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Introduction

This book is devoted to a theory of gradient flows in spaces which are not neces-
sarily endowed with a natural linear or differentiable structure. It is made of two
parts, the first one concerning gradient flows in metric spaces and the second one
devoted to gradient flows in the L2-Wasserstein space of probability measures1 on
a separable Hilbert space X (we consider the Lp-Wasserstein distance, p ∈ (1,∞),
as well).

The two parts have some connections, due to the fact that the Wasserstein
space of probability measures provides an important model to which the “metric”
theory applies, but the book is conceived in such a way that the two parts can
be read independently, the first one by the reader more interested to Non-Smooth
Analysis and Analysis in Metric Spaces, and the second one by the reader more
oriented to the applications in Partial Differential Equations, Measure Theory and
Probability.

The occasion for writing this book came with the NachDiplom course taught
by the first author in the ETH in Zürich in the fall of 2001. The course covered
only part of the material presented here, and then with the contribution of the
second and third author (in particular on the error estimates of Part I and on the
generalized convexity properties of Part II) the project evolved in the form of the
present book. As a result, it should be conceived in part as a textbook, since we
try to present as much as possible the material in a self-contained way, and in part
as a research book, with new results never appeared elsewhere.

Now we pass to a more detailed description of the content of the book,
splitting the presentation in two parts; for the bibliographical notes we mostly
refer to each single chapter.

Part I

In Chapter 1 we introduce some basic tools from Analysis in Metric Spaces. The
1This distance is also commonly attributed in the literature to Kantorovich-Rubinstein. Actu-

ally Prof. V.Bogachev kindly pointed out to us that the correct spelling of the name Wasserstein
should be “Vasershtein” [124] and that the attribution to Kantorovich and Rubinstein is much
more correct. We kept the attribution to Wassertein and the wrong spelling because this termi-
nology is by now standard in many recent papers on the subject (gradient flows) closely related
to our present work



2 Introduction

first one is the metric derivative: we show, following the simple argument in [7], that
for any metric space (S , d) and any absolutely continuous map v : (a, b) ⊂ R → S
the limit

|v′|(t) := lim
h→0

d (v(t + h), v(t))
|h|

exists for L 1-a.e. t ∈ (a, b) and d(v(s), v(t)) ≤ ∫ t

s
|v′|(r) dr for any interval (s, t) ⊂

(a, b). This is a kind of metric version of Rademacher’s theorem, see also [12] and
the references therein for the extension to maps defined on subsets of Rd.
In Section 1.2 we introduce the notion of upper gradient, a weak concept for the
modulus of the gradient, following with some minor variants the approach in [81],
[41]. We say that a function g : S → [0, +∞] is a strong upper gradient for
φ : S → (−∞, +∞] if for every absolutely continuous curve v : (a, b) → S the
function g ◦ v is Borel and

∣∣φ(v(t))− φ(v(s))
∣∣ ≤ ∫ t

s

g(v(r))|v′|(r) dr ∀ a < s ≤ t < b. (1)

In particular, if g ◦ v|v′| ∈ L1(a, b) then φ ◦ v is absolutely continuous and

|(φ ◦ v)′(t)| ≤ g(v(t))|v′|(t) for L 1-a.e. t ∈ (a, b). (2)

We also introduce the concept of weak upper gradient, where we require only that
(2) holds with the approximate derivative of φ ◦ v, whenever φ ◦ v is a function of
(essential) bounded variation. Among all possible choices of upper gradients, the
local [52] and global slopes of φ are canonical and respectively defined by:

|∂φ|(v) := lim sup
w→v

(
φ(v)− φ(w)

)+
d(v, w)

, lφ(v) := sup
w �=v

(
φ(v)− φ(w)

)+
d(v, w)

. (3)

In our setting, lφ(·) provides the natural “one sided” bounds for difference quo-
tients modeled on the analogous one [41] for Lipschitz functionals, where the pos-
itive part of φ(v)− φ(w) is replaced by the modulus.

We prove in Theorem 1.2.5 that the function |∂φ| is a weak upper gradient
for φ and that, if φ is lower semicontinuous, lφ is a strong upper gradient for φ.
In Section 1.3 we introduce our main object of study, the notion of curve of max-
imal slope in a general metric setting. The presentation here follows the one in
[8], on the basis of the ideas introduced in [52] and further developed in [53], [95].
To illustrate the heuristic ideas behind, let us start with the classical setting of a
gradient flow

u′(t) = −∇φ (u(t)) (4)

in a Hilbert space. If we take the modulus in both sides we have the equation
|u′|(t) = |∇φ(u(t))| which makes sense in a metric setting, interpreting the left
hand side as the metric derivative and the right hand side as an upper gradient
of φ (for instance the local slope |∂φ|, as in [8]). However, in passing from (4) to
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a scalar equation we clearly have a loss of information. This information can be
retained by looking at the derivative of the energy:

d

dt
φ (u(t)) = 〈u′(t),∇φ (u(t))〉 = −|u′(t)||∇φ (u(t)) | = −1

2
|u′|2(t)− 1

2
|∇φ (u(t)) |2.

The second equality holds iff u′ and −∇φ(u) are parallel and the third equality
holds iff |u′| and |∇φ(u)| are equal, so that we can rewrite (4) as

1
2
|u′|2(t) +

1
2
|∇φ (u(t)) |2 = − d

dt
φ (u(t)) .

Passing to an integral formulation and replacing |∇φ(u)| with g(u), where g is an
upper gradient of φ, we say that u is a curve of maximal slope with respect to g if

1
2

∫ t

s

(
|u′|2(r) + |g (u(r)) |2

)
dr ≤ φ (u(s))− φ (u(t)) (5)

for L 1-a.e. s, t with s ≤ t. In the case when g is a strong upper gradient, the
energy is absolutely continuous in time, the inequality above is an equality and it
holds for any s, t ≥ 0 with s ≤ t.
This concept of curve of maximal slope is very natural, as we will see, also in
connection with the problem of the convergence of the implicit Euler scheme.
Indeed, we will see that (5) has also a discrete counterpart, see (11) and (3.2.4).
A brief comparison between the notion of curves of maximal slope and the more
usual notion of gradient flows in Banach spaces is addressed in Section 1.4. We
shall see that the metric approach is useful even in a linear framework, e.g. when
the Banach space does not satisfy the Radon-Nikodým property (so that there
exist absolutely continuous curves which are not a.e. differentiable) and therefore
gradient flows cannot be characterized by a differential inclusion.

In Chapter 2 we study the problem of the existence of curves of maximal slope
starting from a given initial datum u0 ∈ S and the convergence of (a variational
formulation of) the implicit Euler scheme. Given a time step τ > 0 and a discrete
initial datum U0

τ ≈ u0, we use the classical variational problem

Un
τ ∈ argmin

{
φ(v) +

1
2τ

d2(v, Un−1
τ ) : v ∈ S

}
(6)

to find, given Un−1
τ , the next value Un

τ . We consider also the case of a variable
time step when τ depends on n as well (see Remark 2.0.3). Also, we have preferred
to distinguish the role played by the distance d (which, together with φ, governs
the direction of the flow) by the role played by an auxiliary topology σ on S , that
could be weaker than the one induced by d, ensuring compactness of the sublevel
sets of the minimizing functional of (6) (this ensures existence of minimizers in
(6)). In this introductory presentation we consider for simplicity the case of a
uniform step size τ independent of n and of an energy functional φ whose sublevel
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sets {φ ≤ c}, c ∈ R, are compact with respect to the distance topology; we also
suppose that U0

τ = u0, φ(u0) < +∞. This ensures a compactness property of the
discrete trajectories and therefore the existence of limit trajectories as τ ↓ 0 (the
so-called generalized minimizing movements in De Giorgi’s terminology, see [51]).
In Section 2.3 we state some general existence results for curves of maximal slope.
The first result is stated in Theorem 2.3.1 and it is the more basic one: we show
that if the relaxed slope

|∂−φ|(u) := inf
{

lim inf
n→∞ |∂φ|(un) : un → u, sup

n
{d(un, u), φ(un)} < +∞

}
(7)

is a weak upper gradient for φ, and if φ is continuous along bounded sequences in
S on which both φ and |∂φ| are bounded, then any limit trajectory is a curve of
maximal slope with respect to |∂−φ|(u). If |∂−φ|(u) is a strong upper gradient we
can drop the continuity assumption on φ and obtain in Theorem 2.3.3 that any
limit trajectory is a curve of maximal slope with respect to |∂−φ|(u). In particular
this leads to the energy identity

1
2

∫ t

s

(
|u′|2(r) + |∂−φ|2(u(r))

)
dr = φ (u(s))− φ (u(t)) (8)

for any interval [s, t] ⊂ [0, +∞). One can also show strong L2 convergence of several
quantities associated to discrete trajectories to their continuous counterpart, see
(2.3.6) and (2.3.7).
In Section 2.4 we consider the case of convex functionals. Here convexity or, more
generally, λ-convexity has to be understood (see [84], [97]) in the following sense:

φ(γt) ≤ (1− t)φ(γ0) + tφ(γ1)− 1
2
λ t(1− t)d2(γ0, γ1) ∀t ∈ [0, 1] (9)

for any constant speed minimal geodesic γt : [0, 1] → S (but more general class
of interpolating curves could also be considered). We show that for λ-convex func-
tionals with λ ≥ 0 the local and global slopes coincide. Moreover, for any λ-convex
functional the local slope |∂φ| is a a strong upper gradient and it is lower semicon-
tinuous, therefore the results of the previous section apply and we obtain existence
of curves of maximal slope with respect to |∂φ| and the energy identity (8). As-
suming λ > 0 we prove some estimates which imply exponential convergence of
u(t) to the minimum point of the energy as t → +∞. At this level of generality
an open problem is the uniqueness of curves of maximal slope: this problem is
open even in the case when S is a Banach space. We are able to get uniqueness,
together with error estimates for the Euler scheme, only under stronger convexity
assumptions (see Chapter 4 and also Section 11.1.2 in Part II, where uniqueness
is obtained in the Wasserstein space using its differentiable structure). Finally,
we prove in Theorem 2.4.15 a metric counterpart of Brezis’ result [28, Theorem
3.2, page. 57], showing that the right metric derivative of t �→ u(t) and the right
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derivative of t �→ φ (u(t)) exist at any t > 0; in addition the equation

d

dt+
φ(u(t)) = −|∂φ|2(u(t)) = −|u′

+|2(t) = −|∂φ|(u(t)) |u′
+|(t)

holds in a pointwise sense in (0, +∞).
Chapter 3 is devoted to some proofs of the convergence and regularity the-

orems stated in the previous chapter. We study in particular the Moreau–Yosida
approximation φτ of φ (a natural object of study in connection with (6)), defined
by

φτ (u) := inf
{

φ(v) +
1
2τ

d2(v, u) : v ∈ S

}
u ∈ S , τ > 0. (10)

Notice that since v = u is admissible in the variational problem defining φτ , we
have the obvious inequality

1
2τ

d2(u, uτ ) ≤ φ(u)− φ(uτ )

for any minimizer uτ (here we assume that for τ > 0 sufficiently small the infimum
is attained). Following an interpolation argument due to De Giorgi this elementary
inequality can be improved (see Theorem 3.1.4), getting

d2(uτ , u)
2τ

+
∫ τ

0

d2(ur, u)
2r2

dr = φ(u)− φ(uτ ). (11)

Combining this identity with the slope estimate (see Lemma 3.1.3)

|∂φ|(uτ ) ≤ d(uτ , u)
τ

,

we obtain the sharper inequality

d2(uτ , u)
2τ

+
∫ τ

0

|∂φ|2(ur)
2

dr ≤ φ(u)− φ(uτ ).

If we interpret r �→ ur as a kind of “variational” interpolation between u and uτ ,
and if we apply this estimate repeatedly to all pairs (u, uτ ) = (Un−1

τ , Un
τ ) arising

in the Euler scheme, we obtain a discrete analogue of (5). This is the argument
underlying the basic convergence Theorem 2.3.1. Notice that this variational in-
terpolation does not coincide (being dependent on φ), even in a linear framework,
with the standard piecewise linear interpolation.

Chapter 4 addresses the general questions related to the well posedness of
curves of maximal slope, i.e. uniqueness, continuous dependence on the initial
datum, convergence of the approximation scheme and possibly optimal error es-
timates, asymptotic behavior. All these properties have been deeply studied for
l.s.c. convex functionals φ in Hilbert spaces, where it is possible to prove that
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the Euler scheme (6) converges (with an optimal rate depending on the regular-
ity of u0) for each choice of initial datum in the closure of the domain of φ and
generates a contraction semigroup which exhibits a regularizing effect and can be
characterized by a system of variational inequalities.

We already mentioned the lackness of a corresponding Banach space theory:
if one hopes to reproduce the Hilbertian result in a purely metric framework it is
natural to think that the so called “parallelogram rule”∥∥∥γ0 + γ1

2

∥∥∥2

+
∥∥∥γ0 − γ1

2

∥∥∥2

=
1
2
‖γ0‖2 +

1
2
‖γ1‖2, (12)

which provides a metric characterization of Hilbertian norms, should play a crucial
role.

It is well known that (12) is strictly related to the uniform modulus of
convexity of the norm: in fact, considering a general convex combination γt =
(1− t)γ0 + tγ1 instead of the middle point between γ0 and γ1, and evaluating the
distance d(γt, v) := ‖γt− v‖ from a generic point v instead of 0, we easily see that
(12) can be rephrased as

d(γt, v)2 = (1− t)d(γ0, v)2 + td(γ1, v)2 − t(1− t)d(γ0, γ1)2 ∀ t ∈ [0, 1]. (13)

It was one of the main contribution of U. Mayer [96] to show that in a general
geodesically complete metric space the 2-convexity inequality

d(γt, v)2 ≤ (1− t)d(γ0, v)2 + td(γ1, v)2 − t(1− t)d(γ0, γ1)2 ∀ t ∈ [0, 1]. (14)

(where now γt is a constant speed minimal geodesic connecting γ0 to γ1: cf. (9))
is a sufficient condition to prove a well posedness result by mimicking the cele-
brated Crandall-Ligget generation result for contraction semigroups associated to
m-accretive operators in Banach spaces.

For a Riemannian manifold (14) is equivalent to a global nonpositivity condi-
tion on the sectional curvature: Aleksandrov introduced condition (14) for general
metric spaces, which are now called NPC (Non Positively Curved) spaces.

Unfortunately, the L2-Wasserstein space, which provides one of the main
motivating example of the present theory, satisfies the opposite (generally strict)
inequality, which characterizes Positively Curved space.

Our main result consists in the possibility to choose more freely the family of
connecting curves, which do not have to be geodesics any more: we simply suppose
that for each triple of points γ0, γ1, v there exists a curve γt connecting γ0 to γ1

and satisfying (14) and (9); we shall see in the second Part of this book that this
considerably weaker condition is satisfied by various interesting examples in the
L2-Wasserstein space.
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Even if the Crandall-Ligget technique cannot be applied under these more
general assumptions, we are able to prove a completely analogous generation result
for a regularizing contraction semigroup, together with the optimal error estimate
(here λ = 0) at each point t of the discrete mesh

d2(u(t), Uτ (t)) ≤ τ
(
φ(u0)− φτ (u0)

)
≤ τ2

2
|∂φ|2(u0).

Part II

Chapter 5 contains some preliminary and basic facts about Measure Theory and
Probability in a general separable metric space X. In the first section we introduce
the narrow convergence and discuss its relation with tightness, lower semicontinu-
ity, and p-uniform integrability; a particular attention is devoted in Section 5.1.2
to the case when X is an Hilbert space and the strong or weak topologies are con-
sidered. In the second section we introduce the push-forward operator µ �→ r#µ
between measures and discuss its main properties. Section 5.3 is devoted to the
disintegration theorem for measures and to the related and classical concept of
measure-valued map. The relationships between convergence of maps and narrow
convergence of the associated plans, typical in the theory of Young measures (see
for instance [128, 129, 23, 123, 20]), are presented in Section 5.4.
Finally, the last section of the chapter contains a discussion on the area formula
for maps f : A ⊂ Rd → Rd under minimal regularity assumptions on f (in the
same spirit of [77]), so that the classical formula for the change of density

f#

(
ρL d

)
=

ρ

|det∇f | ◦ f−1|f(A)L
d

still makes sense. These results apply in particular to the classical case when f is
the gradient of a convex function (this fact was proved first by a different argument
in [97]). In the same section we introduce the classical concepts of approximate
continuity and approximate differentiability which will play an important role in
establishing the existence and the differentiability of optimal transport maps.

Chapter 6 is entirely devoted to the general results on optimal transportation
problems between probability measures µ, ν: in the first section they are studied
in a Polish/Radon space X with a cost function c : X2 → [0, +∞]. We consider
the strong formulation of the problem with transport maps due to Monge, see
(6.0.1), and its weak formulation with transport plans

min
{∫

X2
c(x, y) dγ : γ ∈ Γ(µ, ν)

}
(15)

due to Kantorovich. Here Γ(µ, ν) denotes the class of all γ ∈ P(X2) such that
π1

#γ = µ and π2
#γ = ν (πi : X2 → X, i = 1, 2 are the canonical projections) and

in the following we shall denote by Γo(µ, ν) the class of optimal plans for (15).
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In Section 6.1 we discuss the duality formula

min (15) = sup
{∫

X

ϕ dµ +
∫

X

ψ dν : ϕ(x) + ψ(y) ≤ c(x, y)
}

for the Kantorovich problem and the necessary and sufficient optimality conditions
for transport plans. These can be expressed in two basically equivalent ways (under
suitable a-priori estimates from above on the cost function): a transport plan γ is
optimal if and only if its support is c-monotone, i.e.

n∑
i=1

c(xi, yσ(i)) ≥
n∑

i=1

c(xi, yi) for any permutation σ of {1, . . . , n}

for any choice of (xi, yi) ∈ supp γ, 1 ≤ i ≤ n. Alternatively, a transport plan γ is
optimal if and only if there exist (ϕ, ψ) such that ϕ(x) + ψ(y) ≤ c(x, y) for any
(x, y) and

ϕ(x) + ψ(y) = c(x, y) γ-a.e. in X ×X. (16)

The pair (ϕ, ψ) can be built in a canonical way, independent of the optimal plan
γ, looking for maximizing pairs in the duality formula (6.1.1). In the presentation
of these facts we have been following mostly [14], [71], [112], [126]; see also [61].
Section 6.2 is devoted to the problem of the existence of optimal transport maps
tν
µ, under the assumption that X is an Hilbert space and the initial measure

µ is absolutely continuous (in the infinite dimensional case we assume that the
measure µ vanishes on all Gaussian null sets); we consider mostly the case when
the cost function is the p-power, with p > 1, of the distance. We include also (see
Theorem 6.2.10) an existence result in the case when X is a separable Hilbert space
(compare with the results [68, 69, 89] in Wiener spaces, where the cost function
c(x, y) is finite only when x−y is in the Cameron-Martin space). The proofs follow
the by now standard approach of differentiating with respect to x the relation (16)
to obtain that for µ-a.e. x there is a unique y such that (16) holds (the relation
x �→ y then gives the desired optimal transport map y = tν

µ(x)).
The Wasserstein distances and their geometric properties are the main sub-

jects of Chapter 7. In Section 7.1 we define the p-Wasserstein distance and we
recall its basic properties, emphasizing the fact that the space Pp(X) endowed
with this distance is complete and separable but not locally compact when the
underlying space X is not compact.
The second section of Chapter 7 deals with the characterization of constant speed
geodesics in Pp(X) (here X is an Hilbert space), parametrized on the unit interval
[0, 1]. Given the endpoints µ0, µ1 of the geodesic, we show that there exists an
optimal plan γ between µ0 and µ1 such that

µt =
(
tπ2 + (1− t)π1

)
#

γ ∀t ∈ [0, 1]. (17)

Conversely, given any optimal plan γ, the formula above defines a constant speed
geodesic. In the case when plans are induced by transport maps, (17) reduces to

µt =
(
t tµ1

µ0
+ (1− t)i

)
#

µ0 ∀t ∈ [0, 1]. (18)
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We show also in Lemma 7.2.1 that there is a unique transport plan joining a point
in the interior of a geodesic to one of the endpoints; in addition this transport
plan is induced by a transport map (this does not require any absolute continuity
assumption on the endpoints and will provide a useful technical tool to approxi-
mate plans with transports).
In Section 7.3 we focus our attention on the L2-Wasserstein distance: we will prove
a semi-concavity inequality for the squared distance function ψ(t) := 1

2W 2
2 (µt, µ)

from a fixed measure µ along a constant speed minimal geodesic µt, t ∈ [0, 1]

W 2
2 (µt, µ) ≥ tW 2

2 (µ1, µ) + (1− t)W 2
2 (µ0, µ)− t(1− t)W 2

2 (µ0, µ1) (19)

and we discuss its geometric counterpart; we also provide a precise formula to
evaluate the time derivative of ψ and we show trough an explicit counterexample
that ψ does not satisfy any λ-convexity property, for any λ ∈ R. Conversely, (19)
shows that ψ is semi-concave and that P2(X) is a Positively curved (PC) metric
space.

Chapter 8 plays an important role in the theory developed in this book. In
the first section we review some classical results about the continuity/transport
equation

d

dt
µt +∇ · (vtµt) = 0 in X × (a, b) (20)

in a finite dimensional euclidean space X and the representation formula for its
solution by the Characteristics method, when the velocity vector field vt satisfies
a p-summability property with respect to the measures µt and a local Lipschitz
condition. When this last space-regularity properties does not hold, one can still
recover a probabilistic representation result, through Young measures in the space
of X-valued time dependent curves: this approach is presented in Section 8.2.
The main result of this chapter, presented in Section 8.3, is that the class of solu-
tions of the transport equation (20) (in the infinite dimensional case the equation
can still be interpreted in a weak sense using cylindrical test functions) coincides
with the class of absolutely continuous curves µt with values in the Wasserstein
space. Specifically, given an absolutely continuous curve µt one can always find
a “velocity field” vt ∈ Lp(µt; X) such that (20) holds; in addition, by construc-
tion we get that the norm of the velocity field can be estimated by the metric
derivative:

‖vt‖Lp(µt) ≤ |µ′|(t) for L 1-a.e. t ∈ (a, b). (21)

Conversely, any solution (µt, vt) of (20) with
∫ b

a
‖vt‖Lp(µt) dt < +∞ induces an

absolutely continuous curve µt, whose metric derivative can be estimated by
‖vt‖Lp(µt) for L 1-a.e. t ∈ (a, b). As a consequence of (8.2.1) we see that among
all velocity fields vt which produce the same flow µt, there is an optimal one with
smallest Lp norm, equal to the metric derivative of µt; we view this optimal field
as the “tangent” vector field to the curve µt. To make this statement more precise,
let us consider for instance the case when p = 2 and X is finite dimensional: in this
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case the tangent vector field is characterized, among all possible velocity fields, by
the property

vt ∈ {∇ϕ : ϕ ∈ C∞
c (X)}L2(µt;X)

for L 1-a.e. t ∈ (a, b). (22)

In general one has to consider a duality map jq between Lq and Lp (since gradi-
ents are thought as covectors, and therefore as elements of Lq) and gradients of
cylindrical test functions if X is infinite dimensional.
In the next Section 8.4 we investigate the properties of the above defined tangent
vector. A first consequence of the characterization of absolutely continuous curves
is a result, given in Proposition 8.4.6, concerning the infinitesimal behaviour of
the Wasserstein distance along absolutely continuous curves µt: given the tangent
vector field vt to the curve, we show that

lim
h→0

Wp(µt+h, (i + hvt)#µt)
|h| = 0 for L 1-a.e. t ∈ (a, b). (23)

Moreover the optimal transport plans between µt and µt+h, rescaled in a suit-
able way, converge to the optimal transport plan (i× vt)#µt associated to vt (see
(8.4.6)). This Proposition shows that the infinitesimal behaviour of the Wasser-
stein distance is governed by transport maps even in the situations when globally
optimal transport maps fail to exist (recall that the existence of optimal transport
maps requires assumptions on the initial measure µ).
Another interesting result is a formula for the derivative of the distance from a
fixed measure along any absolutely continuous curve µt in Pp(X): one can show
for any p ∈ (1,∞) that

d

dt
W p

p (µt, µ̄) = p

∫
X2
〈vt(x1), x1 − x2〉|x1 − x2|p−2 dγt(x1, x2) (24)

for any optimal plan γt between µt and µ̄; here vt is any admissible velocity
vector field associated to µt through the continuity equation (20). This “generic”
differentiability along absolutely continuous curves is sufficient for our purposes,
see for instance Theorem 11.1.4 where uniqueness of gradient flows is proved.
Another consequence of the characterization of absolutely continuous curves in
P2(X) is the variational representation formula

W 2
2 (µ0, µ1) = min

{∫ 1

0

‖vt‖2L2(µt)
dt :

d

dt
µt +∇ · (vtµt) = 0

}
. (25)

Again, these formulas still hold with the necessary adaptations if either p ∈
(1, +∞) (in this case we have a kind of Finsler metric) or X is infinite dimen-
sional. We also show that optimal transport maps belong to TanµPp(X) under
quite general conditions.
The characterization (22) of velocity vectors and the additional properties we
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listed above, strongly suggest to consider the following “regular” tangent bundle
to P2(X)

TanµP2(X) := {∇ϕ : ϕ ∈ C∞
c (X)}L2(µ;X) ∀µ ∈ P2(X), (26)

endowed with the natural L2 metric. Up to a L 1-negligible set in (a, b), it contains
and characterizes all the tangent velocity vectors to absolutely continuous curves.
In this way we recover in a general framework the Riemannian interpretation of the
Wasserstein distance developed by Otto in [107] (see also [106], [83] and also [38]):
indeed, the right hand side in (25) is nothing but the minimal length, computed
with respect to the metric tensor, of all absolutely continuous curves connecting
µ0 to µ1. This formula was independently discovered also in [21], and used for
numerical purposes. In the original paper [107], instead, (25) is derived using
formally the concept of Riemannian submersion and the family of maps φ �→ φ#µ
(indexed by µ) from Arnold’s space of diffeomorphisms into the Wasserstein space.
In the last Section 8.5 we compare the “regular” tangent space 26 with the tangent
cone obtained by taking the closure in Lp(µ; X) of all the optimal transport maps
and we will prove the remarkable result that these two notions coincide.

In Chapter 9 we study the convexity properties of functionals φ : Pp(X) →
(−∞, +∞]. Here “convexity” refers to convexity along geodesics (as in [97], [107],
where these properties have been first studied), whose characterization has been
given in the previous Section 7.2. More generally, as in the metric part of the
book, we consider λ-convex functionals as well, and in Section 9.2 we investigate
some more general convexity properties in P2(X). The motivation comes from the
fact, discussed in Part I, that error estimates for the implicit Euler approximation
of gradient flows seem to require joint convexity properties of the functional and
of the squared distance function. As shown by a formal computation in [107],
the function W 2

2 (·, µ) is not 1-convex along classical geodesics µt and we have
actually the reverse inequality (19) (cf. Corollary 7.3.2). It is then natural to look
for different kind of interpolating curves, along which the distance behaves nicely,
and for functionals which are convex along this new class of curves.
To this aim, given an absolutely continuous measure µ, we consider the family of
“generalized geodesics”

µt :=
(
(1− t)tµ0

µ + t tµ1
µ

)
#

µ t ∈ [0, 1],

among all possible optimal transport maps tµ0
µ , tµ1

µ . As usual we get rid of the
absolute continuity assumption on µ by considering the family of 3-plans{

γ ∈ P(X3) : (π1, π2)#γ ∈ Γo(µ, µ0), (π1, π3)#γ ∈ Γo(µ, µ1)
}

,

and the corresponding family of generalized geodesics:

µt :=
(
(1− t)π2 + tπ3

)
#

γ t ∈ [0, 1].
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We prove in Lemma 9.2.1 the key fact that W 2
2 (·, µ) is 1-convex along these gen-

eralized geodesics. Thanks to the theory developed in Part I, the convexity of
W 2

2 (·, µ) along the generalized geodesics leads to error estimates for the Euler
scheme, provided the energy functional φ is λ-convex, for some λ ∈ R, along any
curve in this family. It turns out that almost all the known examples of convex
functionals along geodesics, which we study in some detail in Section 9.3, sat-
isfy this stronger convexity property; following a terminology introduced by C.
Villani, we will consider functionals which are the sum of three different kinds of
contribution: the potential and the interaction energy, induced by convex functions
V, W : X → (−∞, +∞]

V(µ) =
∫

X

V (x) dµ(x), W(µ) =
∫

X2
W (x− y) dµ× µ(x),

and finally the internal energy

F(µ) :=
∫

Rd

F
( dµ

dL d
(x)

)
dL d(x), (27)

F : [0, +∞) → R being the energy density, which should satisfy an even stronger
condition than convexity.
The last Section 9.4 discusses the link between the geodesic convexity of the Rel-
ative Entropy functional (without any restriction on the dimension of the space;
we also consider a more general class of relative integral functionals, obtained
replacing L d in (27) by a general probability measure γ in X)

H(µ|γ) :=

⎧⎨⎩
∫

X

dµ

dγ
log

(
dµ

dγ

)
dγ if µ � γ,

+∞ otherwise,
(28)

and the “log” concavity of the reference measure γ, a concept which is strictly
related to various powerful functional analytic inequalities. The main result here
states that H(·|γ) is convex along geodesics in Pp(X) (here the exponent p can
be freely chosen, and also generalized geodesics in P2(X) can be considered) if
and only if γ is “log” concave, i.e. for every couple of open sets A, B ⊂ X we have

log γ((1− t)A + tB) ≥ (1− t) log γ(A) + t log γ(B) t ∈ [0, 1].

When X = Rd and γ � L d, this condition is equivalent to the representation
γ = e−V ·L d for some l.s.c. convex potential V : Rd → (−∞, +∞] whose domain
has not empty interior in Rd.

One of the goal of the last two chapters is to establish a theory sufficiently
powerful to reproduce in the Wasserstein framework the nice results valid for
convex functionals and their gradient flows in Hilbert spaces. In this respect an
essential ingredient is the concept of (Fréchet) subdifferential of a l.s.c. functional
φ : Pp(X) → (−∞, +∞] (see also [37, 38]), which is introduced and systematically
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studied in Chapter 10.
In order to motivate the relevant definitions and to suggest a possible guideline for
the development of the theory, we start by recalling five main properties satisfied
by the Fréchet subdifferential in Hilbert spaces. In Section 10.1 we prove that
a natural transposition of the same definitions in the Wasserstein space P2(X),
when only regular measures belong to the proper domain of φ (or even of its metric
slope |∂φ|), is possible and they enjoy completely analogous properties as in the
flat case. Since this exposition is easier to follow than the one of Section 10.3 for
arbitrary measures, here we briefly sketch the main points.
First of all, the subdifferential ∂φ(µ) contains all the vectors ξ ∈ L2(µ; X) such
that

φ(ν)− φ(µ) ≥
∫

X

〈ξ, tν
µ − i〉 dµ + o (W2(ν, µ)) . (29)

If µ is a minimizer of φ, then 0 ∈ ∂φ(µ); more generally, if µτ ∈ P2(X) minimizes

ν �→ 1
2τ

W 2
2 (ν, µ) + φ(ν),

then the corresponding “Euler” equation reads

tµ
µτ
− i

τ
∈ ∂φ(µτ ).

As in the linear case, when φ is convex along geodesics, the subdifferential (29)
can also be characterized by the global system of variational inequalities

φ(ν)− φ(µ) ≥
∫

X

〈ξ, tν
µ − i〉 dµ ∀ ν ∈ P2(X), (30)

and it is “monotone”, since

ξi ∈ ∂φ(µi), i = 1, 2 =⇒
∫

X

〈ξ2(t
µ2
µ1

(x))− ξ1(x), tµ2
µ1

(x)− x〉 dµ1(x) ≥ 0;

the fact that ξ2 is evaluated on tµ2
µ1

in the above formula should not be surprising,
since subdifferentials of φ in different measures µ1, µ2 belong to different vector
(L2(µi; X)) spaces (like in Riemannian geometry), so that they can be added or
subtracted only after a composition with a suitable transport map.
Closure properties like

µh → µ in P2(X), ξh ⇀ ξ, ξh ∈ ∂φ(µh) =⇒ ξ ∈ ∂φ(µ), (31)

(here one should intend the weak convergence of the vector fields ξh, which are
defined in the varying spaces L2(µh; X), according to the notion we introduced in
Section 5.4) play a crucial role: they hold for convex functionals and define the
class of “regular” functionals. In this class the minimal norm of the subdifferential
coincides with the metric slope of the functional

|∂φ|(µ) = min
{
‖ξ‖L2(µ;X) : ξ ∈ ∂φ(µ)

}
,
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and we can prove the chain rule

d

dt
φ(µt) =

∫
X

〈ξ, vt〉 dµt ∀ ξ ∈ ∂φ(µt),

for L 1-a.e. (approximate) differentiability point of t �→ φ(µt) along an absolutely
continuous curve µt, whose metric velocity is vt.
Section 10.2 is entirely devoted to study the (sub- and super-) differentiability
properties of the p-Wasserstein distances: here the assumption that the measures
are absolutely continuous w.r.t. the Lebesgue one is too restrictive, and our efforts
are mainly devoted to circumvent the difficulty that optimal transport maps do
not exist in general. Thus we should deal with plans instead of maps and the
results we obtain provide the right way to introduce the concept of subdifferential
in full generality, i.e. without restriction to absolutely continuous measures, in the
next Section 10.3.
To this aim, we need first to define, for given γ ∈ P(X2) and µ := π1

#γ, the class
of 3-plans

Γo(γ, ν) :=
{
γ ∈ P(X3) : (π1, π2)#µ = γ, (π1, π3)#µ ∈ Γo(µ, ν)

}
.

Notice that in the particular case when γ = (i× ξ)#µ is induced by a transport
map and µ is absolutely continuous, then Γo(γ, ν) contains only one element

Γo(γ, ν) =
{(

i× ξ × tν
µ

)
#

µ
}

(32)

Thus we say that γ ∈ P(X2) is a general plan subdifferential in ∂φ(µ) if its
first marginal is µ, its second marginal has finite q-moment, and the asymptotic
inequality (29) can be rephrased as

φ(ν)− φ(µ)−
∫

X3
〈x2, x3 − x1〉 dµ(x1, x2, x3) ≥ o

(
W2(µ, ν)

)
, (33)

for some 3-plan µ (depending on ν) in Γo(γ, ν).
When φ is convex (a similar characterization also holds for λ-convexity) along
geodesics, this asymptotic property can be reformulated by means of a system of
variational inequalities, analogous to (30): γ ∈ ∂φ(µ) if and only if

∀ ν ∈ Pp(X) ∃µ ∈ Γo(γ, ν) : φ(ν) ≥ φ(µ) +
∫

X3
〈x2, x3 − x1〉 dµ. (34)

If condition (32) holds then conditions (33) and (34) reduce of course to (29) and
(30) respectively.
This general concept of subdifferential, whose elements are transport plans rather
than tangent vectors (or maps) is useful to establish the typical identities of Convex
Analysis: we extend to this more general situation all the main properties we
discussed in the linear case and we also show that in the λ-convex case tools of
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Γ-convergence theory fit quite well in our approach, by providing flexible closure
and approximation results for subdifferentials.
In particular, we prove in Theorem 10.3.10 that, as in the classical Hilbert setting,
the minimal norm of the subdifferential (in the present case, the q-moment of its
second marginal) coincides with the descending slope:

min
{∫

X2
|x2|q dγ : γ ∈ ∂φ(µ)

}
= |∂φ|q(µ), (35)

and the above minimum is assumed by a unique plan ∂◦φ(µ), which provides the
so called “minimal selection” in ∂φ(µ) and enjoys many distinguished properties
among all the subdifferentials in ∂φ(µ). Notice that this result is more difficult
than the analogous property in linear spaces, since the q-moment of (the second
marginal of) a plan is linear map, and therefore it is not strictly convex. Besides
its intrinsic interest, this result provides a “bridge” between De Giorgi’s metric
concept of gradient flow, based on the descending slope, and the concepts of gra-
dient flow which use the differentiable structure (we come to this point later on).
The last Section 10.4 collects many examples of subdifferentials for the various
functionals considered in Chapter 9; among the others, here we recall Example
10.4.6, where the geometric investigations of Chapter 7 yield the precise expres-
sion for the subdifferential of the opposite 2-Wasserstein distance, Example 10.4.8,
where we show that even in infinite dimensional Hilbert spaces the Relative Fisher
Information coincides with the squared slope of the Relative Entropy H(·|γ), when
γ is log-concave, and 10.4.7 where the subdifferential of a general functional re-
sulting from the sum of the potential, interaction, and internal energies

φ(µ) =
∫

Rd

V (x) dµ(x) +
∫

R2d

W (x− y) dµ× µ(x, y) +
∫

Rd

F (dµ/dL d) dx,

is characterized: under quite general assumptions on V, W, F (which allow for
potentials with arbitrary growth and also assuming the value +∞) we will show
that the minimal selection ∂◦φ(µ) is in fact induced by the transport map w =
∂◦φ(µ) ∈ Lq(µ; Rd) defined by

ρw = ∇LF (ρ) + ρ∇v + ρ(∇W ∗ ρ), µ = ρ ·L d, LF (ρ) = ρF ′(ρ)− F (ρ).

In the last Chapter 11 we define gradient flows in Pp(X), X being a separable
Hilbert space, and we combine the main points presented in this book to study
these flows under many different points of view.
For the sake of simplicity, in this introduction we consider only the more relevant
case p = 2: a locally absolutely continuous curve µt : (0, +∞) → P2(X), with
|µ′| ∈ L2

loc(0, +∞) is said to be a gradient flow relative to the functional φ :
P2(X) → (−∞, +∞] if its velocity vector vt satisfies

−vt ∈ ∂φ(µt), for L 1-a.e. t ∈ (0, +∞). (36)
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For functionals φ satisfying the regularity property (31), in Theorem 11.1.3 we
show that this “differential” concept of gradient flow is equivalent to the “metric”
concept of curve of maximal slope introduced in Part I, see in particular Section 1.3
in Chapter 1. The equivalence passes through the pointwise identity (35).
When the functional is λ-convex along geodesics, in Theorem 11.1.4 we show that
gradient flows are uniquely determined by their initial condition

lim
t↓0

µt = µ0.

The proof of this fact depends on the differentiability properties of the squared
Wasserstein distance studied in Section 8.3. When the measures µt are absolutely
continuous and the functional is λ-convex along geodesics, this condition reduces
to the system ⎧⎪⎪⎪⎨⎪⎪⎪⎩

µ̇t +∇ · (vtµt) = 0 in X × (0, +∞),

φ(ν) ≥ φ(µt)−
∫

X

〈vt, t
ν
µt
− i〉 dµt + λW 2

2 (ν, µt)

∀ν ∈ P2(X), for L 1-a.e. t > 0.

(37)

Section 11.1.3 is devoted to a general convergence result (up to extraction of
a suitable subsequence) of the Minimizing Movement scheme, following a direct
approach, which is intrinsically limited to the case when p = 2 and the measures
µt are absolutely continuous. Apart from these restrictions, the functional φ could
be quite general, so that only a relaxed version of (36) can be obtained in the
limit.
Existence of gradient flows is obtained in Theorem 11.2.1 for initial data µ0 ∈ D(φ)
and l.s.c. functionals which are λ-convex along generalized geodesics in P2(X):
this strong result is one of the main applications of the abstract theory developed
in Chapter 4 to the Wasserstein framework and, besides optimal error estimates for
the convergence of the Minimizing Movement scheme, it provides many additional
informations on the regularity the semigroup properties, the asymptotic behaviour
as t → +∞, the pointwise differential properties, the approximations, and the
stability w.r.t. perturbations of the functional of the gradient flows. Applications
are then given in Section 11.2.1 to various evolutionary PDE’s in finite and infinite
dimensions, modeled on the examples discussed in Section 10.4.
In Section 11.3 we consider the wider class of regular functionals in Pp(X) even
for p �= 2 and we prove existence of gradient flows when µ0 belongs to the domain
of φ and suitable local compactness properties of the sublevel of φ are satisfied.
This approach uses basically the compactness/energy arguments of the theory
developed in Chapter 2 and the equivalence between gradient flows and curves of
maximal slope.

The Appendix collects some auxiliary results: the first two sections are de-
voted to lower semicontinuity and convergence results for integral functionals on
product spaces, when the integrand satisfies only a normal or Carathéodory con-
dition, and one of the marginals of the involved sequence of measures is fixed.
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In the last two sections we follow the main ideas of the theory of Positively
curved (PC) metric space and we are able to identify the geometric tangent cone
TanµP2(X) to P2(X) at a measure µ. In a general metric space this tangent
space is obtained by taking the completion in a suitable distance of the abstract
set of all the curve which are minimal constant speed geodesics at least in a small
neighborhood of their starting point µ.
In our case, by identifying these geodesics with suitable transport plans, we can
give an explicit characterization of the tangent space and we will see that, if
µ ∈ Pr

2 (X), it coincides with the closure in L2(µ; X) of the gradients of smooth
functions and with the closed cone generated by all optimal transport maps, thus
with the tangent space (10.4.1) we introduced in Section 8.4.
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Notation

|v′|(t) Metric derivative of v : (a, b) → S , see Theorem 1.1.2
ACp(a, b; S ) Absolutely continuous v : (a, b) → S with |v′| ∈ Lp(a, b)
Br(x) Open ball of radius r centered at x in a metric space
D(φ) Domain of the functional φ, see (1.2.1)
|∂φ|(v), lφ(v) Local and global slopes of φ, see Definition 1.2.4
Lip(φ, A) Lipschitz constant of the function φ in the set A
∂φ(v) Fréchet subdifferential of φ in Banach (1.4.7), Hilbert (10.0.1),

or Wasserstein spaces, see Definition 10.1.1 and (10.3.12)
∂◦φ(µ) Minimal selection map in the subdifferential, see Section 1.4

and (10.1.14)
|∂−φ|(v) Relaxed slope of φ, see (2.3.1)
Φ(τ, u; v) Quadratic perturbation of φ by d2(u, ·)/2τ , see (2.0.3b)
Jτ [u] Resolvent operator, see (2.0.5)
Uτ (t) Piecewise constant interpolation of Un

τ , see (2.0.7)
MM(Φ; u0) Minimizing movement of φ, see Definition 2.0.6
GMM(Φ; u0) Generalized minimizing movement of φ, see Definition 2.0.6
φτ (u) Moreau–Yosida approximation of φ, see Definition 3.1.1
Ũτ (t) De Giorgi’s interpolation of Un

τ , see (3.2.1)
B(X) Borel sets in a separable metric space X
C0

b (X) Space of continuous and bounded real functions defined on X
C∞

c (Rd) Space of smooth real functions with compact support in Rd

P(X) Probability measures in a separable metric space X
Pp(X) Probability measures with finite p-th moment, see (5.1.22)
Ppq(X ×X) Probability measures with finite p, q-th moments, see (10.3.2)
Lp(µ; X) Lp space of µ-measurable X-valued maps, see (5.4.3)
X� The Hilbert space X endowed with a weaker (normed) topolo-

gy, see Section 5.1.2
f̃ , ∇̃f Approximate limit and differential of a function f , see

Definition 5.5.1
supp µ Support of µ, see (5.0.1)
span C Linear envelope generated by a subset C of a vector space
r#µ Push-forward of µ through r, see (5.2.1)
πi, πi,j Projection operators on a product space X, see (5.2.9)
Γ(µ1, µ2) 2-plans with given marginals µ1, µ2

Γo(µ1, µ2) Optimal 2-plans with given marginals µ1, µ2

i Identity map
tν
µ Optimal transport map between µ and ν, see (7.1.4)

Wp(µ, ν) p-th Wasserstein distance between µ and ν
Wµ(µ, ν) Pseudo-Wasserstein distance induced by µ, see (7.3.2)
Wp,µ(µ, ν) Pseudo pth-Wasserstein distance induced µ, see (10.2.9)
πi→j

t , πi→j,k
t Interpolated projections, see (7.2.2)

jp Duality map between Lp and Lp′
, see (8.3.1)
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Πd(X) d-dimensional projections on a Hilbert space X, see
Definition 5.1.11

Cyl(X) Cylindrical test functions on a Hilbert space X, see
Definition 5.1.11

γ̄(x) Barycentric projection of a plan γ in P(X ×X), see (5.4.9)
Tanµt

Pp(X) Tangent bundle to Pp(X), see Definition 8.4.1
Γo(µ1 2, µ3) 3-plans γ such that π1,3

# γ ∈ Γo(π1
#µ1 2, µ3)

∂φ(µ) Extended Fréchet subdifferential of φ at µ, see
Definitions 10.3.1

∂◦φ(µ) Minimal selection plan in the subdifferential, see
Theorem 10.3.11
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Chapter 1

Curves and Gradients in Metric
Spaces

As we briefly discussed in the introduction, the notion of gradient flows in a metric
space S relies on two elementary but basic concepts: the metric derivative of
an absolutely continuous curve with values in S and the upper gradients of a
functional defined in S . The related definitions are presented in the next two
sections (a more detailed treatment of this topic can be found for instance in
[15]); the last one deals with curves of maximal slope.
When S is a Banach space and its distance is induced by the norm, one can
expect that curves of maximal slope could also be characterized as solutions of
(doubly, if S is not Hilbertian) nonlinear (sub)differential inclusions: this aspect
is discussed in the last part of this chapter.
Throughout this chapter (and in the following ones of this first part)

(S , d) will be a given complete metric space; (1.0.1)

we will denote by (a, b) a generic open (possibly unbounded) interval of R.

1.1 Absolutely continuous curves and metric derivative

Definition 1.1.1 (Absolutely continuous curves). Let (S , d) be a complete metric
space and let v : (a, b) → S be a curve; we say that v belongs to ACp(a, b; S ), for
p ∈ [1, +∞], if there exists m ∈ Lp(a, b) such that

d(v(s), v(t)) ≤
∫ t

s

m(r) dr ∀ a < s ≤ t < b. (1.1.1)

In the case p = 1 we are dealing with absolutely continuous curves and we will
denote the corresponding space simply with AC(a, b; S ).
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We recall also that a map ϕ : (a, b) → R is said to have finite pointwise
variation if

sup

{
n−1∑
i=1

|ϕ(ti+1)− ϕ(ti)| : a < t1 < · · · < tn < b

}
< +∞. (1.1.2)

It is well known that any bounded monotone function has finite pointwise varia-
tion and that any function with finite pointwise variation can be written as the
difference of two bounded monotone functions.

Any curve in ACp(a, b; S ) is uniformly continuous; if a > −∞ (resp. b <
+∞) we will denote by v(a+) (resp. v(b−)) the right (resp. left) limit of v, which
exists since S is complete. The above limit exist even in the case a = −∞ (resp.
b = +∞) if v ∈ AC(a, b; S ). Among all the possible choices of m in (1.1.1) there
exists a minimal one, which is provided by the following theorem (see [7, 8, 15]).

Theorem 1.1.2 (Metric derivative). Let p ∈ [1, +∞]. Then for any curve v in
ACp(a, b; S ) the limit

|v′|(t) := lim
s→t

d(v(s), v(t))
|s− t| (1.1.3)

exists for L 1-a.e. t ∈ (a, b). Moreover the function t �→ |v′|(t) belongs to Lp(a, b),
it is an admissible integrand for the right hand side of (1.1.1), and it is minimal
in the following sense:

|v′|(t) ≤ m(t) for L 1-a.e. t ∈ (a, b),
for each function m satisfying (1.1.1).

(1.1.4)

Proof. Let (yn) ⊂ S be dense in v((a, b)) and let dn(t) := d(yn, v(t)). Since all
functions dn are absolutely continuous in (a, b) the function

d(t) := sup
n∈N

|d′n(t)|

is well defined L 1-a.e. in (a, b). Let t ∈ (a, b) be a point where all functions dn are
differentiable and notice that

lim inf
s→t

d(v(s), v(t))
|s− t| ≥ sup

n∈N

lim inf
s→t

|dn(s)− dn(t)|
|s− t| = d(t).

This inequality together with (1.1.1) shows that d ≤ m L 1-a.e., therefore d ∈
Lp(a, b). On the other hand the definition of d gives

d(v(s), v(t)) = sup
n∈N

|dn(s)− dn(t)| ≤
∫ t

s

d(r) dr ∀s, t ∈ (a, b), s ≤ t,

and therefore
lim sup

s→t

d(v(s), v(t))
|s− t| ≤ d(t)

at any Lebesgue point t of d. �
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In the next remark we deal with the case when the target space is a dual
Banach space, see for instance [12].

Remark 1.1.3 (Derivative in Banach spaces). Suppose that S = B is a reflex-
ive Banach space (respectively: a dual Banach space): then a curve v belongs to
ACp(a, b; S ) if and only if it is differentiable (resp. weakly∗-differentiable) at L 1-
a.e. point t ∈ (a, b), its derivative v′ belongs to Lp(a, b; B) (resp. to Lp

w∗(a, b; B))
and

v(t)− v(s) =
∫ t

s

v′(r) dr ∀ a < s ≤ t < b. (1.1.5)

In this case,
‖v′(t)‖B = |v′|(t) L 1-a.e. in (a, b). (1.1.6)

Lemma 1.1.4 (Lipschitz and arc-length reparametrizations). Let v be a curve in
AC(a, b; S ) with length L :=

∫ b

a
|v′|(t) dt.

(a) For every ε > 0 there exists a strictly increasing absolutely continuous map

sε : (a, b) → (0, Lε) with sε(a+) = 0, sε(b−) = Lε := L + ε(b− a), (1.1.7)

and a Lipschitz curve v̂ε : (0, Lε) → S such that

v = v̂ε ◦ sε, |v̂′ε| ◦ sε =
|v′|

ε + |v′| ∈ L∞(a, b). (1.1.8)

The map sε admits a Lipschitz continuous inverse tε : (0, Lε) → (a, b) with Lips-
chitz constant less than ε−1, and v̂ε = v ◦ tε.
(b) There exists an increasing absolutely continuous map

s : (a, b) → [0, L] with s(a+) = 0, s(b−) = L, (1.1.9)

and a Lipschitz curve v̂ : [0, L] → S such that

v = v̂ ◦ s, |v̂′| = 1 L 1-a.e. in [0, L]. (1.1.10)

Proof. Let us first consider the case (a) with ε > 0; we simply define

sε(t) :=
∫ t

a

(
ε + |v′|(θ)

)
dθ, t ∈ (a, b); (1.1.11)

sε is strictly increasing with s′ε ≥ ε, sε

(
(a, b)

)
= (0, Lε), its inverse map tε :

(0, Lε) → (a, b) satisfies a Lipschitz condition with constant ≤ ε−1, and

t′ε ◦ sε =
1

ε + |v′| L 1-a.e. in (a, b).

Setting v̂ε := v ◦ tε, for every choice of ti = tε(si) with 0 < s1 < s2 < Lε we have

d(v̂ε(s1), v̂ε(s2)) = d(v(t1), v(t2)) ≤
∫ t2

t1

|v′|(t) dt

≤ sε(t2)− sε(t1)− ε(t2 − t1) = s2 − s1 − ε(t2 − t1),
(1.1.12)


