
 COMPANION eBOOK

US $39.99

Shelve in
Mobile Computing

User level:
Beginning—Intermediatewww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Game apps are one of the most popular categories in the Apple iTunes App
Store. Well, the introduction of the new Swift programming language will

make game development even more appealing and easier to existing and
future iOS app developers. In response, James Goodwill, Wesley Matlock
and Apress present Beginning Swift Games Development for iOS. In this
book, you’ll learn the fundamental elements of the new Swift language as
applied to game development for iOS.

In part 1, you’ll start with a basic 2D game idea and build the game throughout
the book introducing each SpriteKit topic as we add new functionality to the
game. By the end of the book, you’ll have experience with all the important
SpriteKit topics and have a fully functional game as a result. In part 2 of this
book, you’ll learn 3D game development using Apple’s SceneKit framework
and the Swift programming language. And, you’ll follow the same pattern
used for part 1.

After reading and using this book, you’ll have the skills and the code to build
your first 2D and then 3D game app that you can run on any iOS enabled
device and perhaps sell in the Apple iTunes App Store.

Beginning
Swift Games

Development for iOS
James Goodwill | Wesley Matlock

Companion
eBook
Available

Goodwill
M

atlock
Beginning Swift Gam

es Developm
ent for iOS

SOURCE CODE ONLINE

Beginning

9 781484 204016

53999
ISBN 978-1-4842-0401-6

Includes

iOS 8 SDK

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors �� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

Part I: Swift and Sprite Kit ■ ��� 1

Chapter 1: Setting Up Your Game Scene and Adding Your First Sprites ■ ���������������� 3

Chapter 2: Sprite Kit Scenes and SKNode Positioning ■ ��� 19

Chapter 3: Adding Physics and Collision Detection to Your Game ■ ���������������������� 33

Chapter 4: Adding Scene Scrolling and Game Control ■ ��� 47

Chapter 5: Adding Actions and Animations ■ ��� 59

Chapter 6: Adding Particle Effects to Your Game with Emitter Nodes ■ ����������������� 79

Chapter 7: Adding Points and Sound ■ ��� 97

Chapter 8: Transitioning Between Scenes ■ ��� 113

Chapter 9: Sprite Kit Best Practices ■ �� 127

vi Contents at a Glance

Part II: Swift and Scene Kit ■ �� 141

Chapter 10: Creating Your First Scene Kit Project ■ ��� 143

Chapter 11: Building the Scene ■ ��� 155

Chapter 12: Lighting, Camera, and Material Effects in Scene Kit ■ ���������������������� 169

Chapter 13: Animating Your Models ■ �� 181

Chapter 14: Hit Testing and Collision Detection ■ �� 189

Chapter 15: Using Sprite Kit with a Scene Kit Scene ■ �� 201

Chapter 16: Advanced Topics and Tips ■ �� 211

Appendix A: The Swift Programming Language ■ �� 219

Index ��� 245

xix

Introduction

Which Version of Swift Is Covered in This book?
This book covers version 1.1 of Swift. Swift 1.2 is currently in beta and under a
nondisclosure agreement (NDA). When 1.2 is released, we will update the source in this book
at both the Apress.com web site and James Goodwill’s blog at www.jgoodwill.org. Please be
aware that you will need to update your source when 1.2 is released.

What This Book Is
Game apps are one of the most popular categories in the Apple iTunes App Store. Well, the
introduction of the new Swift programming language will make game development even
more appealing and easier to existing and future iOS app developers. In response, James
Goodwill, Wesley Matlock, and Apress introduce you to this book, Beginning Swift Games
Development for iOS.

In this book, you’ll learn the fundamental elements of the new Swift language as applied
to game development for iOS in 2D and 3D worlds using both Sprite Kit and Scene Kit,
respectively.

What You Need to Know
This book assumes you have a basic understanding of how to create applications for the
iPhone using Xcode. You will also need a basic understanding of Apple’s new programming
language, Swift 1.1. We assume that you can download, install, and use the latest version of
Xcode to create an application and run it on the iPhone simulator.

www.jgoodwill.org

xx Introduction

What You Need to Have
In terms of hardware, you need an Intel-based Macintosh running Mountain Lion (OS X 10.8)
or later. Regarding software, you need Xcode 6.2 since that is the current version to include
Swift 1.1. You can download Xcode from the App Store or Apple’s developer web site at
http://developer.apple.com.

What’s in This Book?
In Chapter 1, you’ll learn about what Sprite Kit is and how you create a new Sprite Kit
game using Xcode. You will then dive in and create the beginnings of a Sprite Kit game
starting from scratch. You will learn about SKNodes and their subclasses, and you’ll use an
SKSpriteNode to add both a background node and a player node.

In Chapter 2, we will step back a bit and give you a deeper look at Sprite Kit scenes,
including how scenes are built and why the order they are built in can change your game.
The chapter will close with a discussion of Sprite Kit coordinate systems and anchor points
as they relate to SKNodes.

In Chapter 3, you’ll work with Sprite Kit’s physics engine and collision detection. The chapter
will begin with a discussion of SKPhysicsBody—the class used to simulate collision detection.
You will then turn on gravity in the game world and see how that affects the nodes. After
that, you will add a touch responder to propel the playerNode up into space, and finally you
will learn how to handle node collisions.

In Chapter 4, you’ll start adding some real functionality to your game. You’ll begin by making
some small changes to the current GameScene. After that, you will add additional orb nodes
to collide into. You will then add scrolling to your scene, allowing you to make it look like
the player is flying through space collecting orbs. Finally, you will start using the phone’s
accelerometer to move the player along the x-axis.

In Chapter 5, you’ll refactor the orb node’s layout one last time with the goal of enhancing
playability. After that, you will learn how you can use SKActions to move an SKSpriteNode
back and forth across the scene and then make that same node rotate forever. The chapter
will close with a look at how you can add colorizing effects to an SKSpriteNode using a
colorize action.

In Chapter 6, you’ll see how to define particle emitters and how to leverage them in Sprite
Kit games. After that, you will learn how you can use them to add engine exhaust to the
playerNode whenever an impulse is applied to the physicsBody.

In Chapter 7, you’ll see how you can use SKLabelNodes to add text to your Sprite Kit games.
Specifically, you’ll see how you how to add a label that keeps up with the number of
impulses remaining for the spaceman to use, and then you’ll see how you can add scoring
to the game to keep up with the number of orbs the spaceman has collected.

In Chapter 8, you’ll learn how to implement scene transitions using Sprite Kit’s SKTransition
class. You will look at some of the different types of built-in transitions Sprite Kit makes
available to you. You will also see how you can control each scene during a transition. At the
end of the chapter, you will take your newfound knowledge and add a menu scene to your
SuperSpaceMan game.

http://developer.apple.com

xxiIntroduction

In Chapter 9, you’ll learn some Sprite Kit best practices; specifically, you will see how you
can create your own subclasses of SKSpriteNode so that you can better reuse your nodes.
You will then move on to changing your game to load all the sprites into a single texture
atlas that you can reference when creating all future sprites. After that, you will move on to
externalizing some of your game data so that designers and testers can change the game
play. Finally, you will close out the chapter when you prune your node tree of all nodes that
have fallen off the bottom of the screen.

In Chapter 10, you’ll learn about what Scene Kit is and how to create a new Scene Kit game
using Xcode. You will then dive in and create the beginnings of a Scene Kit game starting
from scratch. You will learn to about SCNScene and SCNodes with a Scene Kit primer.

In Chapter 11, you’ll learn more about the scene graph and some of the basics of Scene
Kit. You will start to create your game by loading the spaceman from his Collada file. You
will also learn about the Scene Kit primitive geometries by adding these as objects for the
spaceman to avoid.

In Chapter 12, you’ll learn how Scene Kit uses lighting and the type of lighting that is
available to you in Scene Kit. You will also examine how materials are added onto the
SCNNode, as well as how the camera is used within the scene.

In Chapter 13, you’ll learn about the basics of animating the objects in your game. You will
see a couple of different ways to animate the nodes to give you more than one way to do
your animations. Once you have completed this chapter, all of your objects will move within
the scene.

In Chapter 14, you’ll learn about collision detection within the scene. You will learn how to
move the spaceman around the scene. Once you have the spaceman moving, you will learn
how to detect when the spaceman runs into an obstacle.

In Chapter 15, you’ll learn how to use a Sprite Kit scene within the Scene Kit scene. The
chapter will show you how to create a screen to show you a timer that you will start when
the user starts the game. The chapter will also show you how to display a “game over”
screen and then restart the game.

In Chapter 16, you’ll get some tips and tricks on using the Xcode editor. We will also explain
some of the vectors and matrix methods in some detail to give you a better understanding of
what those methods are doing behind the scenes.

In Appendix A, you’ll take a quick (you might say a “swift”) look at each of the features in the
Swift programming language. We’ll start by describing each feature and then cement your
knowledge through consecutive examples.

Part I
Swift and Sprite Kit

In this part of this book, we will cover the basics of Sprite Kit including how you render and
animate sprites, add physics and collision detection, and control your game play with the
accelerometer. You will also look at how you add particle emitters to enhance the appearance
of your game. We will cover everything you need to know to create your own Sprite Kit game.

1

3

Chapter 1
Setting Up Your Game Scene
and Adding Your First Sprites

Sprite Kit is Apple’s exciting 2D game framework released in September 2013 with iOS 7.
It is a graphics rendering and animation framework that gives you the power to easily animate
textured images, play video, render text, and add particle effects. It also includes an integrated
physics library. Sprite Kit is the first-ever game engine formally built into the iOS SDK.

In this chapter you will learn what Sprite Kit is and how you create a new Sprite Kit game
using Xcode. You will then move on and create the beginnings of a Sprite Kit game starting
from scratch. You’ll learn about SKNodes and their subclasses, and you’ll also use
an SKSpriteNode to add both a background node and a player node to your game.

What You Need to Know
This section of this book assumes you have a basic understanding of how to build iPhone
applications using Xcode and the Xcode Simulator. It also assumes you have a basic
knowledge of the iOS/Mac programming language Swift. If you are not familiar with Swift,
there is a brief introduction in the appendix at the back of this book.

This book will not cover how to program. It will focus only on Sprite Kit game programming.

What You Need to Have
To complete all of the examples in the book, you will need to have an Intel-based Macintosh
running OS X 10.8 (Mountain Lion) or newer. You will also need Xcode 6+ installed. You can
find both of these in the Apple App Store.

4 CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

SuperSpaceMan
I feel the best way to learn anything is to do it. Therefore, in this book you are going to dive
right in and create your own game. You will start off with the basic code for a 2D game, and
you will add new features to the game as I introduce new topics with each chapter. At the
end of the book, you will have a complete game.

The game you are going to create is inspired by Sega’s popular Sonic Jump Fever
(https://itunes.apple.com/us/app/sonic-jump-fever/id794528112?mt=8). It is a vertical
scroller that accelerates the main character through obstacles and collectables, increasing
your score as you collect rings.

This game will be similar, in that it is a vertical scroller, but your main character is going to
be a space man who hurtles through space collecting power orbs while trying to avoid black
holes that will destroy him.

Creating a Swift Sprite Kit Project
Before you can get started, you will need to create a Swift Sprite Kit project. So, go ahead
and open Xcode and complete the following steps:

1. Select the menu File ➤ New ➤ Project.

2. Select Application from the iOS group.

3. Then select the Game icon. The choose template dialog should now
look like Figure 1-1.

Figure 1-1. The choose template dialog

https://itunes.apple.com/us/app/sonic-jump-fever/id794528112?mt=8

5CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

4. To move on, click the Next button.

5. Enter SuperSpaceMan for Product Name, Apress for Organization
Name, and com.apress for Organization Identifier.

6. Make sure Swift is the selected language, Sprite Kit is the selected
game technology, and iPhone is the selected device.

7. Before you click the Next button, take a look at Figure 1-2.
If everything looks like this image, click the Next button and select a
good place to store your project files and click the Create button.

Figure 1-2. The choose project options dialog

Note You will notice you are creating an iPhone-only game. This is only because the game you are
creating lends itself better to the iPhone. Everything I will cover in this book translates to the iPad
just as well.

You now have a working Sprite Kit project. Go ahead and click the Play button to see what
you have created. If everything went OK, you will see your new app running in the simulator.

Note The Xcode simulator may take awhile to start on some slower machines. Simulating Sprite
Kit can be very taxing on your processors.

6 CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

It does not do a whole lot yet, but there is more to it than the displaying of the universal
“Hello, World!” Tap the simulator screen a few times. You will see rotating space ships
displayed wherever you tap. Depending on where you tapped, you should see something
similar to Figure 1-3.

Figure 1-3. The Sprite Kit sample application

Starting from Scratch
While the standard Sprite Kit template works great, you are going to be starting from
scratch. Starting from nothing will allow you to see all the working parts in a Sprite Kit game
and give you a much better understanding of what you are creating.

The first thing you need to do is make sure your game runs only in portrait mode. To do this,
follow these steps:

1. Select the SuperSpaceMan project in the Project Explorer.

2. Then select SuperSpaceMan from Targets.

3. Deselect Landscape Left and Landscape Right.

At this point, your target settings should look like Figure 1-4.

7CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

The next thing you need to do is delete the file GameScene.sks. You will not be using the level
editor in this book. You can find this file in the SuperSpaceMan group. Delete this file and
then open GameScene.swift and replace its contents with the class in Listing 1-1.

Listing 1-1. GameScene.swift: The SuperSpaceMan Main GameScene

import SpriteKit

class GameScene: SKScene {

 required init?(coder aDecoder: NSCoder) {

 super.init(coder: aDecoder)
 }

 override init(size: CGSize) {

 super.init(size: size)

 backgroundColor = SKColor(red: 0.0, green: 0.0, blue: 0.0, alpha: 1.0)
 }
}

There is one more change you need to make before examining your baseline project. Open
GameViewController.swift and replace its contents with the Listing 1-2 version of the same
class.

Figure 1-4. The SuperSpaceMan target settings

8 CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

Listing 1-2. GameViewController.swift: The SuperSpaceMan Main UIViewController

import SpriteKit

class GameViewController: UIViewController {

 var scene: GameScene!

 override func prefersStatusBarHidden() -> Bool {
 return true
 }

 override func viewDidLoad() {

 super.viewDidLoad()

 // 1. Configure the main view
 let skView = view as SKView
 skView.showsFPS = true

 // 2. Create and configure our game scene
 scene = GameScene(size: skView.bounds.size)
 scene.scaleMode = .AspectFill

 // 3. Show the scene.
 skView.presentScene(scene)
 }
}

Save all your changes and click the Play button once more. Wow, um. That was not very
exciting. If you made all the changes, you should now be staring at a totally black screen
with only the current frame rate displayed. This was the intent. You truly are starting from
nothing.

Let’s take a moment and examine each component of your new game. First, open
Main.storyboard. Everything here should look pretty normal. You should see a single
storyboard with a single UIViewController. Expand Game View Controller Scene in the
Story Board Explorer and select Game View Controller, as shown in Figure 1-5.

Figure 1-5. Game View Controller Scene

9CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

Now expand the Utilities view on the right side of Xcode and click Show the Identity
inspector button. You will see the custom class of this UIViewController is your
GameViewController.swift. Figure 1-6 shows you this connection.

Figure 1-6. The custom class GameViewController

There is one last thing to look at before you get back to the code portion of this tour. Go
back to the Utilities view and select the Connections inspector. Notice the View outlet is
connected to your GameViewController.view. Figure 1-7 shows this connection.

Figure 1-7. The View outlet

The point of going through this examination of the storyboard is to show that while Sprite Kit
is used to create games, the technology used to create games is just like what you would
use to create any modern iOS app.

The GameViewController Class
Let’s get back to the code. You can ignore AppDelegate.swift—it is the same boilerplate
code you use to start all iOS Swift applications. GameViewController.swift is the best
starting point. I included it earlier, but for the sake of convenience it is listed here again:

import SpriteKit

class GameViewController: UIViewController {

 var scene: GameScene!

 override func prefersStatusBarHidden() -> Bool {

 return true
 }

10 CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

 override func viewDidLoad() {

 super.viewDidLoad()

 // 1. Configure the main view
 let skView = view as SKView
 skView.showsFPS = true

 // 2. Create and configure our game scene
 scene = GameScene(size: skView.bounds.size)
 scene.scaleMode = .AspectFill

 // 3. Show the scene.
 skView.presentScene(scene)
 }
}

Starting with the first line of this controller, you see a simple import including the
Sprite Kit framework. This line makes all the Sprite Kit related classes available
to your GameViewController. After that, you have a standard class definition—the
GameViewController extends a UIViewController.

After the class definition, you see the declaration of the optional variable scene, which is
declared as the type GameScene. GameScene is the class that will be doing most of your work.
It is where you will be adding the game logic. You will look at this class in the next section.

Notice one thing about the scene variable. It is an optional. You know it is an optional because
an exclamation point (!) follows its declaration. You declared this variable as an optional
because you are not going to initialize it until the viewDidLoad() method fires and Swift
requires you to initialize all properties in a class either at their declaration or in the init().
If you don’t initialize a property in either of these locations, then you must declare the property
as optional. You will see the use of optionals throughout all of the examples in this book.

After the scene declaration, you see an override of the UIViewController’s viewDidLoad()
method. Here you return true because you don’t want a status bar displayed in the game.

The next thing to check out is the viewDidLoad() method. This is where you really start to
see your first active Sprite Kit code. The first thing you do, after calling super.viewDidLoad(),
is to configure your main view. In the first step, you downcast your standard UIView to an
SKView. The SKView is the view that will host your game scene mentioned earlier. For the
most part, the SKView acts much like any UIView, with the exception that it has a collection of
game-related properties and utility methods like the line following the downcast.

skView.showsFPS = true

This property of the SKView is used to show or hide the frames per second the application is
rendering—the higher, the better.

After configuring the main view, you create and configure the GameScene.

scene = GameScene(size: skView.bounds.size)
scene.scaleMode = .AspectFill

11CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

The first line creates a new instance of the GameScene initializing the size to match the size of
the view that will host the scene. After that, you set scaleMode to AspectFill. The scaleMode
(implemented by the enum SKSceneScaleMode) is used to determine how the scene will
be scaled to match the view that will contain it. Table 1-1 describes each of the available
scaleMode properties.

Note When setting the scaleMode property of the scene, you are using a shortened syntax to
represent the mode you are setting, specifically, the .AspectFill mode. You can use this dot
syntax because you know the type of the scaleMode property is an SKSceneScaleMode, which is
an enum containing all of the scale modes.

Once you have the view and the scene configured, there is only one last thing
to do—present the scene. This is done with the last line in viewDidLoad().

skView.presentScene(scene)

The GameScene Class
Now that I have walked you through each line of the GameViewController class, it is time to
talk about the GameScene class. Again, for convenience’s sake, I am including the source for
the GameScene.swift file a second time:

import SpriteKit

class GameScene: SKScene {

 required init?(coder aDecoder: NSCoder) {

 super.init(coder: aDecoder)
 }

Table 1-1. The SKSceneScaleModes

SKSceneScaleMode Definition

SKSceneScaleMode.Fill The Fill scaleMode will fill the entire SKView without consideration
to the ratio of width to height.

SKSceneScaleMode.AspectFill The AspectFill mode will scale the scene to fill the hosting SKView
while maintaining the aspect ratio of the scene, but there may be
some cropping if the hosting SKView’s aspect ratio is different. This
is the mode you are using in this game.

SKSceneScaleMode.AspectFit The AspectFit mode will scale the scene to fill the hosting SKView
while maintaining the aspect ratio of the scene, but there may be
some letterboxing if the hosting SKView’s aspect ratio is different.

SKSceneScaleMode.ResizeFill The ResizeFill mode will modify the size of the scene to fit the
hosting view exactly.

12 CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

 override init(size: CGSize) {

 super.init(size: size)

 backgroundColor = SKColor(red: 0.0, green: 0.0, blue: 0.0, alpha: 1.0)
 }
}

As you look over GameScene, you will notice there is really not much to it. It extends SKScene
and implements two init() methods; the first init() that takes an NSCoder can be ignored.
You had to add this only because a Swift class does not inherit its parent’s constructors.
The init() you are interested in is the second method, which takes a CGSize parameter
that represents the size you want the scene to be (in this case, the size you passed in from
the GameViewController). After that, you pass the size to your superclass and then set the
background color to black.

While there is not a whole lot to your current GameScene, this is where you will be doing
almost all of your Sprite Kit work. SKScenes and the classes that extend them are the root
nodes of all Sprite Kit content, and your GameScene will grow considerably as you move along
in this book.

Adding a Background and Player Sprite
I have talked enough for one chapter. Let’s get back to the game itself. In this, the last
section of this chapter, you are going to just jump in and add a game background and a
player sprite to your scene and see how they look.

Before you can do this, you need some image files. You can find all of the necessary assets
for this book in the file assets.zip found at Apress.com. Go ahead and download and unzip
this file.

Inside the unzipped folder you will find two folders one named Images and another named
sprites.atlas. Now copy the entire spites.atlas folder directly into the SuperSpaceMan folder
of the same project.

Next, open the Image.xcassets folder in Xcode. You will see a figure similar to Figure 1-8.

13CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

Next, using Finder, browse to the Images folder in the previously downloaded zip file and
finally select the three folders inside the Images directory and drag them onto the xcassets
palette directly below the SpaceShip asset. When the files have been added, your xcassets
palette will look like Figure 1-9.

Figure 1-8. Adding Image Assets

14 CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

Now that you have all of the images added to your project, let’s put some of them to good
use. Go back to GameScene.swift and add the following two lines to the beginning of the
GameScene class:

let backgroundNode : SKSpriteNode?
var playerNode : SKSpriteNode?

Here you are adding two optionals, backgroundNode and playerNode, both of which are
SKSpriteNodes. An SKSpriteNode is a descendent of an SKNode, which is the primary
building block of almost all Sprite Kit content. SKNode itself does not draw any visual
elements, but all visual elements in Sprite Kit based applications are drawn using SKNode
subclasses. Table 1-2 defines the main descendants of SKNode that render visual elements.

Figure 1-9. The Added Image Assets

Table 1-2. The Descendants of SKNode That Render Visual Elements

Class Description

SKSpriteNode A node that is used to draw textured sprites

SKVideoNode A node that presents video content

SKLabelNode A node that is used to draw text strings

SKShapeNode A node that is used to draw a shape based upon a Core Graphics path

SKEmitterNode A node that is used to create and render particles

SKCropNode A node that is used to crop child nodes using a mask

SKEffectNode A node that is used to apply Core Image filters to its child nodes

15CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

In this book you will be using three subclasses of SKNode: SKSpriteNode, SKLabelNode, and
SKEmitterNode.

After adding the two SKSpriteNodes, add the following lines to the bottom of the
GameScene.init(size: CGSize) method:

// adding the background
backgroundNode = SKSpriteNode(imageNamed: "Background")
backgroundNode!.anchorPoint = CGPoint(x: 0.5, y: 0.0)
backgroundNode!.position = CGPoint(x: size.width / 2.0, y: 0.0)
addChild(backgroundNode!)

The first line of this snippet creates an SKSpriteNode with an image named Background,
which you just added to your Images.xcassets folder.

In this case you are drawing the background image. The next line of code determines
where the new node will be anchored in your scene. Don’t worry too much about this at the
moment. I will be discussing anchor points in great detail in the next chapter. Just know that
the anchor point of (0.5, 0.0) sets the anchor point of the background node to the bottom
center of the node.

Next, you set the position of the backgroundNode. Here you are setting the node’s position to
an x-coordinate half the width of the scene, which is in the middle of the scene, and setting
the y-coordinate to 0.0, which is the bottom of the scene.

The final line in the snippet adds the backgroundNode to your scene. To see what you have
just accomplished, save your work and run the application again. You should now see your
background displayed, as shown in Figure 1-10.

Figure 1-10. The backgroundNode added to the GameScene

16 CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

That was easy enough. Now, let’s add your player to your scene. Adding the player node is
just as easy as adding the background. Take a look at the following snippet:

// add the player
playerNode = SKSpriteNode(imageNamed: "Player")
playerNode!.position = CGPoint(x: size.width / 2.0, y: 80.0)
addChild(playerNode!)

As you can see, you are creating a new SKSpriteNode using the image named Player. You
then set the position of the playerNode and add it to the scene. Notice one difference here.
You did not set the anchor point of the playerNode. This is because the default anchor point
of all SKNodes is (0.5, 0.5), which is the center of the node. Again, don’t worry about the
positions or anchorPoints for now. I will be discussing them in the next chapter.

Go ahead and add this snippet to the bottom of the GameScene.init() method and save
your changes. Now run the application one more time. You will now see the SuperSpaceMan
positioned in front of the previously added backgroundNode, as shown in Figure 1-11.

Figure 1-11. The playerNode added to the GameScene

17CHAPTER 1: Setting Up Your Game Scene and Adding Your First Sprites

After making these changes, your new GameScene.swift file should look like Listing 1-3.

Listing 1-3. GameScene.swift: The modified GameScene.swift

import SpriteKit

class GameScene: SKScene {

 let backgroundNode : SKSpriteNode?
 var playerNode : SKSpriteNode?

 required init?(coder aDecoder: NSCoder) {

 super.init(coder: aDecoder)
 }

 override init(size: CGSize) {

 super.init(size: size)

 backgroundColor = SKColor(red: 0.0, green: 0.0, blue: 0.0, alpha: 1.0)

 // adding the background
 backgroundNode = SKSpriteNode(imageNamed: "Background")
 backgroundNode!.anchorPoint = CGPoint(x: 0.5, y: 0.0)
 backgroundNode!.position = CGPoint(x: size.width / 2.0, y: 0.0)
 addChild(backgroundNode!)

 // add the player
 playerNode = SKSpriteNode(imageNamed: "Player")
 playerNode!.position = CGPoint(x: size.width / 2.0, y: 80.0)
 addChild(playerNode!)

 }
}

Summary
In this chapter you learned what Sprite Kit is and how you create a new Sprite Kit game
using Xcode. You then dove in and created the beginnings of a Sprite Kit game starting from
scratch. You learned about SKNodes and their subclasses, and you used an SKSpriteNode to
add both a background node and a player node.

In the next chapter, you will dig a little deeper into Sprite Kit and discuss the details of the
SKScene, including the coordinate system and anchor points. You will also look at how a
scene’s node tree is constructed.

19

Chapter 2
Sprite Kit Scenes and
SKNode Positioning

In the previous chapter I talked about what Sprite Kit was and how you can use it to
create 2D games. I then jumped right in and showed how to start working with the
SKSpriteNode to create a background and player sprite and then showed how to add them
to a game scene.

In this chapter, I am going to step back a bit and give you a deeper look at Sprite Kit scenes,
including how scenes are built and why the order they are built in can change your game.
I will close the chapter with a discussion of Sprite Kit coordinate systems and anchor points
as they relate to SKNodes.

What Is an SKScene?
I used the SKScene object in the previous chapter to host the background and player nodes,
but I really did not explain the scene I was using. I just used it to add the sprites and called
it a day. It is now time to dig in and see how SKScene really works. I’ll start by defining an
SKScene object.

An SKScene object represents a scene of content in a Sprite Kit game. An SKScene
object inherits from SKEffectNode, SKNode, UIResponder, and, of course, NSObject. It is
constructed first by creating the scene and then by adding n number of other SKNodes to it.
The scene plus all of its child nodes are called the node tree, and the scene is the root of
the node tree. The nodes contained in a scene provide the content the scene will animate
and render for display.

20 CHAPTER 2: Sprite Kit Scenes and SKNode Positioning

The following are the steps you performed in the previous chapter to create the node tree.
They are the basic steps you will complete whenever setting up a game scene.

1. Create the GameViewController.

2. Have the GameViewController create its UIView.

3. Inside the GameViewController.viewDidLoad(), downcast the UIView
to an SKView and set the showFPS property to true.

let skView = view as SKView
skView.showsFPS = true

4. Create an instance of the SKScene named GameScene, passing it its
size in the constructor and setting the scaleMode property.

scene = GameScene(size: skView.bounds.size)
scene.scaleMode = .AspectFill

5. Inside the init() of the GameScene, add the SKSpriteNode objects to
the scene.

backgroundNode = SKSpriteNode(imageNamed: "Background")
backgroundNode!.anchorPoint = CGPoint(x: 0.5, y: 0.0)
backgroundNode!.position = CGPoint(x: size.width / 2.0, y: 0.0)
addChild(backgroundNode!)

playerNode = SKSpriteNode(imageNamed: "Player")
playerNode!.position = CGPoint(x: size.width / 2.0, y: 80.0)
addChild(playerNode!)

6. Present the complete scene in the GameViewController.
viewDidLoad() method.

skView.presentScene(scene)

At this point, you have a complete scene with a complete node tree. You can always add
more nodes as the game progresses, but these are the basic steps that you will complete
whenever you create a new SKScene.

The SKScene Rendering Loop
In this section, I will describe what happens after the SKScene is presented by the SKView.
In a more traditional iOS application, you would render the view’s content only once, and
it would stay static until the model that the view is presenting changes. This is fine for a
business app, but a game has the potential to constantly change.

Because of this dynamic characteristic, Sprite Kit is constantly updating the scene and its
contents. This constant updating is called the rendering loop (see Figure 2-1).

21CHAPTER 2: Sprite Kit Scenes and SKNode Positioning

Each iteration of this loop generates the next frame in the scene. The steps involved in
generating the next frame of a scene are as follows:

1. The scene calls its update() method. This is where you will have
most of your game logic. More often than not, you will be moving
nodes around, adding new actions to existing nodes, and handling
user input. (I will talk about the update() method in Chapter 4.)

2. The scene next performs all programmed actions on its children. In
this step, the scene will execute any actions you may have set up in
step 1. (I will talk about actions in Chapter 5.)

3. The scene then calls the didEvaluateActions() method. This is
where you would put any post-action game logic. An example would
be testing the position of a node, after the actions were performed,
and responding accordingly.

4. Next the scene executes any physics simulations on physics bodies
in the scene. (I will discuss physics in Chapter 3.)

5. The scene calls the didSimulatePhysics() method. This is much like
the didEvaluateActions() method in that this is where you would
add any game logic to be performed after all the physics simulations
are completed. This is your last chance to perform any game logic
before the scene is rendered.

6. The scene is rendered.

You will see examples of each step in the rendering loop as you progress through each
chapter of this book.

SKScene
evaluates actions

-didEvaluateActions

SKScene
simulates physics

-didSimulatePhysics

SKView
render the scene

Each frame

-update:

Figure 2-1. The Sprite Kit rendering loop

