



- ·Open-Source-Soft- und Hardware
- Über 80 Quellcodes zu den Experimenten
- Schaltpläne und Datenblätter
- •Open-Source-VB.NET-Programme zum Messen und Steuern



# **Vorwort**

Vielen fällt der Einstieg in die Mikrocontroller-Programmierung und die dazugehörige Elektronik schwer. Bei den meisten Mikrocontroller-Systemen muss man sich zuvor durch unzählige und für den Anfänger schwer verständliche Datenblätter wälzen. Die Programmieroberflächen sind meist viel zu kompliziert und mehr für professionelle Programmierer ausgelegt. Somit bleibt manchem der Zugang in die Welt der Mikrocontroller für immer verwehrt.

Arduino ist eine leicht zu verstehende Open-Source-Plattform, basierend auf einem Mikrocontrollerboard und einer Entwicklungsumgebung mit einer API (Programmier-Schnittstelle) für den Mikrocontroller. Für die Interaktion zwischen Mensch und Mikrocontroller können diverse analoge und digitale Sensoren angeschlossen werden, die die Umwelt erfassen und die Daten an den Mikrocontroller weitergeben. Der Mikrocontroller verarbeitet die eingehenden Daten, und durch das Programm entstehen neue Ausgabedaten in analoger oder ditgitaler Form. Hierbei sind der Kreativität des Entwicklers fast keine Grenzen gesetzt.

Die Arduino-Programmieroberfläche unterstützt den Entwickler bei seinen Vorhaben durch ihre vorgefertigten Programme und Funktionsbibliotheken. Das einfache Zusammenspiel aus Hard- und Software bildet die Basis für *Physical Computing*: die Verbindung der realen Welt mit der des Mikrocontrollers, die aus Bits und Bytes besteht. Dieses Buch zeigt Ihnen Schritt für Schritt, wie Sie den leichten Einstieg in diese Welt finden.

Viel Spaß beim Lesen und Experimentieren mit diesem Buch!

Ulli Sommer

# CD-ROM zum Buch

Diesem Buch liegt eine CD-ROM bei, die verschiedene Programme, Tools, Datenblätter und Beispiele enthält. Die CD-ROM erleichtert Ihnen das Arbeiten mit diesem Buch. Die hier abgedruckten Beispiele sind auf der CD-ROM enthalten.

# Inhalt der CD-ROM

- Arduino-Entwicklungsumgebung (IDE)
- Beispiel-Programmcode zum Lehrgang
- Diverse Tools
- Datenblätter
- Schaltpläne

# **GPL (General Public License)**

Sie können Ihre eigenen Programme mit anderen Anwendern über das Internet austauschen. Die Beispielprogramme stehen unter der Open-Source-Lizenz *GPL* (General Public License). Daher sind Sie berechtigt, die Programme unter den Bedingungen der GPL zu modifizieren, zu veröffentlichen und anderen Anwendern zur Verfügung zu stellen, sofern Sie Ihre Programme dann ebenfalls unter die GPL-Lizenz stellen.

# Systemvoraussetzung

Ab Pentium III-PC, Windows 98SE/ME/XP/Vista/Windows 7, Linux, Mac OS, CD-ROM-Laufwerk, Java

# **Updates und Support**

Arduino wird ständig weiterentwickelt. Updates können kostenlos von der Website *www.arduino.cc* heruntergeladen werden (es fallen nur Ihre üblichen Online-Kosten an).

# Vorbereitungen

Die vorgestellten Experimente können mit wenigen, meist preiswerten Teilen – aus der Bastelkiste oder extra gekauft – durchgeführt werden. Im Anhang finden Sie eine Liste der Teile und Liefernachweise für den Bezug der Komponenten.

Für die Experimente und Versuche brauchen Sie weder Batterien noch eine zusätzliche Stromversorgung.

Als sinnvolle und hilfreiche Ergänzung kann ein Vielfachmessinstrument (Multimeter) und/oder eine Schnittstelle zum Computer zur Strom- und Spannungsmessung verwendet werden. Damit können zusätzliche Experimente durchgeführt werden und es sind weitere spannende Zusammenhänge erfahrbar. Außerdem ist es nützlich, eine handelsübliche Akkuzelle der Größe AA (Mignon) oder AAA (Micro) für einige Experimente der Ladetechnik zur Verfügung zu haben.

Das Buch vermittelt die wichtigsten Grundlagen der Mikrocontrollertechnik. Außerdem werden beispielhafte praktische Anwendungen vorgestellt, mit deren Hilfe es möglich wird, eigene Schaltungen und Erfindungen rund um die Mikrocontrollertechnik zu entwickeln.

Sie können Ihr Equipment auch um eine Sortimentsbox ergänzen. Darin werden alle Einzelteile griffbereit und übersichtlich aufbewahrt.

# **Inhaltsverzeichnis**

| 1 | Mikroc  | ontroller-Grundlagen                                    | 13 |
|---|---------|---------------------------------------------------------|----|
|   | 1.1     | Aufbau und Funktionsweise                               | 14 |
|   | 1.1.1   | Die CPU                                                 |    |
|   | 1.1.2   | Arbeits- und Programmspeicher                           | 15 |
|   | 1.2     | Peripherie                                              | 16 |
|   | 1.3     | Technologievergleich: RISC und CISC                     | 16 |
|   | 1.3.1   | CISC-Technologie                                        | 17 |
|   | 1.3.2   | RISC-Technologie                                        | 17 |
|   | 1.3.3   | Vergleich                                               | 17 |
| 2 | Progra  | mmierung der Mikrocontroller                            | 19 |
|   | 2.1     | Was ist ein Programm?                                   | 19 |
|   | 2.2     | Programmierung in C                                     | 19 |
| 3 | Eine kl | eine Übersicht über die ARDUINO-Mikrocontroller-Familie | 21 |
|   | 3.1     | Arduino Mega                                            | 22 |
|   | 3.2     | Arduino Duemilanove                                     | 23 |
|   | 3.3     | Arduino Mini                                            | 24 |
|   | 3.4     | Arduino Nano                                            | 25 |
|   | 3.5     | Arduino Pro Mini                                        | 26 |
|   | 3.6     | Arduino Pro                                             | 27 |
|   | 3.7     | LilyPad                                                 | 28 |
|   | 3.8     | USB-Adapter                                             | 29 |
| 4 | Arduin  | o Shields                                               | 31 |
|   | 4.1     | Arduino ProtoShield                                     | 31 |
|   | 4.2     | Ardumoto                                                | 32 |
|   | 4.3     | TellyMate                                               | 33 |
|   | 4.4     | ArduPilot                                               | 34 |
|   | 4.5     | Ethernet Shield                                         | 36 |
| 5 | Bautei  | le                                                      | 37 |
|   | 5.1     | Teileliste Basisexperimente                             | 37 |
|   | 5.2     | Teileliste Zusatzexperimente (I <sup>2</sup> C, LCD)    |    |
|   | 5.3     | Das Freeduino-Experimentierboard                        | 38 |
|   | 5.4     | Anschlüsse und LEDs des Freeduino-Mikrocontroller-      |    |
|   |         | Experimentierboards                                     | 39 |
|   | 5.5     | Die Stromversorgung                                     |    |

|    | 5.6                                | Reset-Taster                           | 40 |
|----|------------------------------------|----------------------------------------|----|
|    | 5.7                                | ISP-Anschluss                          | 40 |
|    | 5.8                                | Sicherheitshinweise                    | 41 |
| 6  | Bautei                             | le und ihre Funktion                   | 43 |
|    | 6.1                                | Leuchtdioden                           | 43 |
|    | 6.2                                | Widerstände                            | 43 |
|    | 6.3                                | Kondensatoren                          | 45 |
|    | 6.4                                | Transistoren                           | 47 |
|    | 6.5                                | Diode                                  |    |
|    | 6.6                                | Piezo-Schallwandler (Buzzer)           | 47 |
|    | 6.7                                | Schaltdraht                            | 48 |
|    | 6.8                                | Taster                                 | 48 |
|    | 6.9                                | Potenziometer                          | 49 |
|    | 6.10                               | LDR                                    | 49 |
|    | 6.11                               | Steckbrett                             | 50 |
| 7  | Die ers                            | sten Vorbereitungen (Inbetriebnahme)   | 51 |
|    | 7.1                                | Treiberinstallation                    |    |
|    | 7.2                                | Das Tool MProg für den FT232RL         |    |
|    | 7.3                                | FT232R mit MProg programmieren         | 57 |
|    | 7.4                                | Die Arduino-Software installieren      | 58 |
| 8  | Die Ard                            | duino-Entwicklungsumgebung             | 61 |
|    | 8.1                                | Einstellungen in der Arduino-IDE       |    |
|    | 8.2                                | Der erste Funktionstest »ES_Blinkt«    | 64 |
|    | 8.3                                | Was haben wir getan?                   | 67 |
| 9  | Arduin                             | o-Programmiergrundlagen                | 69 |
|    | 9.1                                | Bits und Bytes                         |    |
|    | 9.2                                | Grundsätzlicher Aufbau eines Programms |    |
|    | 9.2.1                              | Sequenzieller Programmablauf           |    |
|    | 9.2.2                              | Interruptgesteuerter Programmablauf    |    |
|    | 9.3                                | Der Aufbau eines Arduino-Programms     |    |
|    | 9.4                                | Das erste eigene Programm mit Arduino  |    |
|    | 9.5                                | Arduino-Befehle und ihre Verwendung    |    |
|    | 9.5.1                              | Kommentare im Quelltext                |    |
| 10 | Weitere Experimente mit Arduino133 |                                        |    |
|    | 10.1                               | Der Transistor-LED-Dimmer              |    |
|    | 10.2                               | Softer Blinker                         |    |
|    | 10.3                               | Taster entprellen                      |    |
|    | 10.4                               | Finschaltverzögerung                   |    |

|    | 10.5                  | Ausschaltverzögerung                                 | 144 |
|----|-----------------------|------------------------------------------------------|-----|
|    | 10.6                  | LEDs und Arduino                                     | 145 |
|    | 10.7                  | Größere Verbraucher schalten                         | 148 |
|    | 10.8                  | DAC mit PWM-Ports                                    | 151 |
|    | 10.9                  | Mit Musik geht alles besser                          | 156 |
|    | 10.10                 | Romantisches Mikrocontroller-Kerzenlicht             | 159 |
|    | 10.11                 | Überwachung des Personalausgangs                     |     |
|    | 10.12                 | RTC (Real Time Clock)                                | 163 |
|    | 10.13                 | Schuluhrprogramm                                     | 165 |
|    | 10.14                 | Lüftersteuerung                                      | 169 |
|    | 10.15                 | Dämmerungsschalter                                   | 172 |
|    | 10.16                 | Alarmanlage                                          | 174 |
|    | 10.17                 | Codeschloss                                          | 177 |
|    | 10.18                 | Kapazitätsmesser mit Autorange                       | 181 |
|    | 10.19                 | Potenziometer professionell auslesen                 |     |
|    | 10.20                 | Sensortaster                                         |     |
|    | 10.21                 | State Machine                                        |     |
|    | 10.22                 | Ein 6-Kanal-Voltmeter mit Arduino                    | 191 |
|    | 10.23                 | Spannungs-Plotter selbst programmiert                | 193 |
|    | 10.24                 | Das Arduino-Speicheroszilloskop                      |     |
|    | 10.25                 | StampPlot, der Profi-Datenlogger zum Nulltarif       |     |
|    | 10.26                 | Steuern über VB.NET                                  | 202 |
|    | 10.27                 | Temperaturschalter                                   | 205 |
| 11 | Der I <sup>2</sup> C- | Bus                                                  | 209 |
|    | 11.1                  | Bit-Übertragung                                      |     |
|    | 11.2                  | Startbedingung                                       |     |
|    | 11.3                  | Stoppbedingung                                       |     |
|    | 11.4                  | Byte-Übertragung                                     |     |
|    | 11.5                  | Bestätigung (Acknowledgment)                         |     |
|    | 11.6                  | Adressierung                                         |     |
|    | 11.7                  | 7-Bit-Adressierung                                   |     |
| 12 | Arduino               | o und der I <sup>2</sup> C-Bus-Temperatursensor LM75 | 213 |
| 13 | I <sup>2</sup> C-Port | texpander mit PCF8574                                | 217 |
| 14 | Ultrasc               | hallsensoren zur Entfernungsbestimmung               | 221 |
|    | 14.1                  | Der SRF02-Ultraschallsensor                          |     |
|    | 14.2                  | Auslesen der Entfernungsdaten                        | 222 |

# 12 Inhaltsverzeichnis

| 15 | Arduino mit GPS |                                                      | 225 |  |
|----|-----------------|------------------------------------------------------|-----|--|
|    | 15.1            | Wie viel Satelliten sind notwendig?                  | 226 |  |
|    | 15.2            | Wie schließe ich das GPS an Arduino an?              |     |  |
|    | 15.3            | GPS-Protokoll                                        | 228 |  |
|    |                 |                                                      |     |  |
| 16 | Stellant        | trieb mit Servo für Arduino                          | 233 |  |
|    | 16.1            | Wie funktioniert ein Servo?                          | 233 |  |
|    | 16.2            | Anschluss an Arduino                                 | 234 |  |
| 17 | LC-Disp         | lays <i>LCDs</i>                                     | 237 |  |
|    | 17.1            | Polarisation von Displays                            | 238 |  |
|    | 17.2            | Statische Ansteuerung, Multiplexbetrieb              |     |  |
|    | 17.3            | Blickwinkel 6 Uhr/12 Uhr                             |     |  |
|    | 17.4            | Reflektiv, Transflektiv, Transmissiv                 | 239 |  |
|    | 17.5            | Die Kontrasteinstellung des Displays                 |     |  |
|    | 17.6            | Der Zeichensatz                                      |     |  |
|    | 17.7            | Pinbelegung der gängigen LCDs                        |     |  |
|    | 17.8            | So wird das Display vom Mikrocontroller angesteuert. |     |  |
|    | 17.9            | Initialisierung der Displays                         |     |  |
|    | 17.10           | Das Display und sein Anschluss am Arduino            | 246 |  |
|    | 17.11           | Die erste Ausgabe                                    |     |  |
|    | 17.12           | Was haben wir genau gemacht?                         |     |  |
| Α  | Anhang          |                                                      | 253 |  |
|    | A.1             | Arduino zu ATmega Pinmap                             | 253 |  |
|    | A.2             | Escape-Sequenzen                                     | 253 |  |
|    | A.3             | ASCII-Tabelle                                        | 255 |  |
|    | Bezugs          | quellen                                              | 259 |  |
|    | Stichwo         | ortverzeichnis                                       | 261 |  |

# 2 Programmierung der Mikrocontroller

Mit der zunehmenden Integration von Halbleiterbauteilen wie Mikroprozessoren hielten Mikrocontroller immer stärker Einzug in die Anwendungsgebiete der Mess-, Steuer- und Regelungstechnik. Aber auch im Hobbybereich wurden die Mikrocontroller immer beliebter. Das liegt zum einen daran, dass heute komplexe, meist analoge Schaltungen durch einfachere digitale Mikrocontroller-Schaltungen ersetzt werden. Ein anderer ausschlaggebender Punkt ist das unschlagbare Preis-Leistungs-Verhältnis von Mikrocontrollern.

# 2.1 Was ist ein Programm?

Ein Programm ist die Beschreibung eines Informationsverarbeitungsprozesses. Im Lauf eines solchen Prozesses wird aus einer Menge von variablen oder konstanten Eingangswerten eine Menge von Ausgangswerten berechnet. Die Ausgangswerte sind entweder selbst Ziel der Informationsgewinnung oder dienen mittelbar zur Reaktion auf die Eingangswerte. Neben den eigentlichen Berechnungen kann ein Programm Anweisungen zum Zugriff auf die Hardware des Computers oder zur Steuerung des Programmflusses enthalten. Ein Programm besteht aus mehreren Zeilen sogenannten Quelltextes. Dabei enthält jede Zeile eine oder mehrere Rechen- oder Steueranweisungen. Neben diesen Anweisungen selbst bestimmt ihre Reihenfolge wesentlich die eingangs beschriebene Informationsverarbeitung. Die Ausführung der den Anweisungen entsprechenden Operationen durch den Steuercomputer erfolgt sequenziell, also nacheinander. Eine Folge von Programmanweisungen mit einem bestimmten Ziel nennt man auch Algorithmus.

# 2.2 Programmierung in C

C oder auch ANSI-C ist eine einfach zu erlernende Programmiersprache. C ist eine imperative Programmiersprache, die der Informatiker Dennis Ritchie in den frühen 70er-Jahren an den Bell Laboratories für das Betriebssystem Unix entwickelte. Seitdem ist sie weltweit stark verbreitet. Die Anwendungsbereiche von C sind sehr verschieden. Es wird z. B. zur System- und Anwendungsprogrammierung eingesetzt. Die grundlegenden Programme aller Unix-Systeme und die System-

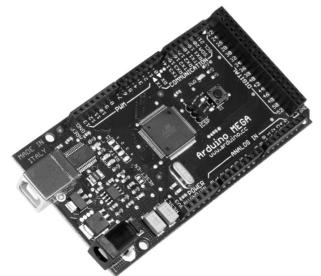
kerne vieler Betriebssysteme sind in C programmiert. Zahlreiche Sprachen wie C++, Objective-C, C#, Java, PHP oder Perl orientieren sich an der Syntax und anderen Eigenschaften von C. Es ist also mehr als lohnenswert, sich mit dieser Programmiersprache zu beschäftigen, da man später auch leicht auf andere Mikrocontrollersysteme umsteigen kann. Für fast alle Mikrocontroller existiert ein freier C-Compiler, den die Hersteller zum Download anbieten. Das C von Arduino ist jedoch um einiges einfacher gehalten als die professionellen C-Compiler und nimmt sehr viel Arbeit ab. Vor allem um die komplizierten Hardware-Routinen muss man sich bei Arduino nicht kümmern, da sie bereits als feste Befehle in der Entwicklungsumgebung integriert sind.

# 3 Eine kleine Übersicht über die ARDUINO-Mikrocontroller-Familie

Die Arduino-Hardware verwendet ausschließlich gängige, allgemein verfügbare Bauteile. Daher ist es leicht, die Funktionsweise zu verstehen und die Schaltung an eigene Wünsche anzupassen oder Erweiterungen vorzunehmen. Den Kern bildet ein ATmega-Controller aus Atmels weitverbreiteter 8-Bit-AVR-Familie. Hinzu kommen Schaltungsteile zur Stromversorgung und eine serielle Schnittstelle. Letztere ist bei den jüngeren Arduino-Versionen als USB-Interface ausgelegt. Über diesen Anschluss erfolgt der Download der Anwenderprogramme und bei Bedarf auch die Kommunikation zwischen PC und Arduino während der Programmausführung.

Weil Arduino-Boards so einfach und universell ausgelegt sind, werden sie häufig auch schlicht als *I/O-Board* bezeichnet. Arduino stellt dem Anwender 14 digitale Ein- oder Ausgänge zur Verfügung, davon sind sechs als Analogausgang (8 Bit PWM) zu verwenden. Weitere sechs Eingänge können analoge Signale erfassen (10 Bit ADC). Bei Bedarf stehen SPI und I<sup>2</sup>C als weitere Schnittstellen zur (seriellen) Kommunikation zur Verfügung.

Es gibt Arduino-Boards in mehreren Varianten. Die Originale stammen vom Hersteller Smart Projects aus Italien. Es gibt mittlerweile auch zahllose Klone und Nachbauten von anderen Anbietern, schließlich handelt es sich um *Open Hardware*. Ein wichtiger Unterstützer des Arduino-Projekts ist Sparkfun aus Boulder, Colorado. Die Kooperation mit dem US-Partner hat eine Reihe optimierter Arduino-Boards hervorgebracht, die den Zusatz »Pro« im Namen führen. Außerdem ist mit LilyPad ein wichtiger Ableger entstanden, der das Thema *Wearable Computing* aufgreift.


Die meisten Anwender setzen auf das von Smart Projects gefertigte, handtellergroße Arduino Duemilanove (Duemilanove = 2009), das den ATmega-Controller in DIP-Bauform auf einem Sockel trägt. Es unterscheidet sich nur unwesentlich vom überaus erfolgreichen Vorgänger Arduino Diecimilanove, dessen Namensgebung auf die ersten 10.000 verkauften Boards zurückgeht. Auf den Boards ist ein FTDI-Chip aufgelötet, der die USB-Schnittstelle bereitstellt. Das neue Arduino Mega Board verwendet einen leistungsstärkeren Mikrocontroller (Atmega1280) und bietet mehr Speicher, I/O-Pins und Funktionen auf einer deutlich erweiterten Platinenfläche.

Wesentlich kleiner ist Arduino Mini, ein Board im DIP24-Format. Das ganze Modul lässt sich auf einen 24-poligen DIL-Sockel stecken. Die Version Arduino Pro Mini von Sparkfun ist nahezu identisch, wird aber ohne »Beinchen« (seitliche Stifte) geliefert. Diese Module benötigen zum Programmieren einen USB-Adapter, der an der Schmalseite der Module angesteckt werden kann.

Das LilyPad-Board von Leah Buechley (in Zusammenarbeit mit Sparkfun) ist auch Arduino-kompatibel und verfolgt einen ganz eigenen Zweck. LilyPad und Zubehör sind dafür ausgelegt, in Kleidung eingenäht zu werden, um dort eine möglichst enge Symbiose von Technik und Künstler zu realisieren. Die charakteristische runde Form des LilyPad-Arduinos erregt ebenso Aufmerksamkeit wie die Farbgebung und die kreisförmige Anordnung der Kontakte. Zum Einsatz kommt hier die Low-Power-Version (3,3 V) des ATmega168. Zahlreiche kleine Peripherieplatinen (Sensoren, LEDs, Taster ...) ergänzen LilyPad zu einem ganzen System unter dem Motto »Elektronik mit der Nähmaschine« .

Über weitere Board-Versionen und Zubehörteile informieren Sie die Arduino-Projektseite (siehe Links) und die Produktseiten von SparkFun Electronics.

# 3.1 Arduino Mega



**Bild 3.1:** Arduino Mega (Quelle: Fa. Elmicro)

#### Technische Daten:

- ATmega1280 Mikrocontroller
- 128 KB Flash
- 8 KB RAM, 4 KB EEPROM
- 16-MHz-Takt
- 54 digitale I/O-Pins, davon 14 als PWM nutzbar
- 4 Hardware-UARTs
- I2C-Interface, SPI
- 16 analoge Eingänge (10 Bit)
- USB-Interface, Spannungsversorgung, Bootloader etc. wie beim Arduino Duemilanove
- Abmessungen ca. 101 mm x 53 mm x 12 mm

### 3.2 Arduino Duemilanove



**Bild 3.2:** Arduino Duemilanove (Quelle: Elmicro)

- ATmega328 Mikrocontroller
- 32 KB Flash (davon 2KB für Bootloader)
- 2 KB RAM, 1 KB EEPROM
- 16-MHz-Takt
- 14 digitale I/O-Pins, davon 6 als PWM nutzbar
- sechs analoge Eingänge (10 Bit)
- On-Board-USB-Schnittstelle mit FT232RL von FTDI

- 5 V Betriebsspannung, Speisung über USB oder über Spannungsregler (7 V bis 12 V Eingangsspannung)
- Abmessungen ca. 69 mm x 53 mm x 12 mm
- Bootloader im Lieferzustand bereits installiert, Download ohne Programmieradapter möglich

### 3.3 Arduino Mini



Bild 3.3: Arduino Mini (Quelle: Elmicro)

- ATmega168 Mikrocontroller mit 16-MHz-Quarztakt
- Programmierung über USB-Adapter (ARDUINO/USB, USB-Adapter mit FTDI-Chip)
- 512 Byte EEPROM
- 1 KB SRAM
- 16 KB FLASH (2 KB benötigt der Bootloader für sich)
- Betriebsspannung 5 V
- 14 Digitale I/Os, sechs davon können zur PWM-Erzeugung genutzt werden
- acht analoge 10-Bit-Eingänge
- Versorgungsspannung 7 V bis 9 V

## 3.4 Arduino Nano



Bild 3.4: Arduino Nano (Quelle: Elmicro)

- ATmega328 oder ältere Version 168 mit 16-MHz-Quarztakt
- Programmierung über USB-»On Board Chip«
- Autoreset-Funktion
- 5-V-Technik
- 14 Digitale I/Os, sechs davon können zur PWM-Erzeugung genutzt werden
- acht analoge 10-Bit-Eingänge
- 32 KB oder 16 KB FLASH
- 1 KB SRAM
- 512 oder 1 KByte EEPROM
- Ausgangsstrom pro I/O max. 40 mA
- Versorgungsspannung 6 V bis 20 V
- Abmessungen: 18 mm x 43 mm

# 3.5 Arduino Pro Mini



Bild 3.5: Arduino Pro Mini (Quelle: Elmicro)

- ATmega328 mit 16-MHz-Quarztakt (Genauigkeit 0,5 %)
- Programmierung über USB-Adapter (ARDUINO/USB)
- Autoreset-Funktion
- Diese Version gibt es in 5-V- und 3,3-V-Technik
- Ausgangsstrom max. 150 mA
- Überlastschutz
- Verpolungsschutz
- Versorgungsspannung 5 V bis 12 V
- Power und Status LED bereits »On Board«
- Abmessungen: 18 mm x 33 mm
- Gewicht weniger als 2 g

## 3.6 Arduino Pro



Bild 3.6: Arduino Pro (Quelle: Elmicro)

- ATmega328 und ältere ATmega168 mit 16-MHz-Quarztakt
- Programmierung über USB-Adapter (ARDUINO/USB)
- Diese Version gibt es in 5-V- und 3,3-V-Technik
- 14 Digital-I/O-Pins (sechs davon als PWM nutzbar)
- sechs analoge 10-Bit-Eingänge
- Versorgungsspannung 3,35 V bis 12 V (3,3-V-Version)
- Versorgungsspannung 5 V bis 12 V (5-V-Version)
- Ausgangsstrom pro Digitalport 40 mA
- 32 KB oder 16 KB (ATmega168) FLASH
- 1 KB (ATmega168) oder 2 KB (ATmega328) SRAM
- 512- (ATmega168) oder 1-KB-EEPROM

# 3.7 LilyPad

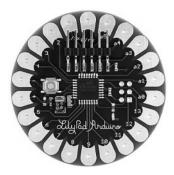



Bild 3.7: LilyPad Arduino (Quelle: Elmicro)

- ATmega328V und ältere ATmega168V mit 16-MHz-Quarztakt
- Programmierung über USB Adapter (ARDUINO/USB)
- Spannungsversorgung 2,7 V bis 5,5 V
- 14 Digital-I/O-Pins (sechs davon als PWM nutzbar)
- sechs analoge 10-Bit-Eingänge
- Ausgangsstrom pro Digitalport 40 mA
- 32 KB oder 16 KB (ATmega168) FLASH
- 1 KB (ATmega168) oder 2 KB (ATmega328) SRAM
- 512- (ATmega168) oder 1-KB-EEPROM

# 3.8 USB-Adapter



**Bild 3.8:** USB-Adapter mit FTDI-Chip (Quelle: Elmicro)

Diesen Programmieradapter gibt es in 3,3-V- und in 5-V-Ausführung.

Der Adapter wird zum Programmieren der Arduino-Borads ohne USB-Anschluss benötigt. Die Pinbelegung entspricht den Original-Arduino-Spezifikationen. Er kann auch zur Kommunikation (virtuelle serielle Schnittstelle) verwendet werden. Dieses Feature muss man für eigene Entwicklungen einfach haben. Es ermöglicht, einen Sketch auf das Board zu laden, ohne die Reset-Taste zu drücken.

# Stichwortverzeichnis

| Symbole<br>#Define-Anweisungen 81<br>10-kΩ-Potenziometer 246 | Arrays 78<br>dynamisches 79<br>ASCII-Tabelle 255 | C-Programmierung 74<br>CPU 14<br>CRC 192 |
|--------------------------------------------------------------|--------------------------------------------------|------------------------------------------|
| 4-Bit-Mode 245                                               | ASCII-Zeichen 105, 242                           |                                          |
|                                                              | Atmega1280 22                                    | D                                        |
| Α                                                            | Auflösung 120                                    | DAC 16                                   |
| abs(x) 95                                                    | Ausgang 113                                      | Dämmerungsschalter 172                   |
| Abstrakte Maschine 188                                       |                                                  | Daten drahtlos übermitteln               |
| ADC 16, 119, 184, 191, 193,                                  | В                                                | 35                                       |
| 205                                                          | Basis B 47                                       | Datenbits 108                            |
| ADC-Ausgabe 252                                              | Batterien 8                                      | Datentransfer 244                        |
| ADC-Kanäle 192                                               | Baudrate 102                                     | Datentypen 75, 78                        |
| Adresse 209                                                  | BIN 105                                          | Datenverarbeitung 13                     |
| Akkus 234                                                    | binery digits 69                                 | DA-Wandler 151                           |
| Alarm 174                                                    | Blickwinkel 238                                  | DEC 104                                  |
| Alarmanlage 174                                              | Boolean 76                                       | Decrement 80                             |
| Ampel 188                                                    | Breadboard 38, 50                                | delay 67, 127                            |
| analog 151                                                   | Byte 76, 105                                     | delay() 130, 168, 251                    |
| Analogeingang 186, 193,                                      | Byte() 93                                        | Digitalport 133                          |
| 251                                                          |                                                  | digitalRead 114, 124, 142                |
| analogRead 120                                               | C                                                | digitalWrite 67, 114, 124                |
| analogRead() 128, 184                                        | C 19                                             | Diode 47                                 |
| analogWrite 124                                              | CD-ROM 7                                         | Display 244, 246                         |
| Analysator 237                                               | Char 76                                          | Display() 251                            |
| Anode 43                                                     | Char() 93                                        | Displaycontroller 242                    |
| ANSI-C 19                                                    | Checksumme 192                                   | do while 88                              |
| Ansteuerung 244                                              | CISC 17                                          | DOP-Wert 226                             |
| Arbeitsspeicher 14, 15                                       | CISC-Technologie 16                              | Dot-Matrix 237                           |
| Arduino Diecimila 63                                         | Codeschloss 177                                  | Dot-Matrix-Displays 240                  |
| Arduino-Duemilanove-                                         | Comport 63                                       | do-while-Schleife 141                    |
| Board 38                                                     | Comport-Nummer 57                                | Download 66                              |
| Ardumoto 32                                                  | COM-Schnittstelle 58                             | Drift 184                                |
| ArduPilot 34                                                 | constrain(x, a, b) 95                            | Durchlassrichtung 145                    |
| Arithmetik 80                                                | Continue 92<br>cos(rad) 99                       |                                          |

| E                                          | CDC Duetakali 220                    | V                                                |
|--------------------------------------------|--------------------------------------|--------------------------------------------------|
| _                                          | GPS-Protokoll 228                    | K<br>Vamanitüt 45                                |
| E12-Reihe 146                              | GPS-Signale 226<br>Grad Celsius 110  | Kapazität 45                                     |
| E24-Reihe 44                               | Grad Fahrenheit 110                  | Kapazitätsmesser 181<br>Kathode 43               |
| Eingang 113                                |                                      | Kathode 45<br>Keramikkondensator 46              |
| Einschaltverzögerung 143                   | Graphen 198                          |                                                  |
| Einstellungen 64                           | Grenzfrequenz 152<br>Grundlagen 69   | Kleinsignaltransistor 47,<br>148                 |
| Elektrolytkondensator 46 else if 83        | Grundlagen 69                        | Kohleschichtwiderstand 43                        |
| Emitteranschluss 47                        | Н                                    | Kollektor 47                                     |
|                                            |                                      | Kommunikation 100                                |
| Entfernungsmesser 221                      | Halbbyte 69<br>Halbleitermaterial 49 | Kompilieren 62                                   |
| Entstörung 149 Entwicklungsumgebung        |                                      | Kondensator 45, 181                              |
|                                            | HAL-Prinzip 68<br>Hardware 21        | Kondensator 45, 181  Konstante 81                |
| (IDE) 61                                   | UART 102                             |                                                  |
| Escape-Sequenzen 253<br>Ethernet Shield 36 |                                      | Kontrast 240, 248                                |
|                                            | HD44780 240                          | Kontrasteinstellung 240<br>Kontrollstrukturen 81 |
| EVA 70                                     | HD44780-/KS0066-                     | Kontronstrukturen 81                             |
| EXT 40                                     | Standard 248                         | L                                                |
| F                                          | H-DOP 226                            | _                                                |
| Farad 45                                   | HEX 104                              | Lautsprecher 47<br>LCD 241, 248                  |
| Farbcode 44                                | high 67                              | *                                                |
|                                            | Highbyte 192                         | Pinbelegung 243<br>lcd.print() 251               |
| Flash-Speicher 15<br>Float 77              | 1                                    | lcd.setCursor() 251                              |
| Float() 93                                 | I/O-Board 21                         | LCD-Modul 240, 245, 246                          |
| for 86, 88                                 | I/O-board 21<br>I <sup>2</sup> C 213 |                                                  |
| Freilaufdiode 151                          | I <sup>2</sup> C-Bus 209             | LDR 49, 169, 172, 174                            |
|                                            | IDE (siehe                           | LED 145, 148, 149                                |
| Frequenz 156<br>FSTN-Technik 238           | ,                                    | LED-Doppelblitzer 146<br>Leuchtdiode 43          |
| FT232R 58                                  | Entwicklungsumgebung)<br>61          | Library 251                                      |
| FT232RL 51, 57                             | if 83                                | Lichtempfindlichkeit 171                         |
| FTDI-Treiber 52                            | IF 145                               | LM75 213                                         |
| Funkstrecke 35                             | if – else 82                         | Lokale 76                                        |
| Funktionen 91                              | Induktionsspannung 151               | Long 77                                          |
| Mathematische 93                           | Informationsverarbeitungs-           | Long() 93                                        |
| Funktionsdefinition 76                     | prozesses 19                         | loop() 251                                       |
| Tunktionsachmition 70                      | Initialisierung 245                  | Löschbefehle 255                                 |
| G                                          | Inkrement 80                         | Lowbyte 192                                      |
| Gerätemanager 63                           | Input-Konfiguration 113              | Lüftersteuerung 169                              |
| Geschweifte Klammer 75                     | Int() 93                             | Editerstederung 109                              |
| Getriebemotor 233                          | Integer 77                           | M                                                |
| Global Positioning System                  | Interruptus 71                       | map(x, fromLow,                                  |
| (GPS) 225                                  | ISP-Anschluss 40                     | fromHigh, toLow, toHigh)                         |
| GPL 7                                      | 101 /1110cmiuo0 TO                   | 96                                               |
| GIL /                                      |                                      | 70                                               |

| max(x, y) 94             | Polarisator 237             | RTC 163, 165               |
|--------------------------|-----------------------------|----------------------------|
| MAX232 227               | Port 148                    |                            |
| Melodien 157             | Portexpander 217            | S                          |
| Menü 62                  | Potenzialfreier Kontakt 151 | Satelliten 226             |
| Messgeräte 181           | Potenziometer 49, 122, 161, | Schaltdraht 48             |
| micros() 127, 131, 168   | 171, 184, 198, 233, 240     | Schleifen 86               |
| Mikrocontrollerboard 63  | pow(base, exponent) 97      | Schnittstelle 8            |
| Mikrosekunden 131        | Power ON-LED 39             | Schutzdiode 116            |
| millis() 128, 130, 251   | Programm übertragen 62      | SCL 210                    |
| min(x, y) 93             | Programmierumgebung 58      | SDA 210                    |
| Modellbauservo 233       | Programmierung 57           | seed 128                   |
| Modellflugzeug 34        | prozedurale 70              | Semikolon 75               |
| Modularität 90           | sequenzielle 70             | Sensortaster 186           |
| MProg 52, 53, 56         | Programmspeicher 14, 15     | Serial.available() 103     |
| Multiplexbetrieb 238     | ProtoShield 32              | Serial.begin(Baudrate) 102 |
|                          | Prozedur 70                 | Serial.end() 103           |
| N                        | Puffer 103, 109             | Serial.flush() 104         |
| Neu 62                   | Pull-down-Widerstand 117    | Serial.print() 100, 104    |
| Nibble 69                | Pull-up-Widerstand 113,     | Serial.println() 100, 106  |
| noDisplay() 251          | 116, 117, 118, 181          | Serial.read() 103          |
| Not(!)-Funktion 135      | PWM (Pulse Width            | Serial.write() 107         |
| NTC 241                  | Modulation) 122, 133        | Serielle Ein-/Ausgabe 100  |
|                          | PWM-Signal 151, 155         | Serielle Übertragung 108   |
| 0                        | PWM-Wert 136                | Servo 233                  |
| OCT 105                  |                             | Shields 31                 |
| Öffnen 62                | Q                           | Signal 196                 |
| Operator 80, 82          | Quittungstöne 157           | Siliziumdiode 47           |
| Oszilloskop 197          |                             | sin(rad) 98                |
| Output-Konfiguration 113 | R                           | Sinusfunktion 135, 138     |
|                          | RAM 16                      | Sinustabellen 137          |
| P                        | random(min, max) 128        | Smart Project 21           |
| Parameter 107            | randomSeed(seed) 128        | Software UART 111          |
| Parity Bit 108           | RC-Glied 137, 151           | Sortimentsbox 8            |
| PCF8574 217              | RC-Tiefpass 152             | Soundbefehl 157            |
| Peripherie 16            | Referenzspannung 119, 120   | Spannung 124               |
| Pfeiltasten 254          | Reflektiv 239               | Spannungs-Plotter 193, 198 |
| Philips 209              | Relais 151                  | Speichern 62               |
| Physikalische Größen 13  | Reset-Taster 40             | Speicheroszilloskop 196    |
| Piezo-Schallwandler 47,  | Ringbuffer 111              | Spikes 138                 |
| 126, 156, 165            | Rippel 152                  | Spreizwiderstand 246       |
| Pinmapping 253           | RISC 17                     | sq(x) 97                   |
| pinMode 67, 113          | RISC-Technologie 16         | Sqrt(x) 98                 |
| Polarisation 238         | Routinen 90                 | SRF02 221                  |
|                          |                             |                            |

| StampPlot 198            | TN(Twisted-Nematic)-         | ٧                          |
|--------------------------|------------------------------|----------------------------|
| Startbit 108             | Displays 238                 | Variablen 75               |
| State Machine 188        | Toleranzangabe 43            | lokale 75                  |
| Steckbrett 50            | tone() 156                   | globale 76                 |
| Steuern 202              | Tonerzeugung 156             | Variablen-Namen 75         |
| Steuerung Gewächshaus 13 | Toolbar 62                   | VB.NET 192, 194, 196, 202  |
| Stiftleiste 248          | Transflektiv 239             | VB.NET-Programm 137        |
| STNs (Super-Twisted-     | Transistor 47, 148, 149, 151 | V-DOP 226                  |
| Nematics) 238            | Transistor-LED-Dimmer        | Vergleich 80               |
| Stopp 62                 | 133                          | Verstärkung 148            |
| Stoppbit 108             | Transmissiv 239              | Vf 145, 205                |
| String 78, 108           | Treiber 51                   | Virtueller Comport 51      |
| Strom 148                | Trimmwiderstand 49           | Visualisieren 191          |
| Stromversorgung 40, 233  | Türöffner 177                | void loop() 67, 91         |
| Sub Routine 90           | Typenkonvertierung 104       | void setup() 67, 91        |
| switch case 85           | Typenumwandlung 93           | Voltmeter 193              |
| Syntaxfehler 65          |                              | Vorwiderstand 145          |
|                          | U                            | VT100 253                  |
| Т                        | UART 100, 112                |                            |
| tan(rad) 100             | UART-Schnittstelle 51, 111,  | W                          |
| Taster 48, 138           | 193                          | while 88                   |
| Tasterzustand 114        | Uhr 163                      | Widerstände 43             |
| Tastverhältnis 122       | Uhrzeit 168                  | Wire-Bibliothek 215        |
| Teileliste 37, 38        | Ultraschallsensor 221        | Wiznet W5100 36            |
| TellyMate 33             | Umgebungstemperatur-         |                            |
| Temperaturschalter 205   | bereich 241                  | X                          |
| Temperatursensoren 213   | Unsigned Char 77             | XBee 35                    |
| Terminal 62, 64, 109     | Unsigned int 77              |                            |
| Terminal-Ausgaben 254    | Unsigned Long 77             | Z                          |
| Terminal-Befehle 254     | USB 40                       | Zeichenattribute 254       |
| Terminal-Programm 73     | USB-Buchse 40                | Zeichensatz 242            |
| Tiefpass 151             | USB-Chip 51                  | Zeit 130                   |
| Timer 169                | USB-seriell-Wandler 58       | Zufallszahlengenerator 161 |

USB-zu-Seriell-Adapter 52



### **Ulli Sommer**

# **Arduino**

Arduino ist ein Mikrocontroller-System, das aus einem Mikrocontroller der Firma Atmel und einer Open-Source-Entwicklungsumgebung, die auf einem vereinfachten C-Dialekt basiert, besteht.

Der Mikrocontroller wird über den PC programmiert und kann eigenständig oder in Verbindung mit dem PC agieren. Es können für die Interaktion zwischen Mensch und Mikrocontroller diverse Sensoren angeschlossen werden, die unsere Umwelt erfassen und die Daten an den Mikrocontroller weitergeben. Der Mikrocontroller verarbeitet mit seinem Programm die Daten, und es können Ausgaben getätigt oder z. B. Aktuatoren gesteuert werden. Der Kreativität des Entwicklers sind dabei keine Grenzen gesetzt.

Die Arduino-Programmieroberfläche unterstützt den Entwickler bei seinen Vorhaben durch ihre vorgefertigten Programme und Funktionsbibliotheken. Das einfache Zusammenspiel aus Hard- und Software bildet die Basis für Physical Computing, also die Verbindung der realen Welt mit der Welt des Mikrocontrollers, die aus Bits und Bytes besteht. Dieses Buch bietet Ihnen einen unkomplizierten Einstieg in diese Welten.

Die ersten Kapitel vermitteln Ihnen die Programmierung mit Arduino. Die C-Befehle werden anhand kleiner Beispiele verdeutlicht, Hardund Software werden detailliert erklärt. Schließlich setzen Sie Ihre neu erworbenen Kenntnisse in Experimenten kreativ und spielerisch in Mess-, Steuer- und Regelanwendungen ein. Nach der Lektüre dieses Buchs werden Sie in der Lage sein, Ihre eigenen Ideen selbstständig umzusetzen.

#### **CD-Inhalt:**

- Open-Source-Soft- und Hardware
- Über 80 Quellcodes zu den Experimenten
- Schaltpläne und Datenblätter
- Open-Source-VB.NET-Programme zum Messen und Steuern mit Arduino/Freeduino

#### **Aus dem Inhalt:**

- Mikrocontroller-Grundlagen
- Mikrocontroller-Programmierung mit Arduino/Freeduino
- Aufbauanleitung zu jedem Experiment
- Von den Grundlagen bis zur eigenen Applikation
- Entwickeln Sie Ihre eigenen Anwendungen und damit praktisch Ihr eigenes Spezial-IC: sei es eine spezielle Alarmanlage, ein Messgerät oder eine Robotersteuerung
- Über 80 praktische Experimente:

  Den USB-Brückenchip FT232RL einrichten und anwenden, Ein-/Ausschaltverzögerung, Temperaturschalter, Kapazitätsmessgerät, Schuluhr mit RTC, 6-Kanal-Digitalvoltmeter, Lüftersteuerung, Datenaustausch zwischen VB.NET und Arduino, Sensortaster, Statemaschine, Daten aufzeichnen mit Stamp PLOT, Digitales Speicheroszilloskop, Bewegungsmelder-Alarmanlage, Dämmerungsschalter, romantisches Kerzenlicht, Musikplayer, Datenplotter mit VB.NET, serielle Ein- und Ausgabe, Experimente mit LCD-Displays und vieles mehr



Euro 29,95 [D]