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Preface

This book is the outcome of a conference held in September 2012 at
the Centro De Giorgi of the Scuola Normale in Pisa. The aim of the
conference was to discuss recent results on nonlinear analysis, and more
specifically on geometric partial differential equations.
These equations arise in several models from physics, biology, mate-

rial science, image processing and applied mathematics in general, and
attracted a lot of attention in recent years. The typical question is study-
ing a set or a function with particular properties (isoperimetric problems,
shape optimization, free boundary problems, minimal surfaces), or the
way a set or a function evolves (front propagation, mean curvature flow,
total variation flow, travelling waves, Ginzburg-Landau problems).
A characteristic feature of these problems is the ubiquitous onset of

singularities, and a detailed analysis of this phenomenon is often a very
difficult task. As classical solutions are generally smooth, the presence of
singularities motivates the definition of weak solutions, among which we
mention viscosity solutions, varifold solutions and currents. The analysis
of these objects requires the development of advanced tools from differ-
ent branches of mathematics, such as calculus of variations, geometric
measure theory, partial differential equations and differential geometry.
In this book, particular attention is paid to the study of special self-

similar solutions, such as solitons, homothetic self-shrinkers and travel-
ling waves, which are crucial for understanding both the nature of singu-
larities and the asymptotic behaviour of solutions. Qualitative properties
of solutions, such as convexity or monotonicity, are also considered.

Antonin Chambolle
Matteo Novaga
Enrico Valdinoci
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tamento de Matemática, Rua Marquês de São Vicente, 225, Gávea Rio de
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On the structure of phase transition maps
for three or more coexisting phases

Nicholas D. Alikakos

Abstract. We consider system (1.1) below. After stating certain general facts
which do not depend on the structure of W , we focus on the phase transition case.
For symmetric W ’s the main issues have been resolved, and we summarize them
here. Next we recall the De Giorgi conjecture in the scalar case, and we point to a
Bernstein type theorem that appears appropriate for (1.1). Finally we state a result
on the hierarchical structure of the equivariant solutions.

1 Introduction

This paper is partly based on a lecture delivered by the author at the
ERC workshop “Geometric Partial Differential Equations” held in Pisa
in September 2012. What is presented in the following is an expanded
version of that lecture.
Specifically, we consider the system

�u −Wu(u) = 0, for u : R
n → R

m, (1.1)

with W ∈C2(Rm;R+), W ≥ 0, where Wu := (∂W/∂u1, . . . , ∂W/∂un)�,
and occasionally with additional hypotheses introduced later on. We re-
fer the reader to Part I in [9] for general information and motivation for
system (1.1).
The paper is organized as follows. In Section 2 we present the basics

of the problem for general potentials, in Section 3 we study symmetric
potentials for the phase transition model and establish the existence of
equivariant connection maps, in Sections 4 and 5 we present and prove a
related Bernstein-type theorem, and in Section 6 we discuss the hierarchi-
cal structure of the equivariant connection maps. Sections 2, 3, and 6 are
restricted to statements of results with explanations but without proofs,
referring to published papers or preprints for the details. In contrast, in
Sections 4 and 5 we give the background and detailed proofs.

The author was partially supported through the project PDEGE – Partial Differential Equations
Motivated by Geometric Evolution, co-financed by the European Union – European Social Fund
(ESF) and national resources, in the framework of the program Aristeia of the ‘Operational Program
Education and Lifelong Learning’ of the National Strategic Reference Framework (NSRF).
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2 The basics for general potentials

We recall some known facts for (1.1). The system is the Euler–Lagrange
equation for the free energy functional

J (u;R
n) :=

∫
Rn

(
1

2
|∇u|2 +W (u)

)
dx,

where ∇u = (∂ui/∂u j ), for i = 1, . . . ,m, j = 1, . . . , n, and | · | is the
Euclidean norm of the matrix.
One important difference of (1.1) with its scalar counterpart (for m =

1) is that in that case the structure of bounded entire solutions does not
depend very much on W . In contrast, for the system there two distin-
guished examples with very distinct behavior: The class of phase transi-
tion potentials, that is, W ’s with a finite number of global minima (wells)
a1, . . . , aN , with W (ai) = 0, and the class of Ginzburg–Landau poten-
tials, for example, the potential W (u) = 1

4(|u|2 − 1)2 (disconnected ver-
sus connected zero sets). In the phase transition case and under suit-
able rescaling the free energy concentrates on minimal hypersurfaces or
Plateau complexes (see [14]), while in the Ginzburg–Landau case it con-
centrates on higher-codimension objects known as vortices, and other-
wise the solution converges to a harmonic map (see [18]).
Equation (1.1) can be written as a divergence-free condition, that is,

div T = (∇u)�(�u −Wu(u)) = 0,

for the stress-energy tensor

Ti j (u,∇u) := u,i · u, j − δi j

(
1

2
|∇u|2 +W (u)

)
.1

In this context it was introduced in [3], but as it turns out it is a particu-
larization of a general formalism well-known to the physicists [40].

1 The sharp-interface limit Tε → T0 = σ(∇d⊗∇d− Id) is the orthogonal projection to the tangent
space of the interface S separating the two phases, where d = dist(x, S) and σ is the associated
interface energy.
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The divergence-free formulation has certain important consequences.
For example, one can derive the monotonicity formula

d

dR

(
1

Rn−2

∫
|x−x0|<R

(
1

2
|∇u|2 +W (u)

)
dx

)
≥ 0,

from which Liouville-type theorems follow (see [3]). For instance,{
J (u; BR)=o(Rn−2) as R →+∞, for n ≥ 3, implies u≡ constant,

J (u; BR)=o(log R) as R →+∞, for n = 2, implies u≡ constant .

In particular,∫
Rn

(
1

2
|∇u|2 +W (u)

)
dx < +∞ implies u ≡ constant, (2.1)

for n ≥ 2. Note that (2.1) is a source of difficulty for constructing solu-
tions to (1.1) via the direct method. It was Farina [27] who first derived
the monotonicity formula above and its implication (2.1) in the context
of the Ginzburg–Landau system and Modica [41] who derived (2.1) for
m = 1.
In the scalar ODE case (n = 1, m = 1), for solutions of (1.1) with

limits at infinity, one has the elementary equipartition relation

1

2
|ux |2 = W (u).

In the scalar PDE case (n ≥ 2, m = 1), Modica [41] established the
estimate

1

2
|∇u|2 ≤ W (u), (2.2)

(see also [20]). The analog of estimate (2.2) is false for systems in
general. All the known counterexamples (see [27, pages 389–390]) in-
volve Ginzburg–Landau potentials. One implication of (2.2) would be
the stronger monotonicity formula

d

dR

(
1

Rn−1

∫
|x−x0|<R

(
1

2
|∇u|2 +W (u)

)
dx

)
≥ 0,

already known for the scalar case (see [42]).
Another implication of the divergence-free formulation is a Pohozaev-

type identity (see [7])

n − 2
2

∫
�

|∇u|2 dx + n
∫
�

W (u) dx + 1

2

∫
∂�

(x − x0) · ν |∇u|2 dS = 0,
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where ν is the outward normal and x0 ∈ � arbitrary, for solutions of the
system {

�u −Wu(u) = 0, in � ⊂ R
n,

u = a, on ∂�, with W (a) = 0.

Gui [36] has developed certain identities for the system, which he calls
‘Hamiltonian’, and points out their relationship with the classical Po-
hozaev identity (see, for example, [26]). His identities can also be de-
rived via the stress-energy tensor. Here is a sample: Let n = 2, m = 2,
and let u be a solution to (1.1) satisfying the estimate

|u(x1, x2)− a±| ≤ C e−c|x1|, for all x2 ∈ [M, N ],
with −∞ ≤ M, N ≤ +∞ and W (a±) = 0. Then,∫

R

(
1

2

(|ux1(x1, x2)|2 − |ux2(x1, x2)|2
)−W (u(x1, x2))

)
dx1=constant,

for all x2 ∈ (M, N ).
Having asymptotic information on the solution along certain hyper-

planes as |x | → +∞ and also convergence to a minimum of W away
from them (see Section 4), one can measure the flux of the stress-energy
tensor over large spheres in order to derive balance conditions relating
the angles between the hyperplanes, thus deriving rigidity-type results.
For the phase transition case and for a triple-well potential, Gui [36] has
derived such a result in the planar case n = 2, m = 2, thus relating the
angles of a triple junction to the surface energies. This was extended to
the three-dimensional case n = 3, m = 3, in [5]. Related also is the work
of Kowalczyk, Liu, and Pacard [39].

3 Symmetric phase transition potentials
Existence of equivariant connection maps

In this section we restrict ourselves to the phase transition case for poten-
tials that respect the symmetries of a finite reflection group G acting on
R
n (see [35]) and we look for equivariant solutions

u(gx) = gu(x), for all x ∈ R
n and g ∈ G.

The first results in this direction are due to Bronsard, Gui, and Schatz-
man [19] for n = 2, m = 2, and G the group of reflections of the
equilateral triangle. Later, the work was extended by Gui and Schatz-
man [37] to n = 3, m = 3, and G the group of symmetries of the regular
tetrahedron. These two special groups are particularly important as they
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are related to triple junctions on the plane and to quadruple junctions in
three-dimensional space, which are minimal objects (cones) for the re-
lated sharp-interface problem.
In work with Fusco [10] we considered the general case of a reflec-

tion group and looked for an abstract result. Consider the following very
general hypotheses.

Hypothesis 1 (N nondegenerate global minima). The potentialW is of
class C2 and satisfies W (ai) = 0, for i = 1, . . . , N , and W > 0 on
R
m \ {a1, . . . aN }. Furthermore, there holds v�∂2W (u) v ≥ 2c2|v|2, for

v ∈ R
m and i = 1, . . . , N .

Hypothesis 2 (Symmetry). The potential W is invariant under a finite
reflection group G acting on R

m (Coxeter group), that is,

W (gu) = W (u), for all g ∈ G and u ∈ R
m .

Moreover, we assume that there exists M > 0 such that W (su) ≥ W (u),
for s ≥ 1 and |u| = M.

Hypothesis 3 (Location and number of global minima). Let F ⊂ R
m

be a fundamental region of G. We assume that the closure F contains a
single global minimum of W, say a1, and let Ga1 be the subgroup of G
that leaves a1 fixed.

We set
D = Int{∪gF | g ∈ Ga1},

and notice that by the invariance of W it follows that the number of min-
ima of W is

N = |G|
|Ga1 |

,

where here | · | is the order of the group.
We recall from [10] several examples. For G = H3

2, the group of
symmetries of the equilateral triangle on the plane, we can take as F
the π

3 sector. If a1 ∈ F , then N = 6, while if a1 is on the walls, then
N = 3. In higher dimensions we have more options since we can place
a1 in the interior of F , in the interior of a face, on an edge, and so on.
For example, if G = W∗, the group of symmetries of the cube in three-
dimensional space, then |G| = 48. If the cube is situated with its center
at the origin and its vertices at the eight points (±1,±1,±1), then we
can take as F the simplex generated by s1 = e1 + e2 + e3, s2 = e2 + e3,
and s3 = e3, where the ei ’s are the standard basis vectors. We have then
the following options:

(i) At the origin, N = 1.
(ii) On the edge s3, N = 6.
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(iii) On the edge s1, N = 8.
(iv) On the edge s2, N = 12.
(v) In the interior of a face, N = 24.
(vi) In the interior of the fundamental region, N = 48.

We have the following theorem.

Theorem 3.1 ([10, 4, 33]). Under Hypotheses 1–3, there exists a classi-
cal entire equivariant solution u : R

n → R
m to system (1.1) such that

(i) |u(x) − a1| ≤ K e−k dist(x,∂D), for x ∈ D and for positive constants
k, K ,

(ii) u(F) ⊂ F and u(D) ⊂ D (positivity).2

As a consequence of (i), the solution u connects the N = |G|/|Ga1 |
global minima of W in the sense that

lim
λ→+∞ u(λgη) = ga1, for all g ∈ G,

uniformly for η in compact subsets of D ∩ Sn−1.

Remark 3.2. We need a clarification concerning the dimensions n,m
and the group G that is acting by Hypothesis 2 on the target but also on
the domain since the solutions are equivariant. If n ≥ m, then the group
G can be embedded in the domain space via a natural homomorphism.
For example, consider n = 3, m = 2, and G the group of symmetries
of the equilateral triangle. On the other hand, if n < m, the existence
of such a homomorphism is more problematic and in general there is no
such embedding. For example, consider n = 2, m = 3, and take as G the
group associated to the tetrahedron. For relevant information we refer to
Bates, Fusco, and Smyrnelis [15]. Our notation u(F) and u(λgη) tacitly
assumes the homomorphism in the case n �= m.

The theorem above was proved in Alikakos and Fusco [10] under an
additional hypothesis. Subsequently, the author gave a simplified proof
in [4] and, finally, in Fusco [33] the extra hypothesis was removed and
the theorem was proved under the hypotheses above.
As it was mentioned in (2.1), there holds

J (u;R
n) = +∞, where J (u,�) =

∫
�

(
1

2
|∇u|2 +W (u)

)
dx,

2 Smyrnelis has established that u(F) ⊂ F for certain groups (personal communication).
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for the solution constructed above. However, the solutions are con-
structed variationally and possess the following minimization property
(see [11]), which defines the notion of a local minimizer (cf. [2]), that is,

J (u;�) = min J (v;�), such that v = u on ∂�, (3.1)

over all domains � that are bounded, smooth, and open, but not neces-
sarily symmetric, and over all equivariant positive maps v (cf. (ii) in the
statement of Theorem 3.1) in W 1,2(�;R

m).

Remarks 3.3. The constructed solution u is a minimizer in the equivari-
ant positive class. For the equilateral triangle group on the plane and the
regular tetrahedron group in three-dimensional space, one would expect
that the solution constructed is a minimizer in the class of allW1,2(�;Rn)-
maps.
It appears that the positivity of u is not an implication of the minimiz-

ing property (3.1) for arbitrary G, without extra hypotheses on W .
Looking for equivariant solutions is of course a convenience. However,

at this point all the existence results for system (1.1) known to the author
involve hypotheses of symmetry (except for n = 1).

4 A related Bernstein-type theorem – Background

We recall De Giorgi’s conjecture [23] for the scalar equation, for n ≥ 2,
m = 1.

Conjecture 4.1 (De Giorgi). For the equation

�u −W ′(u) = 0,

with W (u) = 1
4(u

2 − 1)2, under the hypotheses that u : R
n → R is in

C2(Rn; [−1, 1]) with ∂u/∂xn > 0, is it true that the level sets of u are
hyperplanes, at least for n ≤ 8?
A more restricted version of the conjecture involves the additional hy-

pothesis limxn→±∞ u(x) = ±1.
This conjecture was established by Ghoussoub and Gui [34] for n = 2,

Ambrosio and Cabré [13] for n = 3, and Savin [44] in the restricted
form for 4 ≤ n ≤ 8. Finally, it was disproved for n ≥ 9 by del Pino,
Kowalczyk, and Wei [24,25]. We refer to the survey paper by Farina and
Valdinoci [30], where in addition several extensions to a variety of related
equations are given.
Some of the ingredients behind the formulation of this conjecture are

(i) the Bernstein theorem for graphs,
(ii) the relationship between monotonicity and stability,
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(iii) the solution of the ODE (the heteroclinic connection)

d2U

dη2
−W ′(U) = 0, with lim

η→±∞U(η) = ±1

(unique up to translations),
(iv) the phase transition problem for two phases.

The conclusion in the conjecture is equivalent to showing that

u(x) = U

(
a · x − c√

2

)
,

for some a ∈ R
n , with |a| = 1, and c ∈ R, that is, u(x) = U(Px), where

P is the orthogonal projection to the normal direction of the level sets.
In formulating the analog of the conjecture for systems one should

keep in mind that

(i) Tangent planes are special cases of tangent cones. Moreover, mini-
mizing tangent cones have cylindrical structure, that is,

C = V × C̃, with C̃ minimizing in V⊥,

and the cone C is translation invariant ‘along V ’ (V = {0} is an op-
tion). Also, the Liouville object in this context is the cone at infinity.
The Bernstein-type theorem therefore should involve a cone.

(ii) Monotonicity is not related in general to stability for systems.
(iii) The solution u : R

n → R
n−k a posteriori should be of the form

u(x) = û(Px),

where P is an orthonormal projection on an (n − k)-dimensional
plane, û : R

n−k → R
n−k is a connection map, equivariant as in

Theorem 3.1 in Section 3.
(iv) For three or more phases the order parameter should be a vector

since otherwise there is no connection between the extreme phases.
For example, for coexistence of three phases we need at least a two-
dimensional order parameter, thus a partitioning ofR2 in three parts.

(v) For the analog of the restricted conjecture we refer to Section 5 in
the present paper.

Our purpose in this section is to present a sample of such Bernstein-type
theorems for the simplest nontrivial case, the triple junction in R

3, that
corresponds to one of the two singular minimizing cones inR

3 (see [50]).
The formulation of such theorems in terms of cones goes back to Fleming
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[32] and is subsequently developed in Morgan [43]. However, here we
also want to emphasize partitions as the natural setup. For this reason we
present in detail White’s approach [51] because it improves Almgren’s
[12] and because of its simplicity, and also for making our treatment as
self-contained as possible. Our presentation here is also based on Chan’s
thesis [21], written under White’s supervision.
Finally, we mention the paper of Fazly and Ghoussoub [31], which

extends the methods of the scalar equation to systems, as far as this can
possibly be done, by assuming certain monotonicities on the components
of the solution which amount to

∂2W (u)

∂ui∂u j
≤ 0, for i �= j.

For a special system of two equations, we mention the papers of Beresty-
cki, Lin, Wei, and Zhao [16], Berestycki, Terracini, Wang, and Wei [17],
Farina [28], and Farina and Soave [29].
We recall here some basic background on partitions and geometric

measure theory (see [45,51,52]).

4.1 Minimizing partitions

Consider an open set U ⊂ R
n occupied by N immiscible fluids, or

phases. Associated to each pair of phases i and j there is a surface energy
density ei j , with ei j > 0 for i �= j , and ei j = e ji , with eii = 0. Hence,
if Ai denotes the subset of U occupied by phase i , then U is the disjoint
union

U = A1 ∪ A2 ∪ A2 ∪ · · · ∪ AN ,

and the energy of the partition A = {Ai }Ni=1 is

E(A) =
∑

0<i< j≤N
ei j M(∂Ai ∩ ∂A j ),

where M (for mass) stands for the measure of the interface. For n = 3 it
will simply be the area of ∂Ai ∩ ∂A j .
If U is unbounded, for example U = Rn (we say then that A is com-

plete), the quantity above in general will be infinity. Thus, for each W
open, with W � U , we consider the energy

E(A;W ) =
∑

0<i< j≤N
ei j M(Ii j ∩W ), where Ii j := ∂Ai ∩ ∂A j .
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Definition 4.2. The partition A is a minimizing N -partition if given any
W � U and any N -partition A′ of U with

N⋃
i=1

(Ai � A′i) � W, (4.1)

we have
E(A;W ) ≤ E(A′;W ).

The symmetric difference Ai � A′i of the sets Ai and A′i is defined as their
union minus their intersection, that is, Ai � A′i = (Ai ∪ A′i ) \ (Ai ∩ A′i).

4.2 Flat chains with coefficients in a group

Let G be an abelian group with norm | · |, such that |g| ≥ 0, with |g| = 0
if and only if g = 0, for all g ∈ G, and

|g + h| ≤ |g| + |h|, for all g, h ∈ G.

Then, (G, | · |) is a metric space and we will assume that it is complete
and separable. In our case G will be a finite group.
Fix R

n and a compact convex set K in R
n . For each integer k ≥ 0

consider the abelian group of all formal finite sums of the form
∑

gi Pi ,
where gi ∈ G and where Pi is a k-dimensional oriented compact convex
polyhedron inK. We form the quotient group obtained by identifying gP
with −g P̃ , whenever P and P̃ coincide but have opposite orientations.
Also, identify gP and gP1+ gP2, whenever P can be subdivided into P1
and P2.
The resulting abelian group Pk(K;G) is called the group of polyhe-

dral k-chains on K with coefficients in G. Define the boundary homo-
morphism ∂ : Pk → Pk−1 by

∂
(∑

gi Pi
)
:=
∑

gi∂Pi .

Note that any polyhedral k-chain T can be written as a linear combination∑
i gi [Pi ] of nonoverlapping polyhedra, that is, polyhedra with disjoint

interiors. Then, the flat norm of the chain is defined to be

W (T ) = inf
Q
{M(T − ∂Q)+ M(Q)},

where the infinimum is over all polyhedral (k + 1)-chains Q.
The flat norm makes Pk(K;G) into a metric space. The completion of

this metric space is denoted by Fk(K;G) and its elements are called flat
k-chains in K with coefficients in G. By uniform continuity, functionals
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such as the flat norm and operations such as addition and boundary extend
in a unique way from polyhedral chains to flat chains. The mass norm in
Pk(K;G) extends to a linear semicontinuous functional in Fk(K;G).
Suppose that every bounded closed subset of G is compact. A fun-

damental compactness theorem for flat chains asserts that, given any se-
quence Ti ∈ Fk(K;G)withM(Ti) andM(∂Ti) uniformly bounded, there
is a W -convergent subsequence. More generally, one can define the flat
chains in R

n with compact support, Fk(R
n;G), meaning that each ele-

ment vanishes outside a certain compact convex set. Then, the compact-
ness theorem holds for a sequence Ti ∈ Fk(R

n;G), with supp Ti ⊂ K,
for K independent of i . The symbol ‘⇀’ denotes convergence in the flat
norm.

4.3 Flat chains of top dimension

[See [51].] Polyhedral n-chains in R
n with compact support can be iden-

tified with the set of piecewise-constant functions

g : R
n → G,

that vanish outside a compact convex set K. Here, two functions that dif-
fer only on a set of measure zero are regarded as the same. ‘Piecewise
constant’ means locally constant except along a finite collection of hy-
perplanes. The identification is as follows. Any such T ∈ Fk(R

n;G) can
be written as

T =
∑

gi [Pi ],
where the Pi ’s are nonoverlapping and inherit their orientations from R

n .
We can associate to T the function

g : R
n → G, with g(x) =

{
gi , if x is in the interior of Pi ,

0, if x is not in the interior of Pi .

Note that the mass norm of T is equal to the L1 norm of g(·). Also, since
there are no nonzero (n + 1)-chains in R

n , we see from the definition of
W that

W (T ) = M(T ) =
∫

Rn
|g(x)| dx .

Consequently, theW -completion of the polyhedral chains (that is, the flat
n-chains) is isomorphic to the L1-completion of the piecewise-constant
functions.
Denoting T by [K]Lg, the isomorphism is

L1(K;G) � g → [K]Lg ∈ Fn(K;G),



12 Nicholas D. Alikakos

with

M([K]Lg) = W ([K]Lg) =
∫

Rn
|g| dx .

Thus, the flat n-chains T on R
n with compact support can be identified

with the L1loc(R
n;G) functions. The flat chains with M(∂T ) < +∞

correspond to the sets with finite perimeter (Caccioppoli sets). The BV
norm of the function g above gives the perimeter, that is,

‖g‖BV = M(∂T ).

The compactness for flat chains with

M(Tn)+ M(∂Tn) < C

is equivalent in this setup to the compactness of the embedding

BV (�) � L1(�), for � bounded.

The lower semicontinuity ofM(∂T )with respect to theW -norm is equiv-
alent to the lower semicontinuity of the BV norm with respect to L1.

4.4 The group of surface tension coefficients (see [51])

The purpose next is the introduction of an appropriate group G so that
for the flat chain T =∑ gi Pi , where Pi = Ai , with A = {Ai } a partition
of U , there holds

M(∂T �W ) = E(A;W ). (4.2)

First, assume that

eik ≤ ei j + e jk, for all i, j, k. (4.3)

Let G be the free Z2-module with N generators f1, . . . , fN (one for each
phase). White [51] defines a norm in this group such that

| fi − f j | = ei j ,

and the Z2-module identifies

fi1 − f j1 = fi1 + f j1 .

Utilizing this, it is easy to see in calculating ∂T , and M(∂T ), that (4.2)
holds. In this setup, given a partition of U into N measurable sets
A1, . . . , AN , and K as above, we associate the flat n-chain

T = KLg,
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where

g(x) =
{
fi , for x ∈ Ai ∩ K

0, for x /∈ Ai ∩ K.

Note that if the Ai ’s have piecewise-smooth boundaries, then (4.2) holds.
More generally, equation (4.2) holds whenever the Ai ’s are Caccioppoli
sets, that is, whenever the flat chains have finite mass.
Conversely, given any flat n-chain T , we can represent T as

T = KLg,

where g ∈ L1(U ∩ K;G). In this article we take U = R
n . We note that

in [51] it is shown that the inequalities (4.3) are no real restriction, in the
sense that if they are violated, then one can define new coefficients e∗i j
out of the old, so that the infimum of E coincides with the infimum of E∗
(defined by replacing ei j with e∗i j ). Also, it is noted that (4.3) is necessary
for E to be lower semicontinuous with respect to the flat norm. Here, we
refer also to Section 4.1 in [1].

4.5 Basics on minimizing chains

We recall some standard facts on minimizing chains and later we point
out the relationship with minimizing partitions.

Cones If x0 ∈ R
n , where S is a k-dimensional flat chain in R

n , then the
cone over S with vertex at x0 is the flat chain

x0S = Cone(S) = h(I × S), (4.4)

where h(t, x) = (1− t)x0 + t x , for 0 ≤ t ≤ 1, and x ∈ S. We have

S = ∂(x0S)+ x0∂S,

and if S ⊂ Br (x0), where Br (x0) is the ball with radius r and center at x0,
then

M(x0 S) ≤ r

k + 1M(S).

Cx is a cone with vertex at x if, by definition, it is invariant as a set
under the homothetic map

y → x + t (y − x), for all t > 0 and y ∈ Cx .

If S is a k-flat chain in Rn , then S is mass minimizing if M(S) ≤ M(S′),
for all S′ with ∂S′ = ∂S.
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If � is a cycle, that is, ∂� = 0, then

L(�) := inf{M(X) | ∂X = �}.
Consequently, if S is mass minimizing, thenM(S) = L(∂S).
The flat chain S is minimizing if by definition

M(S � Br (x)) = L(∂(S � Br (x)),

for all r > 0 and center x such that 0 < r < dist(x, supp ∂S). Mass
minimizing is minimizing. We allow the options ∂S = 0 andM(S) = ∞.
The monotonicity formula holds for k-dimensional minimizing flat

chains and states that

�(S, x, r) := M(S � Br (x))
ωkr k

(4.5)

is an increasing function of r, whereωk is the volume of the k-dimensional
unit ball. It follows that for minimizing flat chains S, the limit

�(S, x) := lim
r→0

�(S, x, r)

exists, and if

�(S, x, r) < B, for B independent of x, r, (4.6)

then the limit
�(S) := lim

r→+∞�(S, x, r)

exists and is independent of x . We note that the condition �(S, x, r) =
constant in r > 0, for x fixed, implies that S is a cone with vertex at x .

The tangent cone (blow-up) Let S be a minimizing flat chain, x /∈supp ∂S,
and let {μi } be an increasing sequence of positive numbers, with μi →
+∞. Set

Si = Dμi (S − x), with Dμi (S − x) = {μi(y − x) | y ∈ S}.
Then along a subsequence there holds Si ⇀ Cx (by the compactness
theorem), where Cx has the properties

(i) ∂Cx = 0,
(ii) Cx is a cone,
(iii) �(C, 0, r) = �(S, x), for all r > 0,
(iv) Cx is minimizing.
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The cone at infinity (blow-down) If instead in the arrangement above
{μi } is a decreasing sequence, with μi → 0, and if (4.6) holds, then
along a subsequence there holds Si ⇀ C∞ (by the compactness theorem),
where C∞ has the properties

(i) ∂C∞ = 0,
(ii) C∞ is a cone,
(iii) �(C∞, 0, r) = �(C∞, 0) =: �(S),
(iv) C∞ is minimizing.

Note that Cx and C∞ are not necessarily unique.
If Nk−1 is a smooth (k − 1)-surface, with k ≤ n − 1 and Nk−1 ⊂ S

n−1
(the unit sphere in R

n), then the cone over Nk−1 is

C(Nk−1) =
{
x ∈ R

n

∣∣∣∣ x

|x | ∈ Nk−1
}
.

If S is smooth, then the projection

1

R
(S ∩ S

n−1
R ),

of the set S ∩ S
n−1
R on the unit sphere tends to C∞, as R →∞, provided

that (4.6) holds, that is,

C∞ = lim
R→+∞C

(
1

R

(
S ∩ S

n−1
R

))
,

where the limit is in the flat norm, and exists along a sequence

R1 < R2 < · · · → +∞,

where C∞ is the cone at infinity.

Relationship with partitions [See [12, 21, 46].] The concepts in Para-
graph 4.5 have exact analogs for partitions defined as flat chains of top
dimension in Paragraphs 4.3 and 4.4 above. Specifically,

(i) the concept of the cone is unchanged,
(ii) the mass minimizing flat chain S is replaced by the minimizing par-

tition T (or A), via the definition in (4.1) above,
(iii) the monotonicity formula holds for minimizing partitions,
(iv) the notion of tangent cone and cone at infinity have exact analogs

for minimizing partitions.
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Figure 5.1.

5 A related Bernstein-type theorem – Statements and proofs

We are now ready to state a sample of a Bernstein-type theorem. We
begin with R

2.

Theorem 5.1 (n = 2). Let A be a complete minimizing partition in R
2

with N = 3 (three phases), with surface tension coefficients satisfying

eik < ei j + e jk, for j �= i, k with i, j, k ∈ {1, 2, 3}. (5.1)

Then, ∂A is a triod.

In Figure 5.1 we show a triod with angles θ1, θ2, θ3, and the corre-
sponding triangle with their supplementary angles θ̂i = π − θi . For these
angles Young’s law holds, that is,

sin θ̂1
e23

= sin θ̂2
e13

= sin θ̂3
e12

.

We recall that under the condition of the strict triangle inequality for the
surface tension coefficients, White has established a general regularity
result which applies in particular under (5.1) to A above. His result im-
proves on Almgren’s work [12]. Detailed proofs can be found in Chan’s
thesis [21] (Section 1.6 and pages 10–14). It follows that a priori A con-
sists of triple junctions and line segments, always a finite number in any
given open and bounded subset of R

2.
We present the proof of Theorem 5.1 in three steps. The first two are

two lemmas that we state next.

Lemma 5.2. The only minimizing cones are the straight line and the
triod.

Lemma 5.3. There holds M(∂A � BR) ≤ CR.

Accepting for the time being the lemmas above, we can conclude with
the proof of the theorem.


