
Pace

Shelve in
Programming Languages/General

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

R Recipes
R Recipes is your handy problem-solution reference for learning and using the
popular R programming language for statistics and other numerical analysis.
Packed with hundreds of code and visual recipes, this book helps you to quickly
learn the fundamentals and explore the frontiers of programming, analyzing and
using R.

R Recipes provides textual and visual recipes for easy and productive templates
for use and re-use in your day-to-day R programming and data analysis practice.
Whether you’re in finance, cloud computing, big or small data analytics, or other
applied computational and data science - R Recipes should be a staple for your
code reference library.

• Tips and tricks for making the migration to R smooth and seamless
• Code recipes for I/O, data structures, transformations, strings,

dates and more
• How to use graphics and visualization in R
• Using R for probability, statistics, hypothesis tests, linear regression

time series and more
• How to write practical code and templates for finance and big

data analytics
• Code for doing numerics or numerical analysis, beyond just

statistical programming

RELATED

9 781484 201312

53999
ISBN 978-1-4842-0131-2

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author ���xiii

About the Technical Reviewer �� xv

Acknowledgments �� xvii

Introduction ��� xix

Chapter 1: Migrating to R: As Easy As 1, 2, 3 ■ ��1

Chapter 2: Input and Output ■ ��17

Chapter 3: Data Structures ■ ��27

Chapter 4: Merging and Reshaping Datasets ■ ��43

Chapter 5: Working with Dates and Strings ■ ��57

Chapter 6: Working with Tables ■ ���67

Chapter 7: Summarizing and Describing Data ■ ��79

Chapter 8: Graphics and Data Visualization ■ ��89

Chapter 9: Probability Distributions ■ ��107

Chapter 10: Hypothesis Tests for Means, Ranks, or Proportions ■ �����������������������������������117

Chapter 11: Relationships Between and Among Variables ■ ��143

Chapter 12: Contemporary Statistical Methods ■ ��157

Chapter 13: Writing Reusable Functions ■ ���167

■ Contents at a GlanCe

iv

Chapter 14: Working with Financial Data ■ ��183

Chapter 15: Dealing with Big Data ■ ��201

Chapter 16: Mining the Gold in Data and Text ■ ���215

Index ���237

xix

Introduction

R is an open source implementation of the programming language S, created at Bell Laboratories by John Chambers,
Rick Becker, and Alan Wilks. In addition to R, S is the basis of the commercially available S-PLUS system. Widely
recognized as the chief architect of S, Chambers in 1998 won the prestigious Software System Award from the
Association for Computing Machinery, which said Chambers’ design of the S system “forever altered how people
analyze, visualize, and manipulate data.”

Think of R as an integrated system or environment that allows users multiple ways to access its many functions
and features. You can use R as an interactive command-line interpreted language, much like a calculator. Type a
command, press Enter, and R provides the answer in the R console. R is simultaneously a functional language and
an object-oriented language. In addition to thousands of contributed packages, R has programming features, just as
all computer programming languages do, allowing conditionals and looping, and giving the user the facility to create
custom functions and specify various input and output options.

R is widely used as a statistical computing and software environment, but the R Core Team would rather consider
R an environment “within which many classical and modern statistical techniques have been implemented.” In addition
to its statistical prowess, R provides impressive and flexible graphics capabilities. Many users are attracted to R primarily
because of its graphical features. R has basic and advanced plotting functions with many customization features.

Chambers and others at Bell Labs were developing S while I was in college and grad school, and of course I was
completely oblivious to that fact, even though my major professor and I were consulting with another AT&T division
at the time. I began my own statistical software journey writing programs in Fortran. I might find that a given program
did not have a particular analysis I needed, such as a routine for calculating an intraclass correlation, so I would write
my own program. BMDP and SAS were available in batch versions for mainframe computers when I was in graduate
school—one had to learn Job Control Language (JCL) in order to tell the computer which tapes to load. I typed punch
cards and used a card reader to read in JCL and data.

On a much larger and very much more sophisticated scale, this is essentially why the computer scientists at Bell
Labs created S (for statistics). Fortran was and still is a general-purpose language, but it did not have many statistical
capabilities. The design of S began with an informal meeting in 1976 at Bell Labs to discuss the design of a high-level
language with an “algorithm,” which meant a Fortran-callable subroutine. Like its predecessor S, R can easily and
transparently access compiled code from various other languages, including Fortran and C++ among others. R can
also be interfaced with a variety of other programs, such as Python and SPSS.

R works in batch mode, but its most popular use is as an interactive data analysis, calculation, and graphics
system running in a windowing system. R works on Linux, PC, and Mac systems. Be forewarned that R is not a
point-and-click graphical user interface (GUI) program such as SPSS or Minitab. Unlike these programs, R provides
terse output, but can be queried for more information should you need it. In this book, you will see screen captures
of R running in the Windows operating system.

According to my friend and colleague, computer scientist and bioinformatics expert Dr. Nathan Goodman,
statistical analysis essentially boils down to four empirical problems: problems involving description, problems
involving differences, problems involving relationships, and problems involving classification. I agree wholeheartedly
with Nat. All the problems and solutions presented in this book fall into one or more of those general categories.
The problems are manifold, but the solutions are mostly limited to these four situations.

■ IntroduCtIon

xx

What this Book Covers
This book is for anyone—business professional, programmer, statistician, teacher, or student—who needs to find
a way to use R to solve practical problems. Readers who have solved or attempted problems similar to the ones in
this book using other tools will readily concur that each tool in one’s toolbox works better for some problems than
for others. R novices will find best practices for using R’s features effectively. Intermediate-to-advanced R users and
programmers will find shortcuts and applications that they may not have considered, as well as different ways to do
things they might want to do.

The Structure of this Book
The standardized format will make this a useful book for future reference. Unlike most other books, you do not have
to start at the beginning and go through this book sequentially. Each chapter is a stand-alone lesson that starts with
a typical problem (most of which come from true-life problems that I have faced, or ones that others have described
and have given me permission to share). The datasets used with this book to illustrate the solutions should be similar
to the datasets readers have worked with, or would like to work with.

Apart from a few contrived examples in the early chapters, most of the datasets and exercises come from real-world
problems and data. Following a bit of background, the problem and the data are presented, and then readers learn one
efficient way to solve the problem using R. Similar problems will quickly come to mind, and readers will be able to adapt
what they learn here to those problems.

Conventions Used in this Book
In this book, code and script segments will be shown this way:

> x <- c(1, 3, 5)
> px <- c(0.5, 0.25, 0.25)
> dist <- sample(x, size = 1000, replace = TRUE, prob <- px)
>

Code and R functions written inline will also be formatted in the code style.
When you are instructed to perform a command within the R Console or R Editor by using the (limited)

point-and-click interface, the instructions will appear as follows: File ➤ Workspace.

Looking Forward
In Chapter 1, you will learn how to get R, how R works, and some of the basic things you can do with R. You will learn
how to work with the R interface and the various windows you will find in R. Finally, you will learn how R deals with
missing data, vectors, and matrices.

1

Chapter 1

Migrating to R: As Easy As 1, 2, 3

There are compelling reasons to use R. An enthusiastic community of users, programmers, and contributors
support R and its evolution. R is accurate, produces excellent graphs, has a variety of built-in functions, and is both a
functional language and an object-oriented one. R is completely free and is distributed as open-source software.
Here is how to get started. It really is as easy as 1, 2, 3.

Getting R Up and Running on Your System
The current version at the time of this writing was R 3.1.0. A recent version needs to be available on your computer
in order for you to benefit from the R recipes you will learn in this book. Many users migrate to R from other statistical
packages, while other users migrate to R from other programming languages. Both types of users are in for a bit of a
shock. R is a programming language, but very much unlike most other ones. R is not exactly a statistics package,
but rather an environment that includes many traditional statistical analyses. This is neither a statistics book nor an
R programming book, though we will cover elements of both when solving problems within the recipes contained in
this book.

Visit the Comprehensive R Archive Network (http://cran.us.r-project.org/); see the screen capture in
Figure 1-1. Users of PCs and Macs can download precompiled binary files, whereas Linux users may have to do
the compiling on their own. However, many Linux systems have R as part of their distributions, so Linux users may
already have R preinstalled (I’ll show you how to check this later in this section).

http://cran.us.r-project.org/

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

2

Click Mirrors and select the site closest to you. Download the precompiled binary files for your system or
follow the instructions for compiling the source code if you need to do so. If you have never installed R, install the
base distribution first. Most users of Windows will be able to use the 32-bit version of R. If you want to explore the
advantages and disadvantages of using the 64-bit version (assuming you have a 64-bit Windows system), look at the
information provided by the R Project to help you choose. You can also do what I did, and install both the 32-bit and
the 64-bit versions.

Choose your installation language and options. The defaults are fine for most users. If the R installation was
successful, you will have a directory labeled R and a desktop icon for launching R. Figure 1-2 shows the opening
screen of R 3.1.0 in a Windows 7 environment.

Figure 1-1. The Comprehensive R Archive Network

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

3

As I mentioned, Linux users may have to compile the R source code, but should first check to see if R is
distributed with their version of Linux. For instance, I use Lubuntu, a distribution of Linux, on one of my computers,
and the base version of R comes prepackaged with Lubuntu, as it does with most Ubuntu versions. To see if you have
R base in your Linux system, use the following commands. Open a terminal session. The command prompt in Linux is
the tilde character (~) followed by the dollar sign ($).

~$: sudo apt-get install r-base

Once you have installed the base version of R, you can run R from the terminal as follows:

~$: R

Note that the Linux version of R is not likely to be the latest one, as I am currently running R 3.0.2 in Linux
(see Figure 1-3) .

Figure 1-2. The R Console appears in the R GUI

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

4

As you see in Figures 1-2 and 1-3, the command prompt in R is >. The following section will show you how to take
R for a quick spin.

Okay, So I Have R. What’s Next?
Whether you are a programmer or a statistician, or like me, a little of both, R takes some getting used to. Most statistics
programs, such as SPSS, separate the data, the syntax (programming language), and the output. R takes a minimalist
stance on this. If you are not using something, it is not visible to you. If you need to use something, either you must
open it, as in the R Editor for writing and saving R scripts, or R will open it for you, as in the R Graphics Device when
you generate a histogram or some other graphic output. So, let’s see how to get around in the R interface.

A quick glance shows that the R interface is not particularly fancy, but it is highly functional. Examine the options
available to you in the menu bar and the icon bar. R opens with the welcome screen shown in Figure 1-2. You can
keep that if you like (I like it), or simply press Ctrl+L or select Edit ➤ Clear Console to clear the console. You will be
working in the R Console most of the time, but you can open a window with a simple text editor for writing scripts and
functions. Do this by selecting File ➤ New script. The built-in R Editor is convenient for writing longer scripts and
functions, but also simply for writing R commands and editing them before you run them. Many R users prefer to use
the text editor of their liking. For Windows users, Notepad is fine. When you produce a graphic object, the R Graphics
Device will open. The R GUI (graphical user interface) is completely customizable as well.

Although we are showing R running in the R Console, you should be aware that there are several integrated
development environments (IDEs) for R. One of the best of these is RStudio.

Figure 1-3. R running in a Linux system (Lubuntu)

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

5

Do not worry about losing your output when you clear the console. This is simply the view of what you have on
the screen at the moment. The output will scroll off the window when you type other commands and generate new
output. Your complete R session is saved to a history file, and you can save and reload your R workspaces. The obvious
advantage of saving your workspace is that you do not have to reload the data and functions you used in your R
session. Everything will be there again when you reload the workspace.

You will most likely not be interested in saving your R workspace with the examples from this chapter. If you do
want to save an R workspace, you will receive a prompt when you quit the session. To exit the session, enter q() or
select File ➤ Exit. R will give you the prompt shown in Figure 1-4.

Figure 1-4. R prompts the user to save the workspace image

From this point forward, the R Console is shown only in special cases. The R commands and output will always
appear in code font, as explained in the introduction. Launch R if it is not already running on your system. The best
way to learn from this book is to have R running and to try to duplicate the screens you see in the book. If you can do
that, you will learn a great deal about using R for data analysis and statistics.

First, we will do some simple math, and then we will do some more interesting and a little more complicated
things. In R, one assigns values to objects with the assignment operator. The traditional assignment operator is <-.
There is also a little-used right-pointing assignment operator, ->. You can also use the equals sign for assignments.
There is some advantage in that you avoid two keystrokes when you use = instead of <-. In this book, we will always
use <- for assignments. The = sign is used to specify values for arguments and options in R commands. To test for
equality, use ==.

R accepts numbers, characters, variables, and even other functions as input to its functions. R is unlike other
languages in several important ways. In most computer languages, a number can be assigned to a constant, usually
with an equal sign, =. For example, in Python, you can make the assignment x = 10. The value of 10 is assigned to the
variable x. The “type” of x is a scalar quantity (a single value) stored as an integer:

Python 3.3.1 (v3.3.1:d9893d13c628, Apr 6 2013, 20:25:12) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information>>> x = 10
>>> x
10
>>> type(x)
<class 'int'>

If you will remember some of your mathematical or computer training, recall that numerical data can be scalars
(individual values or constants), arrays (or vectors) with one row or one column of numbers, or matrices with two or
more rows and two or more columns. Many computer languages make distinctions among these data types. In some
languages, which are called “strongly typed,” you must declare the variable’s type and dimensionality before you

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

6

assign a value or values to it. In other languages, known as “loosely typed,” You can assign different types of values to
the same variable without having to declare the type. R works that way, and is a very loosely typed language.

To R, there are no scalar quantities. When you enter 1 + 1 and then press Enter, R displays [1] 2 on the next
line and gives you another command prompt. The index [1] indicates that to R, the integer object 2 is an integer
vector of length 1. The number 2 is the first (and only) element in that vector. You can assign an R command to a
variable (object), say, x, and R will keep that assignment until you change it. When we assign x <- 1 + 1, the value
of 2 is assigned to the object x. We can now use x in R commands, such as x + 1. R’s indexes start with 1 instead of
0, as some other computer languages do. If you type numbers <- 1:10, R will assign the numbers 1 through 10 to the
integer vector called numbers.

> 1 + 1
[1] 2
> x <- 1 + 1
> x + 1
[1] 3
> x * x
[1] 4
> numbers <- 1:10
> numbers
 [1] 1 2 3 4 5 6 7 8 9 10
> numbers ^ 2
 [1] 1 4 9 16 25 36 49 64 81 100
> numbers * x
 [1] 2 4 6 8 10 12 14 16 18 20
> sqrt(numbers)
 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
 [9] 3.000000 3.162278

As mentioned at the beginning of this chapter, R is both functional and object-oriented. To R, everything is a
function, including the basic mathematics operators. Everything is also an object in R. When you assign x <- 1 + 1,
you have created an object called x. One of the most useful and powerful features of R is that many of its operators and
functions are vectorized

In computer science, something is vectorized if the program works on the vector in elementwise fashion,
performing the same operation on each element of the vector that it would have performed on a scalar until it reaches
the end of the vector. The general category of array-programming languages includes languages that generalize
operations on scalars transparently to vectors, matrices, and higher-order arrays. An operation that works on an entire
array is called a vectorized operation. Most computer languages are not vectorized to the extent R is. This makes it easy
in many situations to avoid explicit loops, which are very slow in comparison to a vectorized operation. If you work in
a scientific or engineering setting, you are probably familiar with MATLAB and Octave. Along with R and Python using
the NumPy extension, these languages support array programming.

The only other computer language I have worked with that has the same level of vectorization is the now defunct
language APL. In most languages, you would have to write a loop to square the numbers from 1 to 10. But in R, you
simply use the exponent operator (^) to square all the numbers at once. The primary advantage of this is that you can
frequently avoid explicit loops, as mentioned earlier.

R is case sensitive. Note that x and X are different objects in R. Although R is case sensitive, it is insensitive to
spaces. I write code that uses spaces and indentation simply to make it easier for me and others to understand, and I
usually comment my code fairly liberally. You would be surprised how often you can be doing something that makes
perfectly good sense at the time, but looks like total gibberish when you return to it a few months later. Comments
help. To insert a comment in a line of R code, simply enter #. The interpreter ignores anything after the # (pound sign
or hash tag).

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

7

Here’s a demonstration of the case sensitivity of R and the use of comments. Instead of working directly in the
R GUI, click File ➤ New Script to open the R Editor. It is far easier to write and correct multiple lines of code in the
editor (or in some other text editor) and execute the code from there than to type directly into the R Console.
When you work in the R Editor, leave out the > command prompt. R will supply it (see Figure 1-5).

Figure 1-5. Use the R Editor to write multiple lines of R code

To execute your code, select one or more lines of code from the R Editor, and then click the icon for running the
code in the R Console. As a shortcut, if you want to run all the code, use Ctrl+A to select all the code, and then press
Ctrl+R to run the code in the R Console. Here is what you get:

> x <- 2 #Assign a value to object x
> x == x #Determine whether x is equal to x
[1] TRUE
> X <- 10 #Assign a value to object X
> x == X #Determine whether x is equal to X
[1] FALSE
> x * X #Multiply the two objects
[1] 20
>

Table 1-1 presents some useful operators, functions, and constants in R.

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

8

Table 1-1. Useful Operator, Functions, and Constants in R

Operation/Function R Operator Code Example

Addition + 1 + 1

Subtraction - 2 – 1

Multiplication * 3 * 2

Division / 3 / 2

Exponentiation ^ 3 ^ 2

Square root sqrt() Sqrt(81)

Natural logarithm log() > exp(1)
[1] 2.718282
> log(exp(1))
[1] 1

Common logarithm log10() > log10(100)
[1] 2

Complex numbers complex() > z <- complex(real = 2, imaginary = 3)
> z
[1] 2+3i

Pi pi > pi
[1] 3.141593

Euler’s number e exp(1) > exp(1)
[1] 2.718282

Table 1-2 shows R’s comparison operators. They evaluate to a logical value of TRUE or FALSE.

Table 1-2. R Comparison Operators

Operator Description Code Example Result/Comment

> Greater than 3 > 2
2 > 3

TRUE
FALSE

< Less than 2 < 3
3 < 2

TRUE
FALSE

>= Greater than or equal to 2 >=2
2 >=3

TRUE
FALSE

<= Less than or equal to 2 <= 2
3 <= 2

TRUE
FALSE

== Equal to 2 == 2
2 == 3

TRUE
FALSE

!= Not equal to 2 != 3
2 !=2

TRUE
FALSE

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

9

Table 1-3 shows R’s logical operators.

Table 1-3. Logical Operators in R

Operator Description Code Example Result/Comment

& Logical And > x <- 0:2
> y <- 2:0
> (x < 1) & (y > 1)
[1] TRUE FALSE FALSE

This is the vectorized version. It compares two vectors
element-wise and returns a vector of TRUE and/or
FALSE.

&& Logical And > x <- 0:2
> y <- 2:0
> (x < 1) && (y > 1)
[1] TRUE

This is the unvectorized version. It compares only the
first value in each vector, left to right, and returns only
the first logical result.

| Logical Or > (x < 1) | (y > 1)
[1] TRUE FALSE FALSE

This is the vectorized version. It compares two vectors
element-wise and returns a vector of TRUE and/or
FALSE.

|| Logical Or > (x < 1) || (y > 1)
[1] TRUE

This is the unvectorized version. It compares two
vectors and returns only the first logical result.

! Logical Not > !y == x
[1] TRUE FALSE TRUE

Logical negation. Returns either a single logical value
or a vector of TRUE and/or FALSE.

Understanding the Data Types in R
As the preceding discussion has shown, R is strange in several ways. Remember R is both functional and object-oriented,
so it has a bit of an identity crisis when it comes to dealing with data. Instead of the expected integer, floating point,
array, and matrix types for expressing numerical values, R uses vectors for all these types of data. Beginning users of
R are quickly lost in a swamp of objects, names, classes, and types. The best thing to do is to take the time to learn the
various data types in R, and to learn how they are similar to, and often very different from, the ways you have worked
with data using other languages or systems.

R has six “atomic” vector types, including logical, integer, real, complex, string (or character) and raw. Another
data type in R is the list. Vectors must contain only one type of data, but lists can contain any combination of data
types. A data frame is a special kind of list and the most common data object for statistical analysis. Like any list,
a data frame can contain both numerical and character information. Some character information can be used for
factors, and when that is the case, the data type becomes numeric. Working with factors can be a bit tricky because
they are “like” vectors to some extent, but are not exactly vectors. My friends who are programmers think factors are
“evil,” while statisticians like me love the fact that verbal labels can be used as factors in R, because such factors are
self-labelling. It makes infinitely more sense to have a column in a data frame labelled sex with two entries, male and
female, than it does to have a column labelled sex with 0s and 1s in the data frame.

In addition to vectors, lists, and data frames, R has language objects including calls, expressions, and names.
There are symbol objects and function objects, as well as expression objects. There is also a special object called NULL,
which is used to indicate that an object is absent. Missing data in R are indicated by NA.

We next discuss handling missing data. Then we will touch very briefly on vectors and matrices in R.

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

10

Handling Missing Data in R
Create a simple vector using the c() function (some people say it means combine, while others say it means
concatenate). I prefer “combine” because there is also a cat() function for concatenating output. For now, just type in
the following and observe the results. The na.rm = TRUE option does not remove the missing value, but simply omits
it from the calculations.

> x <- c(10, NA, 10, 25, 30, 15, 10, 18, 16, 15)
> x
 [1] 10 NA 10 25 30 15 10 18 16 15
> mean(x)
[1] NA
> mean(x, na.rm = TRUE)
[1] 16.55556
>

Working with Vectors in R
As you have learned, R treats a single number as a vector of length 1. If you create a vector of two or more objects,
the vector must contain only a single data type. If you try to make a vector with multiple data types, R will coerce the
vector into a single type. Chapter 3 covers how to deal with various data structure in more detail. For now, the goal is
simply to show how R works with vectors.

Because you know how to use the R Editor and the R Console now, we will dispense with those formalities and
just show the code and the output together. First, we will make a vector of 10 numbers, and then add a character
element to the vector. R coerces the data to a character vector because we added a character object to it. I used the
index [11] to add another element to the vector. But the vector now does not contain numbers and you cannot do
math on it. Use a negative index, [-11], to remove the character and the R function as.integer() to change the
vector back to integers:

> x <- 1:10
> x
 [1] 1 2 3 4 5 6 7 8 9 10
> typeof(x)
[1] "integer"
> x[11] <- "happy"
> x
 [1] "1" "2" "3" "4" "5" "6" "7" "8" "9"
[10] "10" "happy"
> typeof(x)
[1] "character"
> x <- x[-11]
> x
 [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
> x <- as.integer(x)
> x
 [1] 1 2 3 4 5 6 7 8 9 10
> typeof(x)
[1] "integer"
>

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

11

To make the example a little more interesting, let us work with some real data. The following data (thanks to Nat
Goodman for the data) represent the ages in weeks of 20 randomly sampled mice from a much larger dataset.

> ages
 [1] 10.5714 13.2857 13.5714 16.0000 10.2857 19.5714 20.0000 7.7143 20.5714
[10] 19.2857 14.0000 14.4286 19.7143 18.0000 13.2857 17.2857 5.2857 16.2857
[19] 14.1429 6.0000
> mean(ages)
[1] 14.46428
> typeof(ages)
[1] "double"
> mode(ages)
[1] "numeric"
> class(ages)
[1] "numeric"

R stores numeric values that are not integers in double-precision form. We can access individual elements of a
vector with the index or indexes of those elements. Remember that most R functions and operators are vectorized,
so that you can calculate the ages of the mice in months by dividing each age by 4. It takes only one line of code
(shown in bold), and looping is not necessary.

> ages[1]
[1] 10.5714
> ages[20]
[1] 6
> ages[3:9]
[1] 13.5714 16.0000 10.2857 19.5714 20.0000 7.7143 20.5714
> months <- ages/4
> months
 [1] 2.642850 3.321425 3.392850 4.000000 2.571425 4.892850 5.000000 1.928575
 [9] 5.142850 4.821425 3.500000 3.607150 4.928575 4.500000 3.321425 4.321425
[17] 1.321425 4.071425 3.535725 1.500000

When you perform operations with vectors of different lengths, R will repeat the values of the shorter vector to
match the length of the longer one. This “recycling” is sometimes very helpful as in multiplication by a scalar (vector
of length 1), but sometimes produces unexpected results. If the length of the longer vector is a multiple of the shorter
vector, this works well. If not, you get strange results like the following:

> x <- 1:2
> y <- 1:10
> z <- 1:3
> y/x
 [1] 1 1 3 2 5 3 7 4 9 5
> y/z
 [1] 1.0 1.0 1.0 4.0 2.5 2.0 7.0 4.0 3.0 10.0
Warning message:
In y/z : longer object length is not a multiple of shorter object length

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

12

Working with Matrices in R
In another peculiarity of R, a matrix is also a vector, but a vector is not a matrix. I know this sounds like doublespeak,
but read on for further explanation. A matrix is a vector with dimensions. You can make a vector into a one-dimensional
matrix if you need to do so. Matrix operations are a snap in R. In this book, we work with two-dimensional matrices
only, but higher-order matrices are possible, too.

We can create a matrix from a vector of numbers. Start with a vector of 50 random standard normal deviates
(z scores if you like). R fills the matrix columnwise.

> zscores <- rnorm(50)
> zscores
 [1] -1.19615960 0.95960082 0.50725210 -0.37411224 1.42044733 1.69437460
 [7] 0.51677914 -0.04810441 -1.28024577 -0.48968148 1.28769546 0.93050145
[13] 0.72614070 -0.19306114 -0.56122938 0.77504861 -0.26756380 -1.11077206
[19] -0.60040090 -0.31920172 1.16802977 1.69736349 0.93134640 -1.15182325
[25] 0.12167256 -1.16038178 1.00415819 0.54469494 1.60231699 -0.11057038
[31] 0.01264523 0.57436245 0.54283138 -0.53045053 0.18115294 1.16062792
[37] 0.63649217 0.59524893 -0.52972220 0.45013366 0.31892391 -0.32371074
[43] 0.89716628 -0.15187155 0.25808226 1.73149549 1.36917698 -0.05803692
[49] 0.44942046 1.07708172

> zmatrix <- matrix(zscores, nrow = 10, ncol = 5)
> zmatrix
 [,1] [,2] [,3] [,4] [,5]
 [1,] -1.19615960 1.2876955 1.1680298 0.01264523 0.31892391
 [2,] 0.95960082 0.9305014 1.6973635 0.57436245 -0.32371074
 [3,] 0.50725210 0.7261407 0.9313464 0.54283138 0.89716628
 [4,] -0.37411224 -0.1930611 -1.1518232 -0.53045053 -0.15187155
 [5,] 1.42044733 -0.5612294 0.1216726 0.18115294 0.25808226
 [6,] 1.69437460 0.7750486 -1.1603818 1.16062792 1.73149549
 [7,] 0.51677914 -0.2675638 1.0041582 0.63649217 1.36917698
 [8,] -0.04810441 -1.1107721 0.5446949 0.59524893 -0.05803692
 [9,] -1.28024577 -0.6004009 1.6023170 -0.52972220 0.44942046
[10,] -0.48968148 -0.3192017 -0.1105704 0.45013366 1.07708172
>

Imagine the five columns are students’ standard scores on four quizzes and a final exam. You can specify names
for the rows and columns of the matrix as follows:

> rownames(zmatrix)<-c("Jill","Nat","Jane","Tim","Larry","Harry","Barry","Mary","Gary","Eric")
> zmatrix
 [,1] [,2] [,3] [,4] [,5]
Jill -1.19615960 1.2876955 1.1680298 0.01264523 0.31892391
Nat 0.95960082 0.9305014 1.6973635 0.57436245 -0.32371074
Jane 0.50725210 0.7261407 0.9313464 0.54283138 0.89716628
Tim -0.37411224 -0.1930611 -1.1518232 -0.53045053 -0.15187155
Larry 1.42044733 -0.5612294 0.1216726 0.18115294 0.25808226
Harry 1.69437460 0.7750486 -1.1603818 1.16062792 1.73149549
Barry 0.51677914 -0.2675638 1.0041582 0.63649217 1.36917698
Mary -0.04810441 -1.1107721 0.5446949 0.59524893 -0.05803692
Gary -1.28024577 -0.6004009 1.6023170 -0.52972220 0.44942046
Eric -0.48968148 -0.3192017 -0.1105704 0.45013366 1.07708172

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

13

> colnames(zmatrix) <- c("quiz1","quiz2","quiz3","quiz4","final")
> zmatrix
 quiz1 quiz2 quiz3 quiz4 final
Jill -1.19615960 1.2876955 1.1680298 0.01264523 0.31892391
Nat 0.95960082 0.9305014 1.6973635 0.57436245 -0.32371074
Jane 0.50725210 0.7261407 0.9313464 0.54283138 0.89716628
Tim -0.37411224 -0.1930611 -1.1518232 -0.53045053 -0.15187155
Larry 1.42044733 -0.5612294 0.1216726 0.18115294 0.25808226
Harry 1.69437460 0.7750486 -1.1603818 1.16062792 1.73149549
Barry 0.51677914 -0.2675638 1.0041582 0.63649217 1.36917698
Mary -0.04810441 -1.1107721 0.5446949 0.59524893 -0.05803692
Gary -1.28024577 -0.6004009 1.6023170 -0.52972220 0.44942046
Eric -0.48968148 -0.3192017 -0.1105704 0.45013366 1.07708172

Standardized scores are usually reported to two decimal places. Remove some of the extra decimals to make the
next part of the code a little less cluttered. Set the number of decimals by using the round() function:

zmatrix <round(zmatrix, digits = 2)
zmatrix
 quiz1 quiz2 quiz3 quiz4 final
Jill -1.20 1.29 1.17 0.01 0.32
Nat 0.96 0.z93 1.70 0.57 -0.32
Jane 0.51 0.73 0.93 0.54 0.90
Tim -0.37 -0.19 -1.15 -0.53 -0.15
Larry 1.42 -0.56 0.12 0.18 0.26
Harry 1.69 0.78 -1.16 1.16 1.73
Barry 0.52 -0.27 1.00 0.64 1.37
Mary -0.05 -1.11 0.54 0.60 -0.06
Gary -1.28 -0.60 1.60 -0.53 0.45
Eric -0.49 -0.32 -0.11 0.45 1.08

If you have occasion to fill a matrix rowwise, set the byrow argument to T or TRUE. You can do this as follows.

> y <- matrix(x, nrow = 10, ncol = 10, byrow = TRUE)
> y

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1 2 3 4 5 6 7 8 9 10
 [2,] 11 12 13 14 15 16 17 18 19 20
 [3,] 21 22 23 24 25 26 27 28 29 30
 [4,] 31 32 33 34 35 36 37 38 39 40
 [5,] 41 42 43 44 45 46 47 48 49 50
 [6,] 51 52 53 54 55 56 57 58 59 60
 [7,] 61 62 63 64 65 66 67 68 69 70
 [8,] 71 72 73 74 75 76 77 78 79 80
 [9,] 81 82 83 84 85 86 87 88 89 90
[10,] 91 92 93 94 95 96 97 98 99 100

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

14

R uses two indexes for the elements of a two-dimensional matrix. As with vectors, the indexes must be enclosed
in square brackets. A range of values can be specified by use of the colon operator, as in [1:2]. You can also use a
comma to indicate a whole row or a whole column of a matrix. Consider the following examples.

> y[,1:5]
 [,1] [,2] [,3] [,4] [,5]
 [1,] 1 2 3 4 5
 [2,] 11 12 13 14 15
 [3,] 21 22 23 24 25
 [4,] 31 32 33 34 35
 [5,] 41 42 43 44 45
 [6,] 51 52 53 54 55
 [7,] 61 62 63 64 65
 [8,] 71 72 73 74 75
 [9,] 81 82 83 84 85
[10,] 91 92 93 94 95
> y[1:5,]
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10
[2,] 11 12 13 14 15 16 17 18 19 20
[3,] 21 22 23 24 25 26 27 28 29 30
[4,] 31 32 33 34 35 36 37 38 39 40
[5,] 41 42 43 44 45 46 47 48 49 50
> y[5,5]
[1] 45
> y[10,10]

[1] 100R can do many useful things with matrices. For example, calculate the variance-covariance matrix by using
the var() function:

> varcovar <- var(zmatrix)
> varcovar
 quiz1 quiz2 quiz3 quiz4 final
quiz1 1.0544544 0.11489111 -0.3285267 0.3838900 0.19691333
quiz2 0.1148911 0.63790667 0.1006644 0.1074422 0.07846222
quiz3 -0.3285267 0.10066444 1.0574489 -0.0665400 -0.19844667
quiz4 0.3838900 0.10744222 -0.0665400 0.2859656 0.20044222
final 0.1969133 0.07846222 -0.1984467 0.2004422 0.47039556

Invert a matrix by using the solve() function:

> inverse <- solve(varcovar)
> inverse
 quiz1 quiz2 quiz3 quiz4 final
quiz1 2.23763294 -0.02683957 0.6305501 -3.3937313 0.7799048
quiz2 -0.02683957 1.72182793 -0.2326712 -0.5743348 -0.1293917
quiz3 0.63055010 -0.23267125 1.2358101 -0.9683403 0.7088308
quiz4 -3.39373126 -0.57433478 -0.9683403 10.3613632 -3.3071827
final 0.77990476 -0.12939168 0.7088308 -3.3071827 3.5292487

Chapter 1 ■ Migrating to r: as easy as 1, 2, 3

15

Do matrix multiplication by using the %*% operator. Just to make things clear, the matrix product of a matrix and
its inverse is an identity matrix with 1’s on the diagonal and 0’s in the off-diagonals. Showing the result with fewer
decimals makes this more obvious. For some reason, many of my otherwise very bright students do not “get” scientific
notation at all.

> identity <- varcovar %*% inverse
> identity
 quiz1 quiz2 quiz3 quiz4 final
quiz1 1.000000e+00 5.038152e-18 3.282422e-17 2.602627e-16 5.529431e-18
quiz2 -8.009544e-18 1.000000e+00 -2.323920e-17 1.080679e-16 -4.710858e-17
quiz3 -7.697835e-17 7.521991e-17 1.000000e+00 9.513874e-17 -9.215718e-17
quiz4 1.076477e-16 1.993407e-17 3.182133e-17 1.000000e+00 -4.325967e-17
final -4.770490e-18 -6.986328e-18 -1.832302e-17 1.560167e-16 1.000000e+00

> identity <- round(identity, 2)
> identity
 quiz1 quiz2 quiz3 quiz4 final
quiz1 1 0 0 0 0
quiz2 0 1 0 0 0
quiz3 0 0 1 0 0
quiz4 0 0 0 1 0
final 0 0 0 0 1

Looking Backward and Forward
In Chapter 1, you learned three important things: how to get R, how to use R, and how to work with missing data and
various types of data in R. These are foundational skills. In Chapter 2, you will learn more about input and output in R.
Chapter 3 will fill in the gaps concerning various data structures, returning to vectors and matrices, as well as learning
how to work with lists and data frames.

17

Chapter 2

Input and Output

R provides many input and output capabilities. This chapter contains recipes on how to read data into R, as well as
how to use several handy input and output functions. Although most R users are more concerned with input, there are
times when you need to write to a file. You will find recipes for that in this chapter as well.

Oracle boasts that Java is everywhere, and that is certainly true, as Java is in everything from automobiles to cell
phones and computers. R is not everywhere, but it is everywhere you need it to be for data analysis and statistics.

Recipe 2-1. Inputting and Outputting Data
Problem
To work with data, you need to get it into your R program. You may want to obtain that data from user input or from a
file. Once you have done some processing you may want to output some data.

Solution
Besides typing data into the console, you can use the script editor. The output for your R session appears in the R
Console or the R Graphics Device. The basic commands for reading data from a file are read.table() and
read.csv().

Note ■ Here CSV refers to comma-separated values.

You can write to a file using write.table(). In addition to these standard ways to get data into and out of R,
there are some other helpful tools as well. You can use data frames, which are a special kind of list. As with any list,
you can have multiple data types, and for statistical applications, the data frame is the most common data structure in
R. You can get data and scripts from the Internet, and you can write functions that query users for keyboard input.

Before we discuss these I/O (input/output) options, let’s see how you can get information regarding files and
directories in R. File and directory information can be very helpful. The functions getwd() and setwd() are used to
identify the current working directory and to change the working directory. For files in your working directory, simply
use the file name. For files in a different directory, you must give the path to the file in addition to the name.

The function file.info() provides details of a particular file. If you need to know whether a particular file is
present in a directory, use file.exists(). Using the function objects() or ls() will show all the objects in your
workspace. Type dir() for a list of all the files in the current directory. Finally, you can see a complete list of file- and
directory-related functions by entering the command ?files.

To organize the discussion, I’ll cover keyboard and monitor I/O; reading, cleaning, and writing data files; reading
and writing text files; and R connections, in that order.

CHapter 2 ■ Input and Output

18

Keyboard and Monitor Access
You can use the scan() function to read in a vector from a file or the keyboard. If you would rather enter the elements
of a vector one at a time with a new line for input, just type x <- scan() and press the Enter key. R gives you the
index, and you supply the value. See the following example. When you are finished entering data, just hit the Enter
key with an empty index.

> xvector <- scan()
1: 19
2: 20
3: 31
4: 25
5: 36
6: 43
7: 53
8: 62
9: 40
10: 29
11:
Read 10 items
> xvector
 [1] 19 20 31 25 36 43 53 62 40 29

Humans are better and faster at entering data in a column than they are at entering data in a row. You may like
this way of entering vectors more than using the c() function.

If your data are in a file in the current working directory, you can enter a vector by using the file name as the
argument for scan(). For example, assume you have a vector stored in a file called yvector.txt.

> scan("yvector.txt")
Read 10 items
 [1] 22 18 32 39 42 73 37 55 34 34

The readline() function works in a similar fashion to get information from the keyboard. For example, you may
have a code fragment like the following:

> yourName <- readline("Type in Your First and Last Name: ")
Type in Your First and Last Name: Larry Pace
> yourName
[1] "Larry Pace"

In the interactive mode, you can print the value of an object to the screen simply by typing the name of the object
and pressing Enter. You can also use the print() function, but it is not necessary at the top level of the interactive
session. However, if you want to write a function that prints to the console, just typing the name of the object will no
longer work. In that case, you will have to use the print() function. Examine the following code. I wrote the function
in the script editor to make things a little easier to control. I cover writing R functions in more depth in Chapter 11.

> cubes
function(x) {
print(x^3)
}

CHapter 2 ■ Input and Output

19

> x <- 1:20
> cubes(x)
 [1] 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375
[16] 4096 4913 5832 6859 8000

Reading and Writing Data Files
R can deal with data files of various types. Tab-delimited and CSV are two of the most common file types. If you load
the foreign package, you can read in additional data types, such as SPSS and SAS files.

Reading Data Files

To illustrate, I will get some data in SPSS format from the General Social Survey (GSS) and then open it in R. The GSS
dataset is used by researchers in business, economics, marketing, sociology, political science, and psychology. The
most recent GSS data are from 2012. You can download the data from www3.norc.org/GSS+Website/Download/ in
either SPSS format or Stata format.

Because Stata does a better job than SPSS at coding the missing data in the GSS dataset, I saved the Stata (*.DTA)
format into my directory and then opened the dataset in SPSS. This fixed the problem of dealing with missing data,
but my data are far from ready for analysis yet. If you do not have SPSS, you can download the open-source program
PSPP, which can read and write SPSS files, and can do most of the analyses available in SPSS. The point of this
illustration is simply that there are data out there in cyberspace that you can import into R, but you may often have
to make a pit stop at SPSS, Stata, PSPP, Excel, or some other program before the data are ready for R. If you have an
“orderly” SPSS dataset with variable names that are legal in R, you can open that file directly into R with no difficulty
using the foreign() package.

When I read the SPSS data file into R, I see I still have some work to do:

> require(foreign)
Loading required package: foreign
> gss2012 <- read.spss("GSS2012.sav")
There were 11 warnings (use warnings() to see them)
> warnings()
Warning messages:
1: In read.spss("GSS2012.sav") :
 GSS2012.sav: Unrecognized record type 7, subtype 18 encountered in system file
2: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated
3: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated
4: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated
5: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated
6: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated
7: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated
8: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated

http://www3.norc.org/GSS+Website/Download/

CHapter 2 ■ Input and Output

20

9: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated
10: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated
11: In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, ... :
 duplicated levels in factors are deprecated

Although this dataset with 4820 records and 1067 variables is large by the standards of the majority of researchers,
the data are not “big” in the modern sense. As you can see by the preceding warning messages, the next problem is
that the data must be cleaned up a bit before I can do any serious data analysis. Dealing with dirty data is a real-world
problem that is not sufficiently addressed in most statistics textbooks, in which professors like me make up examples that
are easy to work with, and which almost never have missing data. Recipe 2-2 deals with cleaning up data.

Note ■ r nearly choked on the GSS data. We will talk about how to handle very large datasets in Chapter 13.

Writing Data Files

The write.table() function is the analog of the read.table() function. The write.table() function writes a data
frame. The function cat() can also be used to write to a file (or to the screen), by successive parts. What this means is
that you concatenate the arguments to the cat() function, separating them by commas. You can use any R data type
for this purpose. The following code illustrates this:

> cats <- c("Tom","Felix","Mittens","Socks","Boots","Fluffy")
> ages <- c(12,10,8,2,5,3)
> pets <- data.frame(cats, ages, stringsASFactors = FALSE)
> pets
 cats ages stringsASFactors
1 Tom 12 FALSE
2 Felix 10 FALSE
3 Mittens 8 FALSE
4 Socks 2 FALSE
5 Boots 5 FALSE
6 Fluffy 3 FALSE
> write.table(pets, "myCats")
> cat("Tom\n", file = "catFile")
> cat("Felix\n", file = "catFile", append = TRUE)
> ## verify the file writes by using the file.exists() function
> file.exists("myCats")
[1] TRUE
> file.exists("catFile")
[1] TRUE

CHapter 2 ■ Input and Output

21

Recipe 2-2. Cleaning Up Data
Problem
Real-world data often need cleaning. For example, the GSS codebook uses several different codes for missing data.
The easiest way to handle the recoding in this particular case is to clean the dataset in SPSS (see Recipe 2-1 for
more on GSS). After the cleaning, the data will be more orderly. In many cases, cleaning data in R is more efficient,
and in many others, it might be more efficient to use the search-and-replace functionality of a word processor or a
spreadsheet program. As always, choose the most appropriate tool from the toolbox. If the dataset is small, you can
make minor edits using the R Data Editor, not to be confused with the script editor.

Solution
When you have serious data recoding and cleaning to do (I call it “data surgery”), I suggest you make use of the plyr
package in R. Think of a pair of pliers. The plyr package is a SAC (split-apply-combine) tool, and does a great job for
such purposes.

To illustrate some real-world data cleaning issues, let us use a manageable (and I hope interesting to you) set of
data, compliments of Dr. Nat Goodman. The data consist of various measurements of mutant and normal mice. The
mutated mice were created to carry the genome sequence for Huntington’s disease. Several different strains of mice
were used because inbred mice are as alike genetically as human twins are. For this example, we will work with only
two strains of mice.

The following is the head (the first few records) of the mouse data (which we can view with the head() function).
Each mouse has a unique identifier, the strain, the nominal genome sequence, and the actual genome sequence.
The sequence CAG repeated seven times represents a normal mouse. CAG sequences of 40 or more are associated
with Huntington’s disease in mice. The other variables are self-descriptive. The age is the mouse’s age in weeks.
This dataset represents a small portion of a much larger dataset.

As you have seen previously, when you read in CSV files, you do not have to specify that the first row contains
the variable names. The “header” is expected in a CSV file. However, many tab-delimited files do not have a row of
column headers. If your tab-delimited file does have a row of variable names as the first row, you must set the header
option to T or TRUE, as shown in the following code segment.

> mouseWeights <- read.table("Mouse_Weights.txt", header = TRUE)
> head(mouseWeights)
 mouse_id strain cag_nominal cag_actual sex age body_weight brain_weight
1 hd1769 B6 Q111 113 F 3.7143 11.18 0.380
2 hd1777 B6 Q111 137 F 4.0000 12.50 0.434
3 hd1778 B6 WT 7 F 4.0000 13.30 0.406
4 hd1782 B6 Q111 136 F 4.0000 11.66 0.426
5 hd1806 B6 WT 7 M 4.0000 14.33 0.464
6 hd1808 B6 Q111 113 M 4.0000 13.72 0.414

When we examine the data, we see that there are some problems. We find that some mice have an impossible
body weight of zero grams. Other mice have an equally impossible brain weight of zero grams.

summary(mouseWeights)
 mouse_id strain cag_nominal cag_actual sex age
 hd1094 : 1 B6 :376 Q111:172 Min. : 7.00 F:315 Min. : 3.714
 hd1095 : 1 CD1:268 Q50 :166 1st Qu.: 7.00 M:329 1st Qu.: 8.000
 hd1104 : 1 Q92 : 51 Median : 48.00 Median :12.143
 hd1107 : 1 WT :255 Mean : 57.93 Mean :12.138
 hd1109 : 1 3rd Qu.:113.00 3rd Qu.:16.286
 hd1110 : 1 Max. :154.00 Max. :20.571

