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Introduction

This thesis is devoted to the regularity of optimal transport maps. We
provide new results on this problem and some applications. This is part
of the work done by the author during his PhD studies. Other papers
written during the PhD studies and not completely related to this topic
are summarized in the second part of the introduction.

1. Regularity of optimal transport maps and applications

Monge optimal transportation problem goes back to 1781 and it can be
stated as follows:
Given two probability densities ρ1 and ρ2 on R

n (originally representing
the height of a pile of soil and the depth of an excavation), let us look for
a map T moving ρ1 onto ρ2, i.e. such that1∫

T−1(A)

ρ1(x) dx =
∫
A
ρ2(y) dy for all Borel sets A, (1)

and minimizing the total cost of such process:∫
c(x, T (x))ρ1(x)dx= inf

{∫
c(x, S(x))ρ1(x) dx : S satisfies (1)

}
. (2)

Here c(x, y) represent the “cost” of moving a unit of mass from x to y
(the original Monge’s formulation the cost c(x, y) was given by |x − y|).
Conditions for the existence of an optimal map T are by now well

understood (and summarized without pretending to be aexhaustive in
Chapter 1, see [95, Chapter 10] for a more recent account of the theory).
Once the existence of an optimal map has been established a natural

question is about its regularity. Informally the question can be stated as
follows:
Given two smooth densities, ρ1 and ρ2 supported on good sets, it is true
the T is smooth?

1 From the mathematical point of view we are requiring that T�(ρ1L
n) = ρ2L

n , see Chapter 1.
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Or, somehow more precisely, one can investigate how much is the
“gain” in regularity from the densities to T . As we will see in a mo-
ment, a natural guess is that T should have “one derivative” more than ρ1
and ρ2.
To start investigating regularity, notice that (1) can be re-written as

| det∇T (x)| = ρ1(x)

ρ2(T (x)))
, (3)

which turns out to be a very degenerate first order PDE. As we already
said, the above equation could lead to the guess that T has one derivative
more than the densities. Notice however that the above equation is sat-
isfied by every map which satisfies (1). Thus, by simple examples, we
cannot expect solutions of (3) to be well-behaved. Indeed, consider for
instance the case in which ρ1 = 1A and ρ2 = 1B with A and B smooth
open sets. If we right (respectively left) compose T with a map S sat-
isfying det∇S = 1 and S(A) = A (resp. S(B) = B) we still obtain a
solution of (3) which is no more regular than S.
It is at this point that condition (2) comes into play. To see how, let us

focus on the quadratic case, c(x, y) = |x − y|2/2. In this case Brenier
Theorem 1.8, ensures that the optimal T is given by the gradient of a
convex function, T = ∇u. Plugging this information into (3) we obtain
that u solves the followingMonge-Ampère equation

det∇2u(x) = ρ1(x)

ρ2(∇u(x))) . (4)

In this way we have obtained a (degenerate) elliptic second order PDE,
and there is hope to obtain regularity of T = ∇u from the regularity of
the densities.2 In spite of the above discussion, also equation (4) it is not
enough to ensure regularity of u. A simple example is given by the case
in which the support of the first density is connected while the support of
the second is not. Indeed, since by (1) it follows easily that

T (spt ρ1) = spt ρ2,

2 One should compare this with the following fact: there is no hope to get regularity of a vector field
v satisfying

∇ · v = 0,
while if we add the additional condition v = ∇u we obtain the Laplace equation

�v = 0.
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we immediately see that, even if the densities are smooth on their sup-
ports, T has to be discontinuous (cp. Example 1.16). It was noticed by
Caffarelli, [21], that the right assumption to be made on the support of
ρ2 is convexity. In this case any solution of (4) arising from the optimal
transportation problem turns out to be a strictly convex Aleksandrov solu-
tion to the Monge-Ampère equation3

det D2u = ρ1(x)

ρ2(∇u(x))) on Int(spt ρ1). (5)

As a consequence, under the previous assumptions, we can translate any
regularity results for Aleksandrov solutions to the Monge-Ampère equa-
tion to solution to the optimal transport problem. In particular, by the
theory developed in [18, 19, 20, 89] (see also [66, Chapter 17]) we have
the following (see Chapter 2 for a more precise discussion):

- If ρ1 and ρ2 are bounded away from zero and infinity on their support
and spt ρ2 is convex, then u ∈ C1,αloc (and hence T ∈ Cα

loc).

- If, in addition, ρ1 and ρ2 are continuous, then T ∈ W 2,p
loc for every

p ∈ [1,∞).

- If ρ1 and ρ2 are Ck,β and, again, spt ρ2 is convex, then T ∈ Ck+2,β
loc .

A natural question which was left open by the above theory is the Sobolev
regularity of T under the only assumptions that ρ1 and ρ2 are bounded
away from zero and infinity on their support and spt ρ2 is convex. In
[93], Wang shows with a family of counterexamples that the best one
can expect is T ∈ W 1,1+ε with ε = ε(n, λ), where λ is the “pinching”
‖ log(ρ1/ρ2(∇u))‖∞, see Example 2.21.
Apart from being a very natural question from the PDE point of view,

Sobolev regularity of optimal transport maps (or equivalently of Alek-
sandrov solutions to the Monge-Ampère equation) has a relevant applic-
ation to the study of the semigeostrophic system, as was pointed out by
Ambrosio in [4]. This is a system of equations arising in study of large
oceanic and atmospheric flows. Referring to Chapter 5 for a more ac-
curate discussion we recall here that the system can be written, after a

3 This kind of solutions have been introduced by Aleksandrov in the study of the Minkowski Prob-
lem: given a function κ : Sn−1 → [0,∞) find a convex bodyK such that the Gauss curvature of its
boundary is given by κ ◦ ν∂K. All the results of Chapters 2, 3, 4, apply to this problem as well.
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suitable change of variable, as⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t∇Pt + (ut · ∇)∇Pt = J (∇Pt − x) in �× (0,+∞)

∇ · ut = 0 in �× (0,+∞)

ut · ν� = 0 in ∂�× (0,+∞)

P0 = P0 in �,

(6)

where � is an open, bounded and convex subset of R
3 and

J :=
⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ .

We look for solutions Pt which are convex for every t (this ansatz is
based on the Cullen stability principle [34, Section 3.2]). If we consider
the measure4 ρt = (∇u)�L 3

�, then ρt solves (formally) the following
continuity type equation⎧⎪⎨⎪⎩

∂tρt +∇ · (U tρt) = 0
U t(x) = J (x −∇P∗t (x))

(∇P∗t )�ρt = L 3
�,

(7)

where P∗t is the convex conjugate of Pt . Even if the velocity field U t is
coupled with the density through a highly non-linear equation, existence
of (distributional) solutions of (7) can be obtained under very mild con-
ditions on the initial densities ρ0 = (∇P0)�L 3

�, [13]. Given a solution of
(7) we can formally obtain a solution to (6) by taking Pt = (P∗t )∗ and

ut(x) := [∂t∇P∗t ](∇Pt(x))+ [∇2P∗t ](∇Pt(x))J (∇Pt(x)− x). (8)

To give a meaning to the above velocity field we have to understand the
regularity of ∇2P∗t where P∗t satisfies (∇P∗t )�ρt = L 3

�. Notice that the
only condition we get for free is thatU t has zero divergence. In particular,
if the initial density ρ0 is bounded away from zero and infinity, the same it
is true (with the same bounds) for ρt . It is then natural to study the W 2,1

regularity of solutions of (5) under the only assumption that the right
hand side is bounded between two positive constants. This is done in

4 WithL 3
� we denote the normalized Lebesgue measure restricted to �:

L 3
� :=

1

L 3(�)
L 3 �

.
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Chapters 3 and 4 (based on [40, 41] in collaboration with Alessio Figalli,
and on [44] in collaboration with Alessio Figalli and Ovidiu Savin) while
in Chapter 5 (based on [5, 6] in collaboration with Luigi Ambrosio, Maria
Colombo and Alessio Figalli) we study the applications of this results to
the semigeostrophic system.
Finally we came back to the regularity of solutions of (2) with a general

cost function c, referring to Section 1.3 for a more complete discussion.
In this case, apart from the obstruction given by the geometry of the target
domain (as in the quadratic cost case) it has been shown in [80, 78] that a
structural condition on the cost function, the so calledMTW-condition, is
needed in order to ensure the smoothness of the optimal transport map. In
particular if the above condition does not hold it is possible to construct
two smooth densities such that the optimal map between them is even
discontinuous.
In spite of this, one can try to understand how large can be the set of

discontinuity points of optimal maps between two smooth densities for
a generic smooth cost c. In Chapter 6 (based on [43] in collaboration
with Alessio Figalli), we will show that, under very mild assumptions on
the cost c (essentially the one needed in order to get existence of optimal
maps), there exist two closed and Lebesgue negligible sets 1 and 2

such that
T : spt ρ1 \1→ spt ρ2 \2

is a smooth diffeomorphism. A similar result holds true also in the case
of optimal transportation on Riemannian manifolds with cost c = d2/2.
Up to now similar results were known only in the case of quadratic cost
when the support of the target density is not convex, [52, 55]. We remark
here that in this case the obstruction to regularity is given only by the
geometry of the domain, while in the case of a generic cost function c
we have to face the possible failure of the MTW condition at every point.
Thus, to achieve the proof of our result, we have to use a completely
different strategy.
We conclude this first part of the introduction with a short summary of

each chapter of the thesis (more details are given at the beginning of each
chapter):

• Chapter 1. In this Chapter we briefly recall the general theory of
optimal transportation, with a particular focus on the case of quadratic
cost in R

n . We also show how to pass from solutions of the Monge-
Ampère equation given by the optimal transportation to Aleksandrov
solutions to the Monge-Ampère equation in case the support of the
target density is convex. Finally in the last Section we address the
case of a general cost function.
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• Chapter 2. We start the study of the regularity of Aleksandrov solu-
tions to the Monge-Ampère equation, in particular we give a complete
proof of Caffarelli’s C1,α regularity theorem.

• Chapter 3. We start investigating the W 2,1 regularity of Aleksandrov
solutions to the Monge-Ampère equation. We give a complete proof
of the results in [40], where we show that D2u ∈ L log L . Then,
following the subsequent paper [44], we show how the above estimate
can be improved to D2u ∈ L1+ε for some small ε > 0. We also give
a short proof of the above mentioned Caffarelli W 2,p estimates.

• Chapter 4. Here, following [41], we show the (somehow surprising)
stability in the strong W 2,1 topology of Aleksandrov solutions with
respect to the L1 convergence of the right-hand sides.

• Chapter 5. In this Chapter, based on [5, 6], we apply the results of
the previous chapters to show the existence of a distributional solution
to the semigeostrophic system (6) in the 2-dimensional periodic case
and in the case of a bounded convex 3-dimensional domain �. In
the latter case we have to impose a suitable decay assumption on the
initial density ρ0 = (∇P0)�L 3

�.• Chapter 6. Here we report the partial regularity theorems for solu-
tions of the optimal transport problem for a general cost function c
proved in [43].

2. Other papers

In this second part of the introduction we give a short summary of the
additional research made during the PhD studies, only vaguely related to
the theme of the thesis. We briefly report the results obtained and we
refer to the original papers for a more complete treatment of the problem
and the relevant literature.

1. �-convergence of non-local perimeter
In [29] Caffarelli-Roquejoffre and Savin introduced the following notion
of non-local perimeter of a set E relative of an open set �:

Js(E,�) =
∫
E∩�

∫
Ec∩�

dxdy

|x − y|n+s +
∫
E∩�

∫
Ec∩�c

dxdy

|x − y|n+s
+
∫
E∩�c

∫
Ec∩�

dxdy

|x − y|n+s ,

and study the regularity of local minimizers of it. This functional natur-
ally arises in the study of phase-transitions with a non-local interaction
term, see the nice survey [63] and reference therein for an updated ac-
count of the theory.
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In [10], in collaboration with Luigi Ambrosio and Luca Martinazzi, we
show the �-convergence of the functional (1− s)Js(·,�) to the classical
De Giorgi perimeter ωn−1P(·,�) with respect to the topology of locally
L1 convergence of sets (a similar earlier result has been obtained in [30]
for the convergence of local minimizers of the functionals). We also show
equicoercivity of the functionals. More precisely we prove:

Theorem. Let si ↑ 1, then the following statements hold:
(i) (Equicoercivity). Assume that Ei are measurable sets satisfying

sup
i∈N

(1− si)J 1
si (Ei ,�

′) <∞ ∀�′ � �.

Then {Ei }i∈N is relatively compact in L1loc(�) and any limit point E
has locally finite perimeter in �.

(ii) (�-convergence). For every measurable set E ⊂ R
n we have

� − lim
s↑1

(1− s)Js(E,�) = ωn−1P(E,�).

with respect to the the L1loc convergence of the corresponding char-
acteristic functions in R

n .
(iii) (Convergence of local minimizers). Assume that Ei are local min-

imizers of Jsi (·,�), and Ei → E in L1loc(R
n). Then

lim sup
i→∞

(1− si)Jsi (Ei ,�
′) < +∞ ∀�′ � �,

E is a local minimizer of P(·,�) and (1 − si)Jsi (Ei ,�
′) →

ωn−1P(E,�′) whenever �′ � � and P(E, ∂�′) = 0.

2. Sobolev regularity of optimal transport map and differential
inclusions
In [9], written in collaboration with Luigi Ambrosio and Bernd Kirch-
heim, we started the investigation of the Sobolev regularity of (stricly
convex) Aleksandrov solution to the Monge-Ampé re equation. More
precisely we show that in the 2-dimensional case the Sobolev regularity
of optimal transport maps is equivalent to the rigidity of a partial dif-
ferential inclusion for Lipschitz maps (see [74, 84] for nice surveys on
partial differential inclusions). Referring to the paper for more details, let
us define the set of “admissible” gradients

A :=
{
M ∈ Sym2×2 : ‖M‖ ≤ 1, (λ+ 1)|Trace(M)|

≤ (1− λ)(1+ det(M))

}
,

(9)
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where ‖ · ‖ is the operator norm, and the subset S of “singular” gradients
is defined by

S :=
{
R−1
(
1 0
0 −1

)
R : R ∈ SO(2)

}
. (10)

Our main result says that the following two problems are equivalent

Problem 1. Let� ⊂ R
2 be a bounded open convex set and let u : �→ R

be a strictly convex Aleksandrov solutions to the Monge-Ampère equation

λ ≤ det D2u ≤ 1/λ in �.

Show that u ∈ W 2,1
loc .

Problem 2. Let B ⊂ R2 be a connected open set, f : B → R
2 Lipschitz,

and assume that Df ∈ A L 2-a.e. in B. Show that if the set

{x ∈ B : Df (x) ∈ S}
has positive L 2-measure, then f is locally affine.

At the time we wrote the paper we were not able to solve none of
the above problems. Notice that the result of Chapter 3 gives a positive
answer to Problem 1. In particular this show (in a very unconventional
way) that the inclusion in Problem 2 is rigid.

3. A non-autonomous chain rule in W 1,p and BV
In [7], in collaboration with Luigi Ambrosio, Giovanni Crasta and Vir-
ginia De Cicco, we prove a non-autonomous chain-rule in BV when the
function with which we left compose has only a BV -regularity in the x
variable. This type of results have some application in the study of con-
servation laws and semicontinuity of non-autonomous functionals (again
we refer to the original paper for a more complete discussion and the
main notation). The main result of [7] is the following:

Theorem. Let F : R
n × R

h → R be satisfying:

(a) x �→ F(x, z) belongs to BVloc(Rn) for all z ∈ R
h;

(b) z �→ F(x, z) is continuously differentiable in R
h for almost every

x ∈ R
n .

Assume that F satisfies, besides (a) and (b), the following structural
assumptions:

(H1) For some constant M , |∇z F(x, z)| ≤ M for all x ∈ R
n \ CF and

z ∈ R
h .
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(H2) For any compact set H ⊂ R
h there exists a modulus of continuity

ω̃H independent of x such that

|∇z F(x, z)−∇z F(x, z′)| ≤ ω̃H (|z − z′|)
for all z, z′ ∈ H and x ∈ R

n \ CF .
(H3) For any compact set H ⊂ R

h there exist a positive Radon measure
λH and a modulus of continuity ωH such that

|D̃x F(·, z)(A)− D̃x F(·, z′)(A)| ≤ ωH (|z − z′|)λH (A)

for all z, z′ ∈ H and A ⊂ R
n Borel.

(H4) The measure
σ :=

∨
z∈Rh

|Dx F(·, z)|,

(where
∨

denotes the least upper bound in the space of nonneg-
ative Borel measures) is finite on compact sets, i.e. it is a Radon
measure.

Then there exists a countably Hn−1-rectifiable set NF such that, for any
function u ∈ BVloc(Rn;Rh), the function v(x) := F(x, u(x)) belongs to
BVloc(Rn) and the following chain rule holds:

(i) (diffuse part) |Dv| � σ +|Du| and, for any Radon measure μ such
that σ + |Du| � μ, it holds

d D̃v

dμ
= d D̃x F(·, ũ(x))

dμ
+∇z F̃(x, ũ(x))

d D̃u

dμ
μ-a.e. in R

n .

(ii) (jump part) Jv ⊂ NF ∪ Ju and, denoting by u±(x) and F±(x, z) the
one-sided traces of u and F(·, z) induced by a suitable orientation
of NF ∪ Ju , it holds

D jv = (F+(x, u+(x))− F−(x, u−(x)
)
νNF∪JuHn−1 (NF ∪ Ju)

in the sense of measures.

Moreover for a.e. x the map y �→ F(y, u(x)) is approximately differen-
tiable at x and

∇v(x) = ∇x F(x, u(x))+∇z F(x, u(x))∇u(x) L n-a.e. in R
n .

A similar result holds true also in the Sobolev case.
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4. Aleksandrov-Bakelman-Pucci estimate for the infinity Laplacian
In [31], with Fernando Charro, Agnese Di Castro and Davi Máximo, we
investigate the validity of the classical Aleksandrov-Bakelman-Pucci es-
timates for the infinity laplacian

�∞u :=
〈
D2u

∇u
|∇u| ,

∇u
|∇u|
〉
.

The ABP estimate for a solution of a uniformly elliptic PDE states that

sup
�

u ≤ sup
∂�

u + C(n, λ,�) diam (�)‖ f ‖Ln(�), (11)

for f the right-hand side of the equation and 0 < λ ≤ � the ellipti-
city constants (see for instance [25]). A particular useful feature of the
above estimates is the presence of an integral norm on the right hand
side. In particular the above estimate plays a key role in the proof of
the Krylov-Safonov Harnack inequality for solutions to a non-divergence
form elliptic equation (see [25]).
In [31] we show that such an estimate cannot hold for solutions of

−�∞u = f, (12)

at least with the Ln norm of f in the right hand side. However we show
that a (much weaker) form of the estimate is avaible, namely(

sup
�

u − sup
∂�

u+
)2 ≤ C diam(�)2

∫ sup� u

sup∂� u+
‖ f ‖L∞({u=�u=r}) dr, (13)

where �u is the convex envelope of u. Even if this estimate is weaker
than (11) it is still stronger that the plain L∞-estimate:

sup
�

u ≤ sup
∂�

u + C(n) diam (�)2‖ f ‖L∞(�).

Moreover we are able to obtain a full family of estimates of the type of
(13) for solutions of the non-variational p-laplacian equation:

−�pu = f,

where

�pu := 1

p
|∇u|2−p div(|∇u|p−2∇u). (14)

Using that our estimates are stable as p goes to +∞ and some simple
comparison argument we also show that viscosity solutions to (14) con-
verges as p→+∞ to solutions of (12).
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5. Stability for the Plateau problem

In [45], together with Francesco Maggi, we study the global stability
of smooth solution to the Plateau problem in the framework of Federer
and Fleming codimension one integral currents, [49]. More precisely we
prove that a global stability inequality is equivalent to its local counter-
part, namely the strict positivity of the shape-operator. Our main result
reads as follows

Theorem. Let M be a smooth (n−1) dimensional manifold with bound-
ary which is uniquely mass minimizing as an integral n − 1-current. The
two following statements are equivalent:

(a) The first eigenvalue λ(M) of the second variation of the area at M ,

λ(M)= inf
{∫

M
|∇Mϕ|2−|IIM |2ϕ2 dHn : ϕ∈C10(M) ,

∫
M

ϕ2 dHn=1
}

,

is strictly positive.

(b) There exists κ > 0, depending on M , such that, if M ′ is a smooth
manifold with the same boundary of M , then, for some Borel set E ⊂ R

n

with ∂E equivalent up to aHn−1-null set to M�M ′,

Hn−1(M ′)−Hn−1(M) ≥ κ min
{
L n(E)2,L n(E)(n−1)/n} .

We also obtain similar statements in the case of a particular family of
singular minimizing cones.

6. Stability for the second eigenvalue of the Stekloff-Laplacian

In [15], together with Lorenzo Brasco and Berardo Ruffini, we address
the study of the stability of the following spectral optimization problem

max
{
σ2(�) : � ⊂ R

n |�| = |B1|
}
. (15)

Here σ2(�) denotes the first non trivial Stekloff eigenvalue of the lapla-
cian, i.e. {

−�u = 0 in �

∇u · ν� = σ2(�)u on ∂�,

with u not identically constant. In [17, 94] it has been showed that the
maximum is achieved by balls. The proof is based on the following iso-
perimetric property of the ball:

P2(�) ≥ P2(B1) ∀� : |�| = |B1|, (16)
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where

P2(�) :=
∫

∂�

|x |2.
The above isoperimetric type inequality has been proved by Betta, Brock,
Mercaldo, Posteraro in [14] through a symmetrization technique.
We enforce (15) in a quantitative way, namely we prove that there ex-

ists a positive (and computable) constant cn such that

σ2(�) ≤ σ2(B)
(
1− cnA2(�)

) ∀� : |�| = |B1| (17)

where we have introduced the asymmetry of �

A(�) := min
{ |B��|
|B| B ball, |B| = |�|

}
.

To prove (17) we had to show a quantitative version of (16), that reads as

P2(B1)
(
1+ c̃n |��B1|2

)
≤ P2(�) ∀� : |�| = |B1|. (18)

In order to do this, we give a simpler proof of (16) through calibrations
which allows to take care of all the reminders in order to obtain (18).
Showing that (17) is optimal, i.e. that there exists a sequence of sets

�ε converging to B1 such that

σ2(�ε)− σ2(B1) ≈ A2(�ε),

requires some fine constructions due to the fact the σ2(B1) is a multiple
eigenvalue.

7. Regularity of the convex envelope
In [42] with Alessio Figalli we investigate the regularity of the convex
envelope of a continuous function v inside a convex domain �:

�v(x) := sup{�(x) : � ≤ v in �, � affine}.
We prove the following two theorems:

Theorem. Let α, β ∈ (0, 1], � be a bounded convex domain of class
C1,β , and v : � → R be a globally Lipschitz function which is (1 + α)-
semiconcave5 in �. Then �v ∈ C1,min {α,β}

loc (�).

5 Given α ∈ (0, 1], a continuous function v is said to be (1 + α)-semiconcave in � if for every
x0 ∈ � there exists a slope px0 ∈ R

n such that

v(x) ≤ v(x0)+ px0 · (x − x0)+ C|x − x0|1+α for every x ∈ � ∩ B(x0, �0).

for some constants C and �0 independent of x0.


