Migrating to

Android for i0S

Developers

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUtROFccosvsrimssrs s ——————————— xi
About the Technical REVIEWETccuvsersssssssmsssmssmssssssmsssmsssmsnsssssssssssssssssssssssssnsssnsssnsssssnnss Xiii
ACKNOWIEAgMENTScoeeieiiiiiiieiiieninnnnnnnnnnnnsnssnnsnss s s s s s s s s s s s s s s s s nnnnnnnRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRS XV
INtroducCHionccssie s ——————————=—=————— xvii
Part 1: Prepare Your TOOISc.cceeeeemimimmmnnnnnnmmmmmssmssssssssssssssssssssssssssssssnsnnnns 1
Chapter 1: Setting Up the Development Environmentccccccmmmnnnennnmnnsssnnmmsssssnmnnnnn 3
Chapter 2: Android Programming BaSiCSc.uueermrssssssnsmssssnsnssssssnsnssssssssssssssssnnsssssssnnssssss 27
Part 2: Come Sail Away: A Roadmap for Portingocceemmmmmnnnsssssncnnnnnnnas 59
Chapter 3: Structure YOUr AppP.....uccccususssssmmmmsssssnmsssssssnssssssnsnnsssssnsnnssssssnnssssssnnnnssssnnnnnsssss 61
Chapter 4: Implement Piece Dy PIECe......uuummmmmmmmmmmmmmmssssssssmmmmsssssssssssssssssssssssssnnsnsssnnnss 173
Part 3: One Step Further......cccccceemeeessiiinnnnnnnnnnsss s sssssssssssssssssssssssnns 285
Chapter 5: More About Android Application Components.........ccccvnnmsemmnmmssssssnmsssssssnnnns 287
Chapter 6: Android Application ReSOUrCeS......ccciuussummrmmssssnsnssssssnsnssssssnsnsssssnnsnssssssnnnnssss 315
Chapter 7: Common Mobile USe CASESuuusssmmmssmmmsssssssssnnnsssssssssssssssssssssssssssssssnnnnsssnnnss 337
Chapter 8: Pulling It All Together..........cccciuiisemmmmnssssnmmmmsssssnmmmsssnmmsssssnmssassa——————"" 427

iv

Contents at a Glance

Part 4: Final: The Beginning of Disparitycccccsssessssssssssssssssssssssssnsnnnnnnnnnns 489

Appendix A: The Official Android Developers Site........cccccrrmnmmssmmssnnnmmmmmmssssssssnssmesnns

Introduction

In 2000, | started my first PalmOS mobile app for an inventory-tracking project. The initial project
was a full-staffed team effort that consisted of mobile developers, SAP consultants, supply-chain
SME, J2EE middleware developers, QA testers, solution architects, business sponsors, and so forth.
JavaME came up strong in 2002, followed by Pocket/Windows Mobile. | did several mobile projects
converting the mobile apps to the PocketPC platform by blindly translating JavaME mobile code to
C# .NETCF mobile code. The “translation” efforts prolonged the whole product life cycle. The project
achieved higher ROI as the product life extended, because the extra cost of translating mobile code
was surprisingly low. Ever since then, | have been translating front-end mobile apps among JavaME,
BlackBerry, and Windows Mobile platforms.

In 2009, by repeating the same porting process, | created my first simple iOS app by translating a
Windows mobile app. That started my iOS programming journey and which eventually led me to
becoming a fulltime iOS developer. It was a no-brainer for me to try porting to Android later.

When you have the whole solution completed for your iOS app, all the issues have been verified and
the other deliverables and project artifacts are already reusable. Knowing the Android market share,
| always clone my iOS apps to Android. The return on investment (ROI) immediately gets improved
because the level of efforts for the Android porting proves to be only a fraction of the entire project’s
effort—again and again. It would be just a waste to not do it.

The primary objective of this book is to help experienced iOS developers leap into native Android mobile
development. It is easier than you think, and this book will make it even easier with iOS analogies
(and mapping guidelines) so you can immediately translate common mobile use cases to Android.

Who Is This Book For?

This book is specifically written for iOS developers who want to take advantage of their mobile
knowledge and make the mobile applications available on the Android mobile platform. The book will
show you that you already have the fundamentals for the Android platform. Let me show you that you
are very close to becoming an Android developer. Let me show you the common programming subjects
and frameworks using your familiar iOS vocabulary so that you immediately understand, without
lengthy explanations, because you already know the mobile subjects from being an iOS developer.

xvii

xviii Introduction

You don’t need experience in the Java language, although it does help a lot. The most important
qualities of Android developers do not include Java programming language experience. It is the
mobile SDK and framework knowledge that distinguishes you from other Java programmers.
You know one programming language already since you are an iOS developer, so you should be
comfortable reading Java code. | also made the sample code extra-readable, so you will have no
problem following through the programming subjects and the Java sample code.

There are tons of Java language references out there; you should find them handy sooner or later
when you are ready to get serious.

How This Book Is Organized

In Part |, you will get the Android development toolkit up and running in no time. With the Android
IDE, you will be guided in creating tutorial projects that will become your porting sample projects.
| believe this is the best way for you to get hands-on experience while learning programming topics.

Part Il of this book shows you how to plan and structure your Android apps by following the same
iOS thinking process: create a storyboard and break the app into model-view-controller (MVC)
classes. You will be able to reuse most of the existing software artifacts and design from the iOS
counterparts. The common mobile topics are followed, including user interface, managing data,
and networking with remote services. After you finish Part Il, you will be able to create simple but
meaningful Android apps with rich Ul components, and to handle common CRUD (create, read,
update, delete) operations locally and remotely. There are still more Android goodies to come.

In Part lll, this book recaps the Android framework fundamentals with code instead of just
descriptions. You will discover the uniqueness of the Android framework and appreciate many
features that you normally don’t have in iOS. Several powerful and repeatable mobile UX patterns
are also introduced. Once you get here, you should be fully convinced that you can do everything

in Android just like you do in iOS. The last chapter walks you through a case study that ports a
complete iOS app to Android. It recaps how to use the iOS analogies and mapping guidelines from
the topics in previous chapters. You can also use the book’s table of contents to help find the porting
guidelines as needed.

When you complete the journey, you will be able to use the right tools to effectively port your existing
iOS apps to Android.

Part

Prepare Your Tools

A handy tool makes a handy man. This is very true for creating software, too. You use Xcode to
write, compile, debug, and build code; it is an Integrated Development Environment (IDE) for iOS
programming. ADT in Eclipse is an IDE for Android programming, which offers comparable tools and
features as Xcode. The first part of the chapter walks you through the installation options and steps
for getting it up and running. All the topics in this book come with sample code. You will need to use
the IDE to learn from these sample projects and you will use the IDE to create world-class Android
apps, too.

For native Android programming, Java is the designated programming language. The chapters in

this part will give you enough knowledge to read the sample code, in case you are not exposed to
the Java language yet. You will feel comfortable using the code from this book as your own code,
without assuming you already know Java.

Chapter

Setting Up the Development
Environment

It is more fun to see apps run than to read the source code, and you cannot get hands-on
programming experience by just reading books. Let’s get the development environment up and
running first so that we can use it—and learn Android programming along the way.

The Android Developer Tools Plugin for Eclipse

10S ANALOGY

Just as Xcode is an IDE for creating iOS apps, the ADT plugin for Eclipse is an IDE for creating Android apps.

The Android Developer Tools (ADT) plugin for Eclipse is the Android-programming integrated
development environment (IDE) that we will go over in detail. It is a full Java IDE that includes the
Android SDK to help you build, test, debug, and package your Android apps. It is free, open source,
and runs on most major operating system (OS) platforms, including the Mac OS. The ADT plugin is
not a developer’s only choice, but probably the one most commonly used. We will use it throughout
this book.

Installing the All-in-One Bundled Package

The all-in-one bundled package is the best option for most Android developers. It is similar to Xcode
installation: there is no need to sort out the dependencies and no need for manual configurations.
It actually wasn’t available when | started Android programming a couple years ago.

4 CHAPTER 1: Setting Up the Development Environment

With a single download, the ADT Bundle includes everything you need, including the following:

B Eclipse

B The ADT plugin for Eclipse
B Android SDK Tools

B Android Platform-tools

B The latest Android platform

B The device emulator image for the latest Android platform
Get the single download for your Mac at http://developer.android.com/sdk/index.html#mac-bundle.

It is a ZIP file. Unzip it and put the contents of the ZIP file anywhere you want; for example, if you put
it in /Applications/adt-bundle-mac, it should look like Figure 1-1.

® O O [eclipse — bitnami@ip-10-244-172-154: ~/stack/apache-tom... ™

[/Applications/adt-bundle-mac]$ 1s

eclipse sdk

[/Applications/adt-bundle-mac]$ cd eclipse/
[/Applications/adt-bundle-mac/eclipse]$ 11
total 256

drwxr-xr-x@ 14 sliao staff 476 Apr 9 14:55 ,

drwxr=x---@ 5 sliao staff 170 Jun 3 2013 ..
-rw-r-——r—-@ 1 sliao staff 6148 Aug 28 2013 .DS_Store
—-rw-r—r——@ 1 sliao staff 60 Feb 4 2013 .eclipseproduct
drwxr-xr-x@ 3 sliao staff 102 May 22 2013 Eclipse.app
=rw=r—r——@ 1 sliao staff 83140 Apr 7 20:24 artifacts.xml
drwxr-xr-x@ 10 sliao staff 340 Apr 9 14:55 configuration
drwxr-xr-x@ 2 sliao staff 68 May 22 2013 dropins
-rw-r—r——@ 1 sliao staff 16536 Feb 4 2013 epl-v1@.html
drwxr-xr-x@ 34 sliao staff 1156 Apr 7 208:24 features
-rw-r—r—@ 1 sliao staff 9051 Feb 4 2013 notice.html
drwxr=xr-x@ 5 sliao staff 178 Jul 23 2013 p2

drwxr-xr-x@ 309 sliao staff 18506 Apr 7 20:24 plugins
drwxr-xr-x@ 3 sliao staff 102 May 22 2013 readme
[/Applications/adt-bundle-mac/eclipse]$ i

Figure 1-1. The adt-bundle-mac folder structure

All you need to do is download it and unzip it. Please allow me to repeat: you won’t need to
configure it after you install it. Go ahead and launch the Eclipse.app. Let’s keep it in the Mac OS
Dock so that you can launch it at any time.

If you don’t want to mess with the ADT plugin, you may choose to skip the next section and go
straight to the “MacBook Retina Display” section.

http://developer.android.com/sdk/index.html#mac-bundle

CHAPTER 1: Setting Up the Development Environment

Installing the Eclipse ADT Plugin

You may choose to manually install the components in the ADT Bundle and go through the
configuration steps. The ADT plugin for Eclipse is a custom plugin for the Eclipse IDE that provides
an integrated environment to develop Android apps. It extends the capabilities of Eclipse to let you
quickly set up new Android projects, build an app user interface (Ul), debug your app, and create
app packages (APKs) for distribution.

| installed and configured the ADT plugin manually because | also use Eclipse for JavaEE
programming, and | want to share common Java classes between JavaEE server code and Android
client code. If you choose to install the plugin to your existing Eclipse instance, chances are you
already have experience with the Eclipse IDE.

If you are not a JavaEE developer or just want to keep things simple for now, you should skip the
following instructions and do the all-in-one bundled package installation.

Note Even if you already have Eclipse installed, you still can have multiple Eclipse instances. You should
only need to go through this plugin option if you need to share Java classes between Android projects and
J2EE projects.

If you decide to go with the manual ADT plugin option for your existing Eclipse app, please visit
the Android official site (http://developer.android.com/sdk/installing/installing-adt.html) for
detailed instruction.

For the Mac OS, you can also follow the “Installing the ADT Plugin Cheat Sheet,” which is modified
from the preceding URL for your convenience.

5

INSTALLING THE ADT PLUGIN CHEAT SHEET

Do the following to download the ADT plugin:

1. Open the Install wizard from the Eclipse top menu bar by selecting Help > Install New Software
(see Figure 1-2). Click Add to add a new site.

http://developer.android.com/sdk/installing/installing-adt.html

6 CHAPTER 1: Setting Up the Development Environment

Install

Available Software | ‘

Select a site or enter the location of a site. \.3) |

Work with: type or select a site [w Add...

Find more software by working with the "Available Software Sites" preferences.

“type filter te :
type filter text .06 Add Repository

'N'ame - |
(D There is no site sell \. . I Local...
Location: | http:// Archive...

Select All _ Deseleci

Cancel 0K

®

Details

v/ Show only the latest versions of available software | Hide items that are already installed
v/ Group items by category What is already installed?

| Show only software applicable to target environment

v/ Contact all update sites during install to find required software

@ < Back Next > Cancel Finish

Figure 1-2. Install New Software » Add Repository

2. Inthe Add Repository dialog, enter the following and then click OK.
a. Enter ADT Plugin in the Name field.
b. Enter https://dl-ssl.google.com/android/eclipse/ in the Location URL.

Note If you have trouble acquiring the plugin, try using “http” in the Location URL instead of “https”.

3. Inthe Work with drop-down, make sure the ADT Plugin repository is selected (see Figure 1-3).

https://dl-ssl.google.com/android/eclipse/

CHAPTER 1: Setting Up the Development Environment 7

® 006 Install
Available Software |
Check the items that you wish to install.) =
.,
Work with: ADT Plugin - https://dl-ssl.google.com/android/eclipse/ - Add...

Find more software by working with the "Available Software Sites" preferences.

type filter text

Name Version

/| 111 Developer Tools

b 100 NDK Plugins

Select All Deselect All 5 itemns selected

Details

Features that add Android support to Eclipse for application developers.

 Show only the latest versions of available software Hide items that are already installed
™ Group items by category What is already installed?

Show only software applicable to target environment

 Contact all update sites during install to find required software

@ < Back | Next> | Cancel Finish

L

Figure 1-3. Select Developer Tools

a. Select the Developer Tools check box and then click Next.

4. You should see a list of the tools to be downloaded. Click Next and follow the onscreen instructions
to complete the installation. When the installation completes, restart Eclipse.

Do the following to specify the Android SDK location:
1. Get the Android SDK, which contains the framework libraries and the development toolkit.
a. Download the ZIP file from http://developer.android.com/sdk/index.html#download.
b. Unzip the file to your SDK Location folder, which is /Applications/adt-bundle-mac/sdk.

2. From the Eclipse top menu bar, select Eclipse » Preferences... to open the Eclipse Preferences
screen (see Figure 1-4). Select Android from the left panel and enter your SDK Location:
/Applications/adt-bundle-mac/sdk.

http://developer.android.com/sdk/index.html#download

8 CHAPTER 1: Setting Up the Development Environment

® O 0 Preferences
type filter text Android v Ea
P General i
Android Preferences

b Ant SDK Location: [Applications/adt-bundle-mac/sdk Browse...

P Data Management

> Help Note: The list of SDK Targets below is only reloaded once you hit 'Apply' or 'OK'.

F Install/Update :

P Java Target Name Vendor Platform AP| Level

b Java EE Android 1.6 Android Open Source Project 1.6 4

P Java Persistence Android 2.1 Android Open Source Project 2.1 7

> JavaScript Android 2.2 Android Open Source Project 2.2 8

» Mylyn Android 3.0 Android Open Source Project 3.0 11
Oracle WebCenter Sites Android 4.1.2 Android Open Source Project 4.1.2 16

P Plug-in Development Android 4.2.2 Android Open Source Project 4.2.2 17

P Remote Systems Google APIs Google Inc. 4.2.2 17

» Run/Debug Android 4.3 Android Open Source Project 4.3 18

» Server Google APls Google Inc. 4.3 18

» Team Android 4.4.2 Android Open Source Project 4.4.2 19
Terminal Google APIs Google Inc. 4.4.2 19
Validation

> Web

P Web Services

P XML Restore Defaults Apply

@ Cancel [0k

Figure 1-4. Android SDK Location

Do the following to add platforms and packages:

1. You need at least one platform-specific SDK and tools. Use the Android SDK Manager to obtain them
for the latest platform (API 19 is the latest as of this writing).

2. From the Eclipse top menu bar, select Window » Android SDK Manager to launch the Android SDK
Manager. Figure 1-5 shows the platform APl and tool packages that | have installed.

CHAPTER 1: Setting Up the Development Environment

e 06 Android SDK Manager

SDK Path: [Applications/adt-bundle-mac/sdk

Packages
Iy Name APl Rev. Status
» | |Tools

> [Android 4.4.2 (APl 19)

» [Android 4.3 (API 18)

» [Android 4.2.2 (APl 17)

» [Android 4.1.2 (APl 16)

» [Android 4.0.3 (APl 15)

» [Android 4.0 (API 14)

» [Android 3.2 (APl 13)

» [Android 3.1 (APl 12)

» 2 Android 3.0 (API 11)

» [2 Android 2.3.3 (APl 10)

» 2 Android 2.2 (AP 8)

» 2 Android 2.1 (APl 7)

» [Android 1.6 (API 4)

» [Android 1.5 (API 3)

¥ |_|Extras
& Amazon AVD Launcher (Linux)
& Amazon AVD Launcher (Mac 0S5 X)
3 Amazon AVD Launcher (Windows)

Not compatible with Mac C
Not installed
Not compatible with Mac C

Rl B L I R Y]

&3 Kindle Fire Device Definitions Not installed

i3 Kindle Fire USB Driver Not compatible with Mac C

3 Android Support Repository i Installed
[] # Android Support Libra 19.0.1 = Installed

3 Gooale Analviics Aoo Trackina SDK 3 Not installed
show: (¥ Updates/New (¥ Installed Obsolete Select New or Updates Install packages...
Sort by: (=) AP level Repository Deselect All Delete packages...

Done loading packages.

O o
Figure 1-5. Android SDK Manager

3. You want to install at least the following three packages (actually the first two, but you will need the
last one later):

a. Tools
b. The latest Android API: Android 4.4.2 (API 19) as of this writing
c. Extra: The Android Support Library

Follow the onscreen instructions to complete the installation.

10 CHAPTER 1: Setting Up the Development Environment

MacBook Retina Display

If you have a Mac with a beautiful retina display, the Eclipse screen resolution looks awfully bad
because it is not yet optimized for retina display. My eyes simply cannot stand the low resolution on
my retina screen. It really has zero effect on any code you write, but please do the following so that
you don’t waste the beauty of a retina display:

1.

In the Finder, right-click Eclipse.app and then select Show Package
Contents.

Modify the Info.plist file with any text editor, such as TextEdit.app. If you have
Xcode, double-clicking will open the file in the Xcode editor as well. Note that
your modifications (see Listing 1-1) go inside <dict> </dict>.

Listing 1-1. Eclipse Info.plist File

<plist version="1.0">
<dict>

<key>NSHighResolutionCapable</key>
<true/>

</dict>
</plist>

Force your Mac OS to reload the preceding changes the next time you
launch Eclipse.app. This can be easily achieved using the shell touch
command.

Open the Terminal program and issue the touch command, as shown
in Listing 1-2.

Listing 1-2. The Touch Command

[/Applications/adt-bundle-mac/eclipse]$ cd /Applications/adt-bundle-mac/eclipse
[/Applications/adt-bundle-mac/eclipse]$ 1s

Eclipse.app configuration epl-v10.html notice.html plugins
artifacts.xml dropins features p2 readme
[/Applications/adt-bundle-mac/eclipse]$ touch Eclipse.app/

Bingo! Eclipse should have a retina display now.

The Eclipse Workbench

You just got the right tool, but you need to know how to use it. Let’s spend some time with Eclipse
first because it appears quite different from Xcode. | think it is actually more sophisticated than
Xcode because it has a broader goal: it provides a plugin platform so that you can extend the IDE by
creating a plugin for your unique development tasks. For example, the ADT plugin for Android that
you just installed is a plugin toolkit for Android development. In the Java world, you can use Eclipse

CHAPTER 1: Setting Up the Development Environment 1

for almost any Java solutions, including JavakEE, JavaME, the Blackberry SDK, various third-party
vendor solutions, or SDKs. There is also a C/C++ plugin called Eclipse CDT for the C/C++ toolchain
and make utility. There is an Eclipse plugin for the Symbian mobile development toolkit as well.

The Eclipse Workspace

Enough of the motivational talk, let’s start using Eclipse and create a workspace.

10S ANALOGY

Same as the Xcode workspace idea, the Eclipse workspace is a logical grouping of related projects; however, the Eclipse
workspace needs to be a physical folder.

Please complete the following steps to create an Eclipse workspace:

1. Launch Eclipse and enter a folder name for the Workspace (see Figure 1-6),
such as /Users/sliao/Documents/adtWs.

AN D)

® OO Workspace Launcher

Select a workspace

ADT stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: [Users/sliao/Documents/adtWs v Browse...

Use this as the default and do not ask again

Cancel § OK

Figure 1-6. The Eclipse Workspace Launcher

2. Click OK. You will get the Welcome! screen (see Figure 1-7) the first time you
create a new workspace. Let’s close it for now. You can always get back to
this screen from the top menu bar by selecting Help » Android IDE.

12 CHAPTER 1: Setting Up the Development Environment

e 00 Java - ADT - /Users/sliao/Documents /adtWs .
5 @ Android IDE 3 = &
J
& Welcome!
The Android Developer Tools provide a first-class development environment for building Android apps. This
integrated development environment is set up with the latest version of the Android platform and system
image so you can immediately begin building apps and running them on the Android emulator.
New Android Application... ;
Tutorials
Build Your First App If you're new to Android, follow this class to learn the fundamental Android AFIs for creating a user interface
that responds to input.
Design Your App Before you begin developing your app, be sure you understand the design patterns that Android users expect
from your app.
Test Your App The Android Framework provides tools that help you test every aspect of your app to be sure it behaves as

expected under various conditions.

31Mof58M [

Figure 1-7. The ADT Welcome! screen

A single Workbench window is displayed, as shown in Figure 1-8. A Workbench window offers one
or more perspectives. A perspective contains editors and views, such as the Package Explorer.
Upon the Workbench window launching for the first time, the Java perspective is displayed. Good,
we need a Java perspective because Java is the language for Android programming. You can always
click the Java button in the perspectives toolbar to switch to the Java perspective (see Figure 1-8).

806 Java - ADT - [Users/sliao/Documents fadtWs 2
I - A Fdiw E LA PRV TN C RN Bl % T = [Y | &lJava €DDMS % Debug [Q Quick Access
[£ Package Explorer &1 =08 = 0 EE outline B =0
= 4 An outline |s not available.
|2 Problems @ Javadoc [& Declaration [Console 52 Aol 1= i =
DDOMS
|
| 4oMofelm |

Figure 1-8. The Eclipse Workbench

CHAPTER 1: Setting Up the Development Environment 13

3. Go ahead and play with this window to satisfy your curiosity if you wish.
Don’t be afraid of messing up anything. For example, there are many options
in the menu bar and a few buttons on the toolbar. The context menu always
contains hidden gems. You can get back any time by going to the menu bar
and selecting Windows » Reset Perspective....

Learning Eclipse has been one of my best investments of time. It is the only tool that | am still using
since Y2K. | did not get many chances to reuse the same tool for other technologies. If you have
been in IT for a long time, you know what | am talking about.

Eclipse can do a lot, more than the Android IDE. But you don’t need to know everything today. After
all, it is a tool, and you naturally get better at it when you use it often. We will focus on using it for
Android programming.

Create an Android Project Using the Template

You just got the right tool, and it is up and running. Wouldn’t you like to see some real action—like
creating an Android app and see it running? I’d like that, too! You can make sure your IDE is working
properly as well.

My very first Xcode app was actually created using the Create a new Xcode project template

(see Figure 1-9) when | had no idea what Objective-C looked like. All | wanted was to see something
running in no time. Yep, Xcode did it for me nicely. | was very happy with myself when | felt | created
an iOS app without knowing anything! Hey, there is nothing wrong with making yourself happy right?

The Eclipse with ADT plugin offers the same thing.

Welcome to Xcode

Version 5.1.1 (5B1008)

A Create a new Xcode project
Start building a new iPhone, iPad or Mac application.

Check out an existing project
:"(° Start working on something from an SCM repository.

€ Open Other...

Figure 1-9. Create a new Xcode project

14 CHAPTER 1: Setting Up the Development Environment

The objective of this lesson is to create an Android app as quickly as possible. Let’s hold any
programming questions for now to finish the project as fast as you can. Please complete the
following steps:

1. Launch the Eclipse.app if it is not launched yet.

2. Open the Android Application wizard from the Eclipse top menu bar and
select File » New » Android Application Project (see Figure 1-10).

i ADT m Edit Source Mavigate Search Project Refactor Run Window Help

0.8 g)
fi_ ew - LEN > 124 Java Project _
¢ e Sy ¥ Android Application Project !

| | Close £W [Project... 4 ‘ B | &' lava
[Close All) -
| Iz Package Ex ' Package = 0
Save £5 @ Class vailable.
Save As... & Interface
Save All 5 & Enum
Revert @ Annotation
Move... & Source Folder
Ransnia.. = 19 Java Working Set
2 Refresh 5 9 Fylder =B
Convert Line Delimiters To > " File EB| e B3-Sy
" Untitled Text File B :
Print... ' 4 Android XML File
Switch Workspace > £ JUnit Test Case
pesiar [Example...
& Import... I Other... 3N
w3 Export...
Properties AL, L

Figure 1-10. Create a new Android Application project

3. Do the following in the New Android Application section (see Figure 1-11),
and then click Next.

a. Enter LessonOne in the Application Name field.

b. Select the latest SDK, which is the last option on the Minimum Required
SDK drop-down menu. The latest SDK package is preinstalled with the
bundled ADT; otherwise, you might need to install the corresponding
SDK version.

c. Accept the default values for the remaining fields.

CHAPTER 1: Setting Up the Development Environment

,©.0 6 New Android Application

New Android Application

1. The prefix 'com.example.' is meant as a placeholder and should not be used

Application Name: Ur LessonOne
Project Name: 9 LessonOne

Package Name: & com.example.lessonone

Minimum Required SDK: & | API 19: Android 4.4 (KitKat)

Target SDK: & | API 19: Android 4.4 (KitKat)
Compile With: © | APl 19: Android 4.4 (KitKat)

jilieme:lilctolo.Lightwith:Dark ActionBar

A The application name is shown in the Flay Store, as well as in the Manage Application list in Settings.

(‘?} < Back Next> |

Figure 1-11. New Android Application section

Cancel Finish

4. On the next screen, keep all the default values in the Configure Project

section (see Figure 1-12). Click Next.

® 00 New Android Application

New Android Application

Configure Project

W Create custom launcher icon

\ﬂ' Create activity
Mark this project as a library

¥ Create Project in Workspace

Location: /Users/sliao/Documents/adtWs/LessonOne

Working sets

Add project to working sets

Working sets:

@ < Back |

Next>

Figure 1-12. Configure Project

Browse..

Select...

Cancel Finish

15

16 CHAPTER 1: Setting Up the Development Environment

5. You can supply an optional launcher icon on the next screen. Click Next to
use the default Android robot icon (see Figure 1-13).

8ane New Android Application

Configure Launcher Icon
Configure the attributes of the icon set

Foreground: | Image Clipart | Text

Image File: 'launcher_icon Browse...

v‘-' Trim Surrounding Blank Space
Additional Padding:

0%
Foreground Scaling: | Crop | Center
Shape ' None | Square | Circle
Background Color:
xxhdpi:
SN
@ < Back | Next> | Cancel Finish

Figure 1-13. Configure Launcher Icon

6. The next screen is Create Activity (see Figure 1-14), where you do the
following:

a.
b.

Select the Create Activity check box.

Select Master/Detail Flow. It is the most sophisticated template among
the three choices, making it more fun to play with this app later. Click Next

when done.

CHAPTER 1: Setting Up the Development Environment 17

806 New Android Application

Create Activity £
Select whether to create an activity, and if se, what kind of activity.

Create Activity

Blank Activity
Fullscreen Activity

Master/Detail Flow

Master/Detail Flow

Creates a new master/detail flow, allowing users to view a collection of objects as well as details for each object.
This flow is presented using two columns on tablet-size screens and one column on handsets and smaller

screens. This template creates two activities, a master fr and a detail fr
® < Back f Next> Cancel Finish

Figure 1-14. Create Activity with templates

7. Keep the prefilled values on the following screen (see Figure 1-15). They will not
be used because you are not going to write any Java code yet. Click Finish.

806 New Android Application

Master/Detail Flow
Creates a new master/detail flow, allowing users to view a collection of objects as well as details for each object. This flow is presented using two columns
on tablet-size screens and one column on handsets and smaller screens. This template creates two activities, a master fragment, and a detail fragment.

Object Kind @ |tem -

Object Kind Plural & |tems

v, Other examples are 'Person’, "Book’, etc.

@ < Back Mext > Cancel | Finish |

L

Figure 1-15. Java class for list items

18 CHAPTER 1: Setting Up the Development Environment

You just created an ADT project, the LessonOne project. It should appear in the Package Explorer
view (see Figure 1-16). Just like using Xcode project creation templates, the ADT New Android
Application wizard creates the ADT project folder, the application source code, and all the resources
for building the template apps.

P (= values-large

P 2 values-sw600dp
b values-vll * Problems @& Javadoc Declaration [Console £2
P (=values-vld DDMS

o
l 5 | e
|2 Package Explorer 2 = 5 ¥ = 0O 1] ltemDetailFragment.java 11 fragment_item_detail.xm| 22 BRI ™ O
a 5
¥ |-~ LessonOne 4 —— pal — (g item
> (B src ey “h'—“‘-’ ~1l e | [Nexus one » | B + | 4 AppTheme « | @ remDetailFragment + | @+ | 119 «
- alette
» hgen [Generated Java Files] P
» B Android 4.4.2 \= Form Widgets aqaa®
b =i Android Private Libraries (8] TextView
L assets i
> Gu':»birl [Ab] Large Text
> libs Mlas 4= = .
¥ i res) Text Fields
¥ (= drawable-hdpi) Layouts
(&= drawable-Idpi Cca
Composite w0 |y
» (= drawable-mdpi —CE‘ B *[%
(= drawable-xhdpi L Images & Media
¥ (= drawable-xxhdpi) Time & Date
¥ & layout (2 Transitions
0 activity_item_detall.xm| =
1| activity_item_list.xml| ‘_‘—:I—ﬂ’“"m No p
1 activity_item_twopane.xml | Other
0| fragment_item_detail.xml Custom & ..rary Views
Y T e =) Graphical Layout | () fragment_item_detail.ximl

gl BE-ri-= 0

11 AndroidManifest.xml
| ic_launcher-web.png
| proguard-praject.txt
|5 project.properties

Figure 1-16. LessonOne project in Project Explorer

samof177M -

As a bonus, create two more projects using the other two templates (see Figure 1-14). Figure 1-17

shows three projects in the Package Explorer view.

CHAPTER 1: Setting Up the Development Environment 19

1806 Java - LessonThree/res/layout/activity_fullscreen.xml - ADT - /Users/sliao/Documents/adtWs ol
H : il i v w o Gy (M T = (Q Quick Access l 2} |a’ma
Package Explorer 52 - ‘é T =0 I) ItemDetallFragm fragment_item_d I} MainActivity Ja o acthvity_fullsc 82 ™ -0 E'™0
) < Pall - | -
:5':::::?::“ & Palette ette - Q- D Nexus One = H = | o FullscreenTheme » | (@ FullscreenActivity » ov gl ‘l |Eg
pod), T ——————— = |F
icisoe — Form widgers | (5[] eaalaa | vk

|) Text Fields
1) Layouts
|| Composite
| Images & Media
[Time & Date

() Transitions

() Advanced

[Other

Custom & ..rary Views

Graphical Layout | | &) activity_fullscreen.xml

" Problems Javadoc Declaration & Console 52 ol | =% 8-ri-= o
DDMS

[1smofizm @

Figure 1-17. Three projects in Project Explorer

Build the Project

10S ANALOGY

The Xcode Build action keyboard shortcut on the Mac is Command-B (3£B).

The Eclipse workbench is set to Build Automatically by default (see Figure 1-18); you don’t need to
build ADT projects explicitly. Let’s keep this option; | just wanted to point out that you can disable
this option and do a manual build (38B) if you wish to.

20 CHAPTER 1: Setting Up the Development Environment

® ADT File FEdit Source Navigate Search LFIEY Refactor Run Window Help

(@00 Open Project ments fadtWs
o = Ry T SR | Close Project
{4 Package Explorer 32 - 5 Y = O _Bmld Nl
i & Build Project
= LessonUne " "
> & LessonThree ‘B:Tud Working Set >
P = LessonTwo ea"'
v Build Automatically
21 Generate Javadoc...
Properties

Figure 1-18. Build Automatically

When | have a lot projects in the workspaces, | may choose to disable the automated build option
to avoid the build actions that kick in automatically. This takes up a lot of your CPU whenever any
resource is being saved. When this feature annoys me, | turn it off.

Launch the App

10S ANALOGY

The Xcode Run action keyboard shortcut on the Mac is Command-R (3£R).

The LessonOne project should have no errors. You can launch the app and see it run on device
emulators or on Android-powered devices. The emulator is a very important piece of any IDE. In the
following steps, you will prepare an Android Virtual Device (AVD) and launch the LessonOne project
onto a device emulator.

1. From the LessonOne project context menu, select Debug As » Android
Application (see Figure 1-19).

CHAPTER 1: Setting Up the Development Environment

Java - ADT - [Users/sliao/Documents /adtW:

p’! ' (% r v e .

806 New -
& Go Into
i% Package Exp Open in New Window
| Open Type Hierarchy F4
» = LessonThi Show In N EW >
> 7-' LessonTw
3 .| Copy HC
= Copy Qualified Name
" Paste 3]
K Delete (E34
Build Path >
Source X 38S >
Refactor NET >
giy Import...
w3 Export...
" Refresh F5

Close Praject
Close Unrelated Projects
Assign Working Sets...

Run As >
Debug As >
Profile As >
Validate

Team >
Compare With >
Restore from Local History...
Android Tools >

TN Dramartiac Rl

Figure 1-19. Debug As Android Application

1 Android Application
J5 2 Android JUnit Test
= 3 Android Native Application

il 4 Java Applet DA
715 Java Application ~X#D)J
Ju 6 JUnit Test ANHEDT

Debug Configurations...

2. You most likely will get to the following screen, Android AVD Error (see
Figure 1-20), since you haven’t created any Android Virtual Device (AVD) yet.
You can click the Yes button to get to the Android Virtual Device Manager
tool. However, | want to show you another path so that you can create an
AVD any time you want to. Click No to close the error dialog.

21

22 CHAPTER 1: Setting Up the Development Environment

Java - ADT - /Users/sliao/Documents /adtWs "3
Twi AP O QU HC @™ v -
| & [@el@oovs [(Qauccaccess JERIIER
HPacka 2 = B e Cl Scoutling — O
1800 Android AVD Error

1 No compatible targets were found. Do you wish to add a new Android Virtual
~.* / Device?

Android
[2014-04-12 18:46:20 - LessonOne] Failed to find an AVD ¢

LessonOne Wﬁ

Figure 1-20. Android AVD Error: No compatible targets were found

3. Inthe ADT top menu bar, select Window » Android Virtual Device
Manager. Figure 1-21 shows my AVD Manager without any device.

8 0o - _Android Virtual Device Manager

LUG TG RN TET YT Device Definitions

List of existing Android Virtual Devices located at /Users/sliao/.android favd

'AVD Name Target Name Platforn API Leve CPU/ABI '

- No AVD available - -
Edit...

Delete...
Repair...

Details...

Start...

+" Avalid Android Virtual Device. l_l_'? A repairable Android Virtual Device.
2¢ An Android Virtual Device that failed to load. Click 'Details’ to see the error.

Figure 1-21. AVD Manager

CHAPTER 1: Setting Up the Development Environment

Note You can select New, Edit, or Delete for any existing AVD. Repair does not seem to work for me. | simply
delete and create a new one instead. The Device Definitions button shows the preset AVD definitions; you will
find this useful when you want to test your app and know the specs.

4. Click the New. . . button to continue creating your first AVD (see Figure 1-22).
Leave everything as the default, except the following:

a. Enter any name, such as nexus7, in the AVD Name field.

b. Select Nexus 7 from the Device drop-down menu.

c. Select the highest API level from the Target drop-down menu. This is the
most significant attribute. The Target needs to be compatible with the
Minimum Required SDK specified for your app in Figure 1-11, which should
be what you entered when creating the LessonOne project.

d. Optionally, enter information for any other fields with your app’s required
specific hardware. For example, if your app saves data on external storage, you
will experience an error if information in the SD Card section is not specified.

8 006

Create new Android Virtual Device (AVD)

AVD Name:
Device:
Target:
CPU/ABI:
Keyboard:
Skin:

Front Camera:

Back Camera:

Internal Storage:

SD Card:

Emulation Options:

Memory Options:

nexus7

Nexus 7 (2012) (7.0, 800 = 1280: tvdpi)
Android 4.4.2 - API Level 19

ARM (armeabi-v7a)
¥ Hardware keyboard present

Skin with dynamic hardware controls
None

None

RAM: 1024 VM Heap: 32

200 MiB

(*) Size: MiB

File: Browse...

Snapshot Use Host GPU

Override the existing AVD with the same name

Figure 1-22. Create AVD

Cancel OK

23

24 CHAPTER 1: Setting Up the Development Environment

5. Figure 1-23 shows the newly created AVD, which is compatible with the
LessonOne project.

e 00 Android Virtual Device Manager
| g
Device Definitions
List of existing Android Virtual Devices located at /Users/sliao/.android/avd
AVD Name Target Name Platforn API Leve CPU/ABI New...
+" nexus7 Android 4.4.2 442 19 ARM (armeabi-v7a)
Edit...
Delete...
Repair...
Details...
Start...
Refresh
+" Avalid Android Virtual Device. A repairable Android Virtual Device.
¢ An Android Virtual Device that failed to load. Click 'Details’ to see the error.

Figure 1-23. AVD list

6. Dismiss the AVD Manager and relaunch the LessonOne project. You should
see the app running in the newly created emulator (see Figure 1-24).

CHAPTER 1: Setting Up the Development Environment 25

5554:nexus7

Figure 1-24. LessonOne app in emulator

Note | always experience a timeout error on the first try. You might experience the same error if your
machine is not fast enough. The newly created AVD seems to take too long to start up. If you get an error
message, relaunch again after the emulator has started.

Play with the app and the emulator. A mouse-click event on an emulator is equivalent to a touch
event on a real Android device. If you don’t have a device yet, definitely play with the emulator to get
familiar with the emulated Android device.

Tip Rotate the emulator (fn+Ctrl+F12) in landscape mode to see how the LessonOne app does. Check
http://developer.android.com/tools/help/emulator.html#KeyMapping for the emulator
keyboard mappings.

http://developer.android.com/tools/help/emulator.html%23KeyMapping

