
 COMPANION eBOOK

US $49.99

Shelve in
Mobile Computing

User level:
Beginning–Intermediatewww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Migrating to Android for iOS Developers gives you—as an experienced native iOS app developer—
the skills to learn native Android apps development from scratch. Starting with preparing your

Android integrated development environment and introducing just enough Android application
framework fundamentals, you’ll understand how to create a simple but meaningful HelloAndroid
project immediately.

This book provides the guidelines and tutorial projects to show you how to translate your existing iOS
app to the Android platform. You’ll use your mobile app knowledge to structure your Android apps in a
similar way to how you would structure your iOS apps. To implement use cases with detailed screens, the
most common mobile topics are discussed, including user interfaces, managing data, and networking
with remote services. As you move through the book, you’ll create Android apps with rich UI components
to handle common CRUD operations locally and remotely.

There are many Android goodies described in the book. Instead of relying on routine text descriptions,
you’ll discover the uniqueness of Android and appreciate the many features that are unique to the
platform. This book also explores more powerful mobile UX patterns that are commonly used on the iOS
and Android platforms.

When you finish reading Migrating to Android for iOS Developers, you’ll be an Android developer as well
as an iOS developer. And, you will be fully convinced you can do everything in Android that you can do
in iOS.

What You’ll Learn:

• How to maximize your existing iOS mobile knowledge to learn Android programming skills

• How to use the Android integrated development environment with the Eclipse ADT plugin

• How to translate your existing iOS code to Android with the following common mobile topics:

° Common mobile screen navigation patterns

° User interface components and UI animations

° Storing data

° Networking and using remote services

° Using system apps

Migrating to
 Android for iOS

Developers
Sean Liao

Companion

eBook
Available

Liao
M

igrating to Android for iOS Developers
SOURCE CODE ONLINE

Migrating to

9 781484 200117

54999
ISBN 978-1-4842-0011-7

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments��� xv

Introduction��� xvii

Part 1: Prepare Your Tools■■ ��� 1

Chapter 1: Setting Up the Development Environment■■ ��3

Chapter 2: Android Programming Basics■■ ���27

Part 2: Come Sail Away: A Roadmap for Porting■■ ��� 59

Chapter 3: Structure Your App■■ ��61

Chapter 4: Implement Piece by Piece■■ ���173

Part 3: One Step Further■■ �� 285

Chapter 5: More About Android Application Components■■ ��287

Chapter 6: Android Application Resources■■ ���315

Chapter 7: Common Mobile Use Cases■■ ���337

Chapter 8: Pulling It All Together■■ ��427

iv Contents at a Glance

Part 4: Final: The Beginning of Disparity■■ ��� 489

Appendix A: The Official Android Developers Site■■ ��491

Index��503

xvii

Introduction

In 2000, I started my first PalmOS mobile app for an inventory-tracking project. The initial project
was a full-staffed team effort that consisted of mobile developers, SAP consultants, supply-chain
SME, J2EE middleware developers, QA testers, solution architects, business sponsors, and so forth.
JavaME came up strong in 2002, followed by Pocket/Windows Mobile. I did several mobile projects
converting the mobile apps to the PocketPC platform by blindly translating JavaME mobile code to
C# .NETCF mobile code. The “translation” efforts prolonged the whole product life cycle. The project
achieved higher ROI as the product life extended, because the extra cost of translating mobile code
was surprisingly low. Ever since then, I have been translating front-end mobile apps among JavaME,
BlackBerry, and Windows Mobile platforms.

In 2009, by repeating the same porting process, I created my first simple iOS app by translating a
Windows mobile app. That started my iOS programming journey and which eventually led me to
becoming a fulltime iOS developer. It was a no-brainer for me to try porting to Android later.

When you have the whole solution completed for your iOS app, all the issues have been verified and
the other deliverables and project artifacts are already reusable. Knowing the Android market share,
I always clone my iOS apps to Android. The return on investment (ROI) immediately gets improved
because the level of efforts for the Android porting proves to be only a fraction of the entire project’s
effort—again and again. It would be just a waste to not do it.

The primary objective of this book is to help experienced iOS developers leap into native Android mobile
development. It is easier than you think, and this book will make it even easier with iOS analogies
(and mapping guidelines) so you can immediately translate common mobile use cases to Android.

Who Is This Book For?
This book is specifically written for iOS developers who want to take advantage of their mobile
knowledge and make the mobile applications available on the Android mobile platform. The book will
show you that you already have the fundamentals for the Android platform. Let me show you that you
are very close to becoming an Android developer. Let me show you the common programming subjects
and frameworks using your familiar iOS vocabulary so that you immediately understand, without
lengthy explanations, because you already know the mobile subjects from being an iOS developer.

xviii Introduction

You don’t need experience in the Java language, although it does help a lot. The most important
qualities of Android developers do not include Java programming language experience. It is the
mobile SDK and framework knowledge that distinguishes you from other Java programmers.
You know one programming language already since you are an iOS developer, so you should be
comfortable reading Java code. I also made the sample code extra-readable, so you will have no
problem following through the programming subjects and the Java sample code.

There are tons of Java language references out there; you should find them handy sooner or later
when you are ready to get serious.

How This Book Is Organized
In Part I, you will get the Android development toolkit up and running in no time. With the Android
IDE, you will be guided in creating tutorial projects that will become your porting sample projects.
I believe this is the best way for you to get hands-on experience while learning programming topics.

Part II of this book shows you how to plan and structure your Android apps by following the same
iOS thinking process: create a storyboard and break the app into model-view-controller (MVC)
classes. You will be able to reuse most of the existing software artifacts and design from the iOS
counterparts. The common mobile topics are followed, including user interface, managing data,
and networking with remote services. After you finish Part II, you will be able to create simple but
meaningful Android apps with rich UI components, and to handle common CRUD (create, read,
update, delete) operations locally and remotely. There are still more Android goodies to come.

In Part III, this book recaps the Android framework fundamentals with code instead of just
descriptions. You will discover the uniqueness of the Android framework and appreciate many
features that you normally don’t have in iOS. Several powerful and repeatable mobile UX patterns
are also introduced. Once you get here, you should be fully convinced that you can do everything
in Android just like you do in iOS. The last chapter walks you through a case study that ports a
complete iOS app to Android. It recaps how to use the iOS analogies and mapping guidelines from
the topics in previous chapters. You can also use the book’s table of contents to help find the porting
guidelines as needed.

When you complete the journey, you will be able to use the right tools to effectively port your existing
iOS apps to Android.

1

Part 1
Prepare Your Tools

A handy tool makes a handy man. This is very true for creating software, too. You use Xcode to
write, compile, debug, and build code; it is an Integrated Development Environment (IDE) for iOS
programming. ADT in Eclipse is an IDE for Android programming, which offers comparable tools and
features as Xcode. The first part of the chapter walks you through the installation options and steps
for getting it up and running. All the topics in this book come with sample code. You will need to use
the IDE to learn from these sample projects and you will use the IDE to create world-class Android
apps, too.

For native Android programming, Java is the designated programming language. The chapters in
this part will give you enough knowledge to read the sample code, in case you are not exposed to
the Java language yet. You will feel comfortable using the code from this book as your own code,
without assuming you already know Java.

3

Chapter 1
Setting Up the Development
Environment

It is more fun to see apps run than to read the source code, and you cannot get hands-on
programming experience by just reading books. Let’s get the development environment up and
running first so that we can use it—and learn Android programming along the way.

The Android Developer Tools Plugin for Eclipse

IOS ANALOGY

Just as Xcode is an IDE for creating iOS apps, the ADT plugin for Eclipse is an IDE for creating Android apps.

The Android Developer Tools (ADT) plugin for Eclipse is the Android-programming integrated
development environment (IDE) that we will go over in detail. It is a full Java IDE that includes the
Android SDK to help you build, test, debug, and package your Android apps. It is free, open source,
and runs on most major operating system (OS) platforms, including the Mac OS. The ADT plugin is
not a developer’s only choice, but probably the one most commonly used. We will use it throughout
this book.

Installing the All-in-One Bundled Package
The all-in-one bundled package is the best option for most Android developers. It is similar to Xcode
installation: there is no need to sort out the dependencies and no need for manual configurations.
It actually wasn’t available when I started Android programming a couple years ago.

4 CHAPTER 1: Setting Up the Development Environment

With a single download, the ADT Bundle includes everything you need, including the following:

Eclipse	

The ADT plugin for Eclipse	

Android SDK Tools	

Android Platform-tools	

The latest Android platform	

The device emulator image for the latest Android platform	

Get the single download for your Mac at http://developer.android.com/sdk/index.html#mac-bundle.

It is a ZIP file. Unzip it and put the contents of the ZIP file anywhere you want; for example, if you put
it in /Applications/adt-bundle-mac, it should look like Figure 1-1.

Figure 1-1.  The adt-bundle-mac folder structure

All you need to do is download it and unzip it. Please allow me to repeat: you won’t need to
configure it after you install it. Go ahead and launch the Eclipse.app. Let’s keep it in the Mac OS
Dock so that you can launch it at any time.

If you don’t want to mess with the ADT plugin, you may choose to skip the next section and go
straight to the “MacBook Retina Display” section.

http://developer.android.com/sdk/index.html#mac-bundle

5CHAPTER 1: Setting Up the Development Environment

Installing the Eclipse ADT Plugin
You may choose to manually install the components in the ADT Bundle and go through the
configuration steps. The ADT plugin for Eclipse is a custom plugin for the Eclipse IDE that provides
an integrated environment to develop Android apps. It extends the capabilities of Eclipse to let you
quickly set up new Android projects, build an app user interface (UI), debug your app, and create
app packages (APKs) for distribution.

I installed and configured the ADT plugin manually because I also use Eclipse for JavaEE
programming, and I want to share common Java classes between JavaEE server code and Android
client code. If you choose to install the plugin to your existing Eclipse instance, chances are you
already have experience with the Eclipse IDE.

If you are not a JavaEE developer or just want to keep things simple for now, you should skip the
following instructions and do the all-in-one bundled package installation.

Note  Even if you already have Eclipse installed, you still can have multiple Eclipse instances. You should
only need to go through this plugin option if you need to share Java classes between Android projects and
J2EE projects.

If you decide to go with the manual ADT plugin option for your existing Eclipse app, please visit
the Android official site (http://developer.android.com/sdk/installing/installing-adt.html) for
detailed instruction.

For the Mac OS, you can also follow the “Installing the ADT Plugin Cheat Sheet,” which is modified
from the preceding URL for your convenience.

INSTALLING THE ADT PLUGIN CHEAT SHEET

Do the following to download the ADT plugin:

1.	 Open the Install wizard from the Eclipse top menu bar by selecting Help ➤ Install New Software
(see Figure 1-2). Click Add to add a new site.

 

http://developer.android.com/sdk/installing/installing-adt.html

6 CHAPTER 1: Setting Up the Development Environment

2.	 In the Add Repository dialog, enter the following and then click OK.

a.	 Enter ADT Plugin in the Name field.

b.	 Enter https://dl-ssl.google.com/android/eclipse/ in the Location URL.

Figure 1-2.  Install New Software ➤ Add Repository

Note  If you have trouble acquiring the plugin, try using “http” in the Location URL instead of “https”.

 3.	 In the Work with drop-down, make sure the ADT Plugin repository is selected (see Figure 1-3).

https://dl-ssl.google.com/android/eclipse/

7CHAPTER 1: Setting Up the Development Environment

a.	 Select the Developer Tools check box and then click Next. 

4.	 You should see a list of the tools to be downloaded. Click Next and follow the onscreen instructions
to complete the installation. When the installation completes, restart Eclipse.

Do the following to specify the Android SDK location:

1.	 Get the Android SDK, which contains the framework libraries and the development toolkit.

a.	 Download the ZIP file from http://developer.android.com/sdk/index.html#download.

b.	 Unzip the file to your SDK Location folder, which is /Applications/adt-bundle-mac/sdk.

2.	 From the Eclipse top menu bar, select Eclipse ➤ Preferences . . . to open the Eclipse Preferences
screen (see Figure 1-4). Select Android from the left panel and enter your SDK Location:
/Applications/adt-bundle-mac/sdk. 

Figure 1-3.  Select Developer Tools

http://developer.android.com/sdk/index.html#download

8 CHAPTER 1: Setting Up the Development Environment

Do the following to add platforms and packages:

1.	 You need at least one platform-specific SDK and tools. Use the Android SDK Manager to obtain them
for the latest platform (API 19 is the latest as of this writing).

2.	 From the Eclipse top menu bar, select Window ➤ Android SDK Manager to launch the Android SDK
Manager. Figure 1-5 shows the platform API and tool packages that I have installed.

 

Figure 1-4.  Android SDK Location

9CHAPTER 1: Setting Up the Development Environment

3.	 You want to install at least the following three packages (actually the first two, but you will need the
last one later):

a.	 Tools

b.	 The latest Android API: Android 4.4.2 (API 19) as of this writing

c.	 Extra: The Android Support Library

Follow the onscreen instructions to complete the installation.

Figure 1-5.  Android SDK Manager

10 CHAPTER 1: Setting Up the Development Environment

MacBook Retina Display
If you have a Mac with a beautiful retina display, the Eclipse screen resolution looks awfully bad
because it is not yet optimized for retina display. My eyes simply cannot stand the low resolution on
my retina screen. It really has zero effect on any code you write, but please do the following so that
you don’t waste the beauty of a retina display:

1.	 In the Finder, right-click Eclipse.app and then select Show Package
Contents.

2.	 Modify the Info.plist file with any text editor, such as TextEdit.app. If you have
Xcode, double-clicking will open the file in the Xcode editor as well. Note that
your modifications (see Listing 1-1) go inside <dict> </dict>.

Listing 1-1.  Eclipse Info.plist File

<plist version="1.0">
<dict>
 
 ...
 <key>NSHighResolutionCapable</key>
 <true/>
 ...
 
</dict>
</plist>
 

3.	 Force your Mac OS to reload the preceding changes the next time you
launch Eclipse.app. This can be easily achieved using the shell touch
command.

4.	 Open the Terminal program and issue the touch command, as shown
in Listing 1-2.

Listing 1-2.  The Touch Command

[/Applications/adt-bundle-mac/eclipse]$ cd /Applications/adt-bundle-mac/eclipse
[/Applications/adt-bundle-mac/eclipse]$ ls
Eclipse.app configuration epl-v10.html notice.html plugins
artifacts.xml dropins features p2 readme
[/Applications/adt-bundle-mac/eclipse]$ touch Eclipse.app/
 

Bingo! Eclipse should have a retina display now.

The Eclipse Workbench
You just got the right tool, but you need to know how to use it. Let’s spend some time with Eclipse
first because it appears quite different from Xcode. I think it is actually more sophisticated than
Xcode because it has a broader goal: it provides a plugin platform so that you can extend the IDE by
creating a plugin for your unique development tasks. For example, the ADT plugin for Android that
you just installed is a plugin toolkit for Android development. In the Java world, you can use Eclipse

11CHAPTER 1: Setting Up the Development Environment

Figure 1-6.  The Eclipse Workspace Launcher

for almost any Java solutions, including JavaEE, JavaME, the Blackberry SDK, various third-party
vendor solutions, or SDKs. There is also a C/C++ plugin called Eclipse CDT for the C/C++ toolchain
and make utility. There is an Eclipse plugin for the Symbian mobile development toolkit as well.

The Eclipse Workspace
Enough of the motivational talk, let’s start using Eclipse and create a workspace.

IOS ANALOGY

Same as the Xcode workspace idea, the Eclipse workspace is a logical grouping of related projects; however, the Eclipse
workspace needs to be a physical folder.

Please complete the following steps to create an Eclipse workspace:

1.	 Launch Eclipse and enter a folder name for the Workspace (see Figure 1-6),
such as /Users/sliao/Documents/adtWs.

 

2.	 Click OK. You will get the Welcome! screen (see Figure 1-7) the first time you
create a new workspace. Let’s close it for now. You can always get back to
this screen from the top menu bar by selecting Help ➤ Android IDE.

 

12 CHAPTER 1: Setting Up the Development Environment

Figure 1-7.  The ADT Welcome! screen

Figure 1-8.  The Eclipse Workbench

A single Workbench window is displayed, as shown in Figure 1-8. A Workbench window offers one
or more perspectives. A perspective contains editors and views, such as the Package Explorer.
Upon the Workbench window launching for the first time, the Java perspective is displayed. Good,
we need a Java perspective because Java is the language for Android programming. You can always
click the Java button in the perspectives toolbar to switch to the Java perspective (see Figure 1-8).

13CHAPTER 1: Setting Up the Development Environment

3.	 Go ahead and play with this window to satisfy your curiosity if you wish.
Don’t be afraid of messing up anything. For example, there are many options
in the menu bar and a few buttons on the toolbar. The context menu always
contains hidden gems. You can get back any time by going to the menu bar
and selecting Windows ➤ Reset Perspective . . . .

Learning Eclipse has been one of my best investments of time. It is the only tool that I am still using
since Y2K. I did not get many chances to reuse the same tool for other technologies. If you have
been in IT for a long time, you know what I am talking about.

Eclipse can do a lot, more than the Android IDE. But you don’t need to know everything today. After
all, it is a tool, and you naturally get better at it when you use it often. We will focus on using it for
Android programming.

Create an Android Project Using the Template
You just got the right tool, and it is up and running. Wouldn’t you like to see some real action—like
creating an Android app and see it running? I’d like that, too! You can make sure your IDE is working
properly as well.

My very first Xcode app was actually created using the Create a new Xcode project template
(see Figure 1-9) when I had no idea what Objective-C looked like. All I wanted was to see something
running in no time. Yep, Xcode did it for me nicely. I was very happy with myself when I felt I created
an iOS app without knowing anything! Hey, there is nothing wrong with making yourself happy right?

The Eclipse with ADT plugin offers the same thing.

Figure 1-9.  Create a new Xcode project

14 CHAPTER 1: Setting Up the Development Environment

Figure 1-10.  Create a new Android Application project

The objective of this lesson is to create an Android app as quickly as possible. Let’s hold any
programming questions for now to finish the project as fast as you can. Please complete the
following steps:

1.	 Launch the Eclipse.app if it is not launched yet.

2.	 Open the Android Application wizard from the Eclipse top menu bar and
select File ➤ New ➤ Android Application Project (see Figure 1-10).

 

3.	 Do the following in the New Android Application section (see Figure 1-11),
and then click Next.

a.	 Enter LessonOne in the Application Name field.

b.	 Select the latest SDK, which is the last option on the Minimum Required
SDK drop-down menu. The latest SDK package is preinstalled with the
bundled ADT; otherwise, you might need to install the corresponding
SDK version.

c.	 Accept the default values for the remaining fields. 

15CHAPTER 1: Setting Up the Development Environment

4.	 On the next screen, keep all the default values in the Configure Project
section (see Figure 1-12). Click Next. 

Figure 1-11.  New Android Application section

Figure 1-12.  Configure Project

16 CHAPTER 1: Setting Up the Development Environment

5.	 You can supply an optional launcher icon on the next screen. Click Next to
use the default Android robot icon (see Figure 1-13). 

Figure 1-13.  Configure Launcher Icon

6.	 The next screen is Create Activity (see Figure 1-14), where you do the
following:

a.	 Select the Create Activity check box.

b.	 Select Master/Detail Flow. It is the most sophisticated template among
the three choices, making it more fun to play with this app later. Click Next
when done. 

17CHAPTER 1: Setting Up the Development Environment

7.	 Keep the prefilled values on the following screen (see Figure 1-15). They will not
be used because you are not going to write any Java code yet. Click Finish. 

Figure 1-14.  Create Activity with templates

Figure 1-15.  Java class for list items

18 CHAPTER 1: Setting Up the Development Environment

You just created an ADT project, the LessonOne project. It should appear in the Package Explorer
view (see Figure 1-16). Just like using Xcode project creation templates, the ADT New Android
Application wizard creates the ADT project folder, the application source code, and all the resources
for building the template apps.

Figure 1-16.  LessonOne project in Project Explorer

As a bonus, create two more projects using the other two templates (see Figure 1-14). Figure 1-17
shows three projects in the Package Explorer view.

19CHAPTER 1: Setting Up the Development Environment

Build the Project

IOS ANALOGY

The Xcode Build action keyboard shortcut on the Mac is Command-B (⌘B).

The Eclipse workbench is set to Build Automatically by default (see Figure 1-18); you don’t need to
build ADT projects explicitly. Let’s keep this option; I just wanted to point out that you can disable
this option and do a manual build (⌘B) if you wish to.

Figure 1-17.  Three projects in Project Explorer

20 CHAPTER 1: Setting Up the Development Environment

When I have a lot projects in the workspaces, I may choose to disable the automated build option
to avoid the build actions that kick in automatically. This takes up a lot of your CPU whenever any
resource is being saved. When this feature annoys me, I turn it off.

Launch the App

IOS ANALOGY

The Xcode Run action keyboard shortcut on the Mac is Command-R (⌘R).

The LessonOne project should have no errors. You can launch the app and see it run on device
emulators or on Android-powered devices. The emulator is a very important piece of any IDE. In the
following steps, you will prepare an Android Virtual Device (AVD) and launch the LessonOne project
onto a device emulator.

1.	 From the LessonOne project context menu, select Debug As ➤ Android
Application (see Figure 1-19).

 

Figure 1-18.  Build Automatically

21CHAPTER 1: Setting Up the Development Environment

Figure 1-19.  Debug As Android Application

2.	 You most likely will get to the following screen, Android AVD Error (see
Figure 1-20), since you haven’t created any Android Virtual Device (AVD) yet.
You can click the Yes button to get to the Android Virtual Device Manager
tool. However, I want to show you another path so that you can create an
AVD any time you want to. Click No to close the error dialog.

 

22 CHAPTER 1: Setting Up the Development Environment

Figure 1-21.  AVD Manager

Figure 1-20.  Android AVD Error: No compatible targets were found

3.	 In the ADT top menu bar, select Window ➤ Android Virtual Device
Manager. Figure 1-21 shows my AVD Manager without any device.

 

23CHAPTER 1: Setting Up the Development Environment

4.	 Click the New. . . button to continue creating your first AVD (see Figure 1-22).
Leave everything as the default, except the following:

a.	 Enter any name, such as nexus7, in the AVD Name field.

b.	 Select Nexus 7 from the Device drop-down menu.

c.	 Select the highest API level from the Target drop-down menu. This is the
most significant attribute. The Target needs to be compatible with the
Minimum Required SDK specified for your app in Figure 1-11, which should
be what you entered when creating the LessonOne project.

d.	 Optionally, enter information for any other fields with your app’s required
specific hardware. For example, if your app saves data on external storage, you
will experience an error if information in the SD Card section is not specified. 

Note  You can select New, Edit, or Delete for any existing AVD. Repair does not seem to work for me. I simply
delete and create a new one instead. The Device Definitions button shows the preset AVD definitions; you will
find this useful when you want to test your app and know the specs.

Figure 1-22.  Create AVD

24 CHAPTER 1: Setting Up the Development Environment

5.	 Figure 1-23 shows the newly created AVD, which is compatible with the
LessonOne project.

 

Figure 1-23.  AVD list

6.	 Dismiss the AVD Manager and relaunch the LessonOne project. You should
see the app running in the newly created emulator (see Figure 1-24).

 

25CHAPTER 1: Setting Up the Development Environment

Note  I always experience a timeout error on the first try. You might experience the same error if your
machine is not fast enough. The newly created AVD seems to take too long to start up. If you get an error
message, relaunch again after the emulator has started.

Figure 1-24.  LessonOne app in emulator

Play with the app and the emulator. A mouse-click event on an emulator is equivalent to a touch
event on a real Android device. If you don’t have a device yet, definitely play with the emulator to get
familiar with the emulated Android device.

Tip  Rotate the emulator (fn+Ctrl+F12) in landscape mode to see how the LessonOne app does. Check
http://developer.android.com/tools/help/emulator.html#KeyMapping for the emulator
keyboard mappings.

http://developer.android.com/tools/help/emulator.html%23KeyMapping

