
Shelve in
Programming Languages/Java

User level:
Beginning

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Introducing Maven
Introducing Maven is your quick 60 page start-up primer guide on Maven. This
fully packed mini-book includes the new features and enhancements found in the
latest version of Maven.

In this short 60-page book, you’ll learn all about Maven and how to set it up
to use. You’ll learn about the Maven life cycle and how to effectively leverage and
use it. Also, you’ll learn the basics of using site plugins and generating Javadocs,
test coverage/FindBugs reports, version/release notes and more. Furthermore,
you’ll take advantage of Maven’s archetypes to bootstrap new projects easily.
Finally, you will learn how to integrate Nexus repository manager with Maven
release phases.

After reading and using this short book, you’ll have an understanding of
Maven’s dependency management and how to organize basic and multi-module
Maven projects.

You’ll learn:

• What Maven is and how it compares with Ant, Gradle and more
• How to set up and test Maven
• What transitive dependencies are
• How to create a basic Maven project
• How set up a multi-module project
• What is the Maven life cycle and how to leverage it
• How to generate Javadocs, unit test reports and more with Maven
• How to use Maven archetypes
• How to integrate with Nexus repository manager
• Releasing your project with Maven and more
• How to integrate with Subversion

Varanasi
Belida

www.apress.com

SOURCE CODE ONLINE 9 781484 208427

51999
ISBN 978-1-4842-0842-7

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors�� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

Chapter 1: Getting Started with Maven■■ ��� 1

Chapter 2: Setting Up Maven■■ ��� 7

Chapter 3: Maven Dependency Management■■ �������������������������������� 15

Chapter 4: Maven Project Basics■■ ��� 23

Chapter 5: Maven Life Cycle■■ �� 37

Chapter 6: Maven Archetypes■■ ��� 47

Chapter 7: Documentation and Reporting■■ ������������������������������������� 63

Chapter 8: Maven Release■■ ��� 77

Index��� 99

xvii

Introduction

Introducing Maven provides a concise introduction to Maven, the de facto standard
for building, managing, and automating Java and JEE-based projects in enterprises
throughout the world. The book starts by explaining the fundamental concepts of Maven
and showing you how to set up and test Maven on your local machine. It then delves
deeply into concepts such as dependency management, life cycle phases, plug-ins, and
goals. It also discusses project structure conventions, jump-starting project creation using
archetypes, and documentation and report generation. Finally, it concludes with
a discussion of Nexus and Maven’s release process.

How This Book Is Structured
Chapter 1 starts with a gentle introduction to Maven. It discusses reasons for adopting
Maven, and it provides an overview of its two alternatives: Ant and Gradle.

Chapter 2 focuses on setting up Maven on your machine and testing the installation.
It also provides an overview of Maven’s settings.xml file, and it shows you how to run
Maven in a HTTP proxy-enabled environment.

Chapter 3 delves deeply into Maven’s dependency management. It then discusses
the GAV coordinates Maven uses for uniquely identifying its artifacts. Finally, it covers
transitive dependencies and the impact they have on builds.

Chapter 4 discusses the organization of a basic Maven project and covers the
important elements of a pom.xml file. Then you learn about testing the project using JUnit.

Chapter 5 provides detailed coverage of Maven’s life cycle, plug-ins, build phases,
and goals. It then walks you through the process of creating and using a simple Maven
plug-in.

Chapter 6 introduces archetypes’ project templates that enable you to bootstrap new
projects quickly. The built-in archetypes are used to generate a Java project, a web project,
and a multimodule project. You will then create a custom archetype from scratch and use
it to generate a new project.

Chapter 7 covers the basics of site generation using Maven. It then discusses report
generation and documentation such as Javadocs, test coverage reports, and FindBugs
reports and how to integrate them into a Maven site.

Chapter 8 begins with a discussion of the Nexus repository manager and shows you
how it can be integrated with Maven. It then provides complete coverage of Maven’s
release process and its different phases.

■ Introduction

xviii

Target Audience
Introducing Maven is intended for developers and automation engineers who would like
to get started quickly with Apache Maven. This book assumes basic knowledge of Java. No
prior experience with Maven is required.

Downloading the Source Code
The source code for the examples in this book can be downloaded from
www.apress.com/9781484208427. The source code is also available on GitHub at
https://github.com/bava/gswm-book.

Once downloaded, unzip the code and place the contents in the
C:\apress\gswm-book folder. The source code is organized by individual chapters. Where
applicable, the chapter folders contain the gswm project with the bare minimum files to
get you started on that chapter’s code listings. The chapter folders also contain a folder
named final, which holds the expected end state of the project(s).

Questions
We welcome reader feedback. If you have any questions or suggestions, you can contact
the authors at Balaji@inflinx.com or Sudha@inflinx.com.

www.apress.com/9781484208427.
https://github.com/bava/gswm-book.
https://Balaji@inflinx.com
https://Sudha@inflinx.com.

1

Chapter 1

Getting Started with Maven

Like other craftsmen, software developers rely on their tools to build applications.
Developer’s integrated development environments (IDEs), bug-tracking tools, build tools,
frameworks, and debug tools, such as memory analyzers, play a vital role in day-to-day
development and maintenance of quality software. This book will discuss and explore
the features of Maven, which we know will become an important tool in your software
development arsenal.

Apache Maven is an open source, standards-based project management framework
that simplifies the building, testing, reporting, and packaging of projects. Maven’s initial
roots were in the Apache Jakarta Alexandria project that took place in early 2000. It was
subsequently used in the Apache Turbine project. Like many other Apache projects
at that time, the Turbine project had several subprojects, each with its own Ant-based
build system. Back then, there was a strong desire for developing a standard way to build
projects and to share generated artifacts easily across projects. This desire gave birth to
Maven. Maven version 1.0 was released in 2004, followed by version 2.0 in 2005. At the
time of writing this book, 3.0.5 is the current version of Maven.

Maven has become one of the most widely used open source software programs in
enterprises around the world. Let’s look at some of the reasons why Maven is so popular.

Standardized Directory Structure
Often, when we start work on a new project, a considerable amount of time is spent
deciding on the project layout and folder structure needed to store code and configuration
files. These decisions can vary vastly across projects and teams, which can make it difficult
for new developers to understand and adopt other teams’ projects. It can also make it hard
for existing developers to jump between projects and find what they are seeking.

Maven addresses the above problems by standardizing the folder structure and
organization of a project. Maven provides recommendations on where different parts
of a project, such as source code, test code, and configuration files, should reside.
For example, Maven suggests that all of the Java source code should be placed in the
src\main\java folder. This makes it easier to understand and navigate any Maven project.

Additionally, these conventions make it easy to switch to and start using a new IDE.
Historically, IDEs varied with project structure and folder names. A dynamic web project
in Eclipse might use the WebContent folder to store web assets, whereas NetBeans might
use Web Pages for the same purpose. With Maven, your projects follow a consistent
structure and become IDE agnostic.

Chapter 1 ■ Getting Started with Maven

2

Declarative Dependency Management
Most Java projects rely on other projects and open source frameworks to function
properly. It can be cumbersome to download these dependencies manually and keep
track of their versions as you use them in your project.

Maven provides a convenient way to declare these project dependencies in a
separate, external pom.xml file. It then automatically downloads those dependencies and
allows you to use them in your project. This simplifies project dependency management
greatly. It is important to note that in the pom.xml file you specify the what and not the
how. The pom.xml file can also serve as a documentation tool, conveying your project
dependencies and their versions.

Plug-ins
Maven follows a plug-in–based architecture, making it easy to augment and customize its
functionality. These plug-ins encapsulate reusable build and task logic. Today, there are
hundreds of Maven plug-ins available that can be used to carry out tasks ranging from
code compilation to packaging to project documentation generation.

Maven also makes it easy to create your own plug-ins, thereby enabling you to
integrate tasks and workflows that are specific to your organization.

Uniform Build Abstraction
Maven provides a uniform interface for building projects. You can build a Maven project
by using just a handful of commands. Once you become familiar with Maven’s build
process, you can easily figure out how to build other Maven projects. This frees developers
from having to learn build idiosyncrasies so they can focus more on development.

Tools Support
Maven provides a powerful command-line interface to carry out different operations.
All major IDEs today provide excellent tool support for Maven. Additionally, Maven is
fully integrated with today’s continuous integration products such as Jenkins, Bamboo,
and Hudson.

Archetypes
As we already mentioned, Maven provides a standard directory layout for its projects.
When the time comes to create a new Maven project, you need to build each directory
manually, and this can easily become tedious. This is where Maven archetypes come to
rescue. Maven archetypes are predefined project templates that can be used to generate
new projects. Projects created using archetypes will contain all of the folders and files
needed to get you going.

Chapter 1 ■ Getting Started with Maven

3

Archetypes is also a valuable tool for bundling best practices and common assets
that you will need in each of your projects. Consider a team that works heavily on Spring
framework-based web applications. All Spring-based web projects share common
dependencies and require a set of Spring configuration files. It is also highly possible that
all of these web projects have similar Log4j/Logback configuration files, CSS/Images, and
Apache Tile layouts or SiteMesh decorators. Maven lets this team bundle these common
assets into an archetype. When new projects get created using this archetype, they will
automatically have the common assets included. No more copy and pastes or drag and
drops required.

Open Source
Maven is open source and costs nothing to download and use. It comes with rich online
documentation and the support of an active community. Additionally, companies such as
Sonatype offer commercial support for the Maven ecosystem.

CONVENTION OVER CONFIGURATION

Convention over configuration (CoC) or coding by convention is one of the key
tenants of Maven. Popularized by the Ruby on Rails community, CoC emphasizes
sensible defaults, thereby reducing the number of decisions to be made. It saves
time and also results in a simpler end product, as the amount of configuration
required is drastically reduced.

As part of its CoC adherence, Maven provides several sensible defaults for its
projects. It lays out a standard directory structure and provides defaults for
the generated artifacts. Imagine looking at a Maven artifact with the name
log4j-1.4.3.jar. At a glance, you can easily see that you are looking at a log4j
JAR file, version 1.4.3.

One drawback of Maven’s CoC is the rigidness that end users experience when
using it. To address this, you can customize most of Maven’s defaults. For example,
it is possible to change the location of the Java source code in your project. As a rule
of thumb, however, such changes to defaults should be minimized.

Chapter 1 ■ Getting Started with Maven

4

Maven Alternatives
Although the emphasis of this book is on Maven, let’s look at a couple of its alternatives:
Ant + Ivy and Gradle.

Ant + Ivy
Apache Ant (http://ant.apache.org) is a popular open source tool for scripting builds.
Ant is Java based, and it uses Extensible Markup Language (XML) for its configuration.
The default configuration file for Ant is the build.xml file.

Using Ant typically involves defining tasks and targets. As the name suggests, an
Ant task is a unit of work that needs to be completed. Typical tasks involve creating a
directory, running a test, compiling source code, building a web application archive
(WAR) file, and so forth. A target is simply a set of tasks. It is possible for a target to
depend on other targets. This dependency lets us sequence target execution. Listing 1-1
demonstrates a simple build.xml file with one target called compile. The compile target
has two echo tasks and one javac task.

Listing 1-1.  Sample Ant build.xml File

<project name="Sample Build File" default="compile" basedir=".">
 
 <target name="compile" description="Compile Source Code">
 <echo message="Starting Code Compilation"/>
 <javac srcdir="src" destdir="dist"/>
 <echo message="Completed Code Compilation"/>
 </target>
 
</project>
 

Ant doesn’t impose any conventions or restrictions on your project and it is
known to be extremely flexible. This flexibility has sometimes resulted in complex,
hard-to-understand and maintain build.xml files.

Apache Ivy (http://ant.apache.org/ivy/) provides automated dependency
management, making Ant more joyful to use. With Ivy, you declare the dependencies
in an XML file called ivy.xml, as shown in Listing 1-2. Integrating Ivy with Ant involves
declaring new targets in the build.xml file to retrieve and resolve dependencies.

Listing 1-2.  Sample Ivy Listing

<ivy-module version="2.0">
 <info organisation="com.apress" module="gswm-ivy" />
 
 <dependencies>
 <dependency org="org.apache.logging.log4j" name="log4j-api"
rev="2.0.2" />
 </dependencies>
</ivy-module>

http://ant.apache.org/
http://ant.apache.org/ivy/

Chapter 1 ■ Getting Started with Maven

5

Gradle
Gradle (http://gradle.org/) is the newest addition to the Java build project automation
tool family. Unlike Ant and Maven, which use XML for configuration, Gradle uses a
Groovy-based Domain Specific Language (DSL).

Gradle provides the flexibility of Ant, and it uses the same notion of tasks. It also
follows Maven’s conventions and dependency management style. Listing 1-3 shows a
default build.gradle file.

Listing 1-3.  Default build.gradle File

apply plugin: 'java'
  
version = '1.0'
 
repositories {
 mavenCentral()
}
 
dependencies {
 testCompile group: 'junit', name: 'junit', version: '4.10'
}
 

Gradle’s DSL and its adherence to CoC results in compact build files. The first
line in Listing 1-3 includes a Java plug-in for build’s use. Plug-ins in Gradle provide
preconfigured tasks and dependencies to the project. The Java plug-in, for example,
provides tasks for building source files, running unit tests, and installing artifacts.
The dependencies section in the default.build file instructs Gradle to use JUnit
dependency during the compilation of test source files. Gradle’s flexibility, like that of
Ant, can be abused, which results in difficult and complex builds.

Summary
Apache Maven greatly simplifies the build process and automates project management
tasks. This chapter provided a gentle introduction to Maven and described the main
reasons for adopting it. We also looked at Maven’s close peers: Ant + Ivy and Gradle.

In the next chapter, you will learn about the set up required to get up and running
with Maven.

http://gradle.org/

7

Chapter 2

Setting Up Maven

Maven installation is an easy and straightforward process. This chapter will explain how
to install and set up Maven using the Windows 7 operating system. You can follow the
same procedure with other operating systems.

Note■■   Maven is a Java-based application and requires the Java Development Kit (JDK)
to function properly. Maven version 3.2 requires JDK 1.6 or above and versions 3.0/3.1 can
be run using JDK 1.5 or above. Before proceeding with Maven installation, make sure that
you have Java installed. If not, install the JDK (not just Java Runtime Environment [JRE])
from http://www.oracle.com/technetwork/java/javase/downloads/index.html.
In this book, we will be using JDK 1.7.

You will begin the installation process by downloading the latest version of Maven
from the Apache Maven web site (http://maven.apache.org/download.html). At the
time of this writing, the latest version is 3.2.3. Download the Maven 3.2.3 binary .zip file
as shown in Figure 2-1.

Figure 2-1.  Maven download page

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html

