b) ∣ a‚ b ∈ ℕ and a is less than b}.

The relation of “being the mother of” is a binary relation on the set of humans, which we
identify with the following set of ordered pairs:

{(x‚ y) ∣ x and y are humans and x is the mother of y}.

Definition 1.1.6 An n-ary relation on a set A is any subset of An.

1 The term “Cartesian” comes from the name of the French mathematician René Descartes (1596–1650), who was
the first to introduce coordinate systems and to apply algebraic methods in geometry.


