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Mode d'emploi de ce traité 
NOUVELLE ÉDITION 

1. Le traité prend les mathématiques à leur début, et donne des démonstrations 
complètes. Sa lecture ne suppose donc, en principe, aucune connaissance mathéma- 
tique particulière, mais seulement une certaine habitude du raisonnement mathéma- 
tique et un certain pouvoir d'abstraction. Néanmoins, le traité est destiné plus parti- 
culièrement à des lecteurs possédant au moins'une bonne connaissance des matières 
enseignées dans la première ou les deux premières années de l'université. 

2. Le mode d'exposition suivi est axiomatique et procède le plus souvent du 
général au particulier. Les nécessités de la démonstration exigent que les chapitres 
se suivent, en principe, dans un ordre logique rigoureusement fixé. L'utilité de cer- 
taines considérations n'apparaîtra donc au lecteur qu'à la lecture de chapitres 
ultérieurs, à moins qu'il ne possède déjà des connaissances assez étendues. 

3. Le traité est divisé en Livres et chaque Livre en chapitres. Les Livres actuelle- 
ment publiés, en totalité ou en partie, sont les suivants : 

Théorie des Ensembles désigné par E 
Algèbre - A 
Topologie générale - TG 
Fonctions d'une variable réelle - FVR 
Espaces vectoriels topologiques - EVT 
Intégration - INT 
Algèbre commutative - AC 
Variétés différentielles et analytiques - VAR 
Groupes et algèbres de Lie - LIE 
Théories spectrales - TS 

Dans les six premiers Livres (pour l'ordre indiqué ci-dessus), chaque énoncé ne 
fait appel qu'aux définitions et résultats exposés précédemment dans le chapitre 
en cours ou dans les chapitres antérieurs dans l'ordre suivant : E ;  A, chapitres 1 



à III ; TG, chapitres 1 à III ; A, chapitres IV et suivants ; TG, chapitres IV et suivants ; 
FVR ; EVT ; INT. A partir du septième Livre, le lecteur trouvera éventuellement, 
au début de chaque Livre -ou chapitre, l'indication précise des autres Livres bu 
chapitres utilisés (les six premiers Livres étant toujours supposés connus). 

4. Cependant, quelques passages font exception aux règles précédentes. Ils sont 
placés entre deux astérisques : * . . . ,. Dans certains cas, il s'agit seulement de faci- 
liter la compréhension du texte par des exemples qui se réfèrent à des faits que le 
lecteur peut déjà connaître par ailleuk Parfois aussi, on utilise, non seulement 
les résultats supposés connus dans tout le chapitre en cours, mais des résultats 
démontrés ailleurs dans le traité. Ces passages seront employés librement dans les 
parties qui supposent connus les chapitres où ces passages sont insérés et les cha- 
pitres auxquels ces passages font appel. Le lecteur pourra, nous l'espérons, vérifier 
l'absence de tout cercle vicieux. 

5. A certains Livres (soit publiés, soit en préparation) sont annexés des fascicules 
de résultats. Ces fascicules contiennent l'essentiel des définitions et des résultats du 
Livre, mais aucune démonstration. 

6. L'armature logique de chaque chapitre est constituée par les définitions, les 
axiomes et les théorèmes de ce chapitre ; c'est là ce qu'il est principalement nécessaire 
de retenir en vue de ce qui doit suivre. Les résultats moins importants, ou qui peuvent 
être facilement retrouvés à partir des théorèmes, figurent sous le nom de a proposi- 
tions D, (( lemmes D, « corollaires D, « remarques D, etc. ; ceux qui peuvent être omis 
en première lecture sont imprimés en petits caractères. Sous le nom de (( scholie », 
on trouvera quelquefois un commentaire d'un théorème particulièrement important. 

Pour éviter des répétitions fastidieuses, on convient parfois d'introduire certaines 
notations ou certaines abréviations qui ne sont valables qu'à l'intérieur d'un seul 
chapitre ou d'un seul paragraphe (par exemple, dans un chapitre où tous les anneaux 
considérés sont commutatifs, on peut convenir que le mot « anneau » signifie tou- 
jours « anneau commutatif D). De telles conventions sont explicitement mentionnées 
à la tête du chapitre ou du paragraphe dans lequel elles s'appliquent. 

7. Certains passages sont destinés à prémunir le lecteur contre des erreurs graves, 

où il risquerait de tomber ; ces passages sont signalés en marge par le signe 
(« tournant dangereux »). 
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8. Les exercices sont destinés, d'une part, à permettre au lecteur de vérifier qu'il a 
bien assimilé le texte ; d'autre part à lui faire connaître des résultats qui n'avaient pas 
leur place dans le texte ; les plus difficiles sont marqués du signe 7 .  

9. La terminologie suivie dans ce traité a fait l'objet d'une attention particulière. 
On s'est eforcé de ne jamais s'écarter de la terminologie reçue sans de très sérieuses 
raisons. 



10. On a cherché à utiliser, sans sacrifier la simplicité de l'exposé, un langage 
rigoureusement correct. Autant qu'il a été possible, les abus de langage ou de notation, 
sans lesquels tout texte mathématique risque de devenir pédantesque et même 
illisible, ont été signalés au passage. 

11. Le texte étant consacré à l'exposé dogmatique d'une théorie, on n'y trouvera 
qu'exceptionnellement des références bibliographiques ; celles-ci sont groupées dans 
des Notes historiques. La bibliographie qui suit chacune de ces Notes ne comporte 
le plus souvent que les livres et mémoires originaux qui ont eu le plus d'importance 
dans l'évolution de la théorie considérée ; elle ne vise nullement à être complète. 

Quant aux exercices, il n'a pas été jugé utile en général d'indiquer leur provenance, 
qui est très diverse (mémoires originaux, ouvrages didactiques, recueils d'exercices). 

12. Dans la nouvelle édition, les renvois à des théorèmes, axiomes, définitions, 
remarques, etc. sont donnés en principe en indiquant successivement le Livre (par 
l'abréviation qui lui correspond dans la liste donnée au no 3), le chapitre et la page 
où ils se trouvent. A l'intérieur d'un même Livre la mention de ce Livre est supprimée ; 
par exemple, dans le Livre d'Algèbre, 

E, III, p. 32, cor. 3 
renvoie au corollaire 3 se trouvant au Livre de Théorie des Ensembles, chapitre III, 
page 32 de ce chapitre ; 

II, p. 24, prop. 17 
renvoie à la proposition 17 du Livre d'Algèbre, chapitre II, page 24 de ce chapitre. 

Les fascicules de résultats sont désignés par la lettre R ;  par exemple : EVT, R 
signifie (( fascicule de résultats du Livre sur les Espaces vectoriels topologiques ». 

Comme certains Livres doivent seulement être publiés plus tard dans la nouvelle 
édition, les renvois à ces Livres se font en indiquant successivement le Livre, le cha- 
pitre, le paragraphe et le numéro où se trouve le résultat en question ; par exemple : 

AC. III, 5 4, no 5, cor. de la prop. 6. 



CHAPITRE X 

Algèbre homologique 

Dans ce paragraphe, la lettre A désigne un anneau. Sauf mention expresse du 
contraire, tous les modules considérés sont des modules ù gauche, tous les idéaux 
considérés sont des idéaux a gauche. 

Les déjnitions et les résultats s'appliquent aux modules a droite, en les considérant 
comme modules à gauche sur l'anneau opposé. 

S i  M est un A-module et si a E A, on note aM l'homothétie x H ax de M .  On a 
donc 1, = IdM (application identique de M )  ; lorsqu'il n'y a pas de confusion possible, 
on écrit parfois simplement 1 au lieu de 1,. 

Enjn,  on note O un A-module réduit à son élément neutre, choisi une fois pour toutes 
(cf 11, p. 8). 

1. Diagrammes commutatifs 

Soient par exemple B,  C, D, E ,  F cinq ensembles, et soient f une application 
de E dans F, g une application de B dans C, h une application de D dans E, u une 
application de B dans D et v une application de C dans E. Pour résumer une situa- 
tion de ce genre, on fait souvent usage de diagrammes ; par exemple, on résumera 
la situation préGdente par le diagramme suivant (E, II, p. 14) : 

D-E-F 
h f 

Dans un tel diagramme, le groupe de signes E -L F schématise le fait que f 
est une application de E dans F. Lorsqu'il ne peut y avoir d'ambiguïté sur f, on 
supprime la lettre f, et on écrit simplement E -. F. 

Lorsque B, C, D, E,  F sont des groupes (resp. des A-modules) et f, g, h, u, v des 



homomorphismes de groupes (resp. A-modules), on dit pour abréger que le dia- 
gramme (1) est un diagramme de groupes (resp. de A-modules). 

En principe, un diagramme n'est pas un objet mathématique, mais seulement 
une figure, destinée à faciliter la lecture d'un raisonnement. En pratique, on se sert 
souvent des diagrammes comme de symboles abréviateurs, qui évitent de nommer 
tous les ensembles et toutes les applications que l'on veut considérer; on dit ainsi 
« considérons le diagramme (1) » au lieu de dire : « soient B, C, D, E, F cinq ensem- 
bles.. . et v une application de C dans E » ; voir par exemple l'énoncé de la prop. 1 
du no 2. 

Considérons par exemple le diagramme suivant : 

A tout chemin composé d'un certain nombre de segments du diagramme par- 
couru dans le sens indiqué par les flèches, on fait correspondre une application de 
l'ensemble représenté par l'origine du premier segment dans l'ensemble représenté 
par l'extrémité du dernier segment, savoir la composée des applications représentées 
par les divers segments parcourus. Pour tout sommet du diagramme, par exemple 
C, on convient qu'il y a un chemin réduit à C et on lui fait correspondre l'application 
identique 1,. 

Dans (2), il y a par exemple trois chemins partant de B et aboutissant à D' ; les 
applications correspondantes sont d o  g o f ,  g' o c of et g' o f '  o b. On dit qu'un 
diagramme est commutatif si, pour tout couple de chemins du diagramme ayant 
même origine et même extrémité, les deux applications correspondantes sont égales ; 
en particulier si un chemin a son extrémité confondue avec son origine, l'application 
correspondante doit être l'identité. 

Pour que le diagramme (2) soit commutatif, il faut et il suffit que l'on ait les 
relations : 

autrement dit, il faut et il suffit que les trois diagrammes carrés extraits de (2) soient 
commutatifs. En effet, les relations (3) entraînent d o  g of = g' o c of puisque 
d o g  = g ' o c  et g f o c o f =  g ' o f ' o b  puisque c o f =  f ' o b ;  donc les trois che- 
mins partant de B et aboutissant à D' donnent la même application. On vérifie 
de même que les quatre chemins partant de B et aboutissant à E' (resp. les trois 
chemins partant de C et aboutissant à Et) donnent la même application. Les rela- 
tions (3) signifient que les deux chemins partant de B (resp. C, D) et aboutissant 
à C' (resp. D', E') donnent la même application. Tous les autres couples de sommets 
de (2) ne peuvent être joints que par un chemin au plus, et le diagramme (2) est 
donc bien commutatif. 



Par la suite, nous laisserons au lecteur le soin de formuler et de vérifier des résul- 
tats analogues pour d'autres types de diagrammes. 

2. Le diagramme du serpent 

PROPOSITION 1. - Considérons un diagramme commutatif de A-modules 

*l  q1 
M'II;- ,  N'? P ' .  

on suppose que les deux lignes de (4) sont exactes. Alors 
(i) Si h est injectif, on a 

( 5 )  Im ( g )  n Im (u ' )  = Im (u' 0 f )  = Im ( g  0 u) . 

(ii) Si f est surjectif, on a 

(6) Ker ( g )  + Im (u)  = Ker (v' o g) = Ker (h o v) . 

Prouvons (i). Il est clair que l'on a 

Im (u' o f )  = Im ( g  0 u) c Im ( g )  n Im (u') 

Inversement, soit y' E Im ( g )  n Im (u'). Il existe v E N tel que y' = g(y). Comme 
V' O U' = O, on a O = vl(y')  = ~ ' ( ~ ( y ) )  = h(u(y)), d'où v(y)  = O puisque h est 
injectif. Comme (u, a)  est une suite exacte, il existe x E M tel que y = u(x), d'où 
Y' = g(u(x)). 

Prouvons (ii). Comme v o u = O et v' o u' = O, il est clair que 

Ker ( g )  + Im (u) c Ker (v' o g )  = Ker (h 0 v) . 

Inversement, soit y E Ker (v' o g). Alors g(y) E Ker (v'), et il existe x' E M' tel que 
ul(x')  = g(y) puisque la suite (u', 6') est exacte. Comme f est surjectif, il existe 
x E M tel que f ( x )  = x',  d'où g(y)  = ut( f ( x ) )  = g(u(x)) ; on en conclut que 
y - u(x) E Ker ( g ) ,  ce qui termine la démonstration. 

Lemme 1. - Considérons un diagramme commutatif de A-modules 

M A N  
(7) 4 g l  

M ' u r ,  N' . 

Alors il existe un homomorphisme et un seul u, : Ker ( f )  -+ Ker ( g ) ,  et un homo- 
morphisme et un seul u, : Coker ( f )  -t Coker ( g ) ,  tels que les diagrammes 

Ker ( f )  -u4 Ker ( g )  

i l  4 
M - N  



'l 
Coker ( f ) -  Coker ( g )  

soient commutatifs, i et j désignant les injections canoniques, p et q les surjections 
canoniques. 

En effet, si x E Ker ( f  ), on a f ( x )  = O et g(u(x)) = ut( f (x ) )  = 0, donc u(x)  E Ker (g),  
et l'existence et l'unicité de u ,  sont alors immédiates. De même, on a 

u ' ( f  (Ml)  = g(u(M)) g(N) 9 

donc u' donne par passage aux quotients un homomorphisme 

u, : Coker ( f )  + Coker ( g )  , 

qui est le seul homomorphisme pour lequel (9) soit commutatif. 

Partons maintenant d'un diagramme commutatif (4) de A-modules ; il lui cor- 
respond en vertu du iemme 1 un diagramme commutatif 

Ker (f) 4 Ker ( g )  Ker (h) 

Coker (y) - Coker (g )  - Coker (h) 

où i, j, k sont les injections canoniques, p, q, r les surjections canoniques, u,, u, 
(resp. v,, v,) les homomorphismes déduits de u, u' (resp. v, v') par le lemme 1 .  

PROPOSITION 2. - Supposons que dans le diagramme commutatif (4), les suites (u, v) 
et (ut, v') soient exactes. Alors : 

(i) On a v,  o u ,  = O ; si ut est injectif, la suite (u,, v,) est exacte. 
(ii) On-au, o u, = O ; si v est surjectif, la suite (u,, v,) est exacte. 
(iii) Supposons u' injectif et v surjectif. II existe alors un homomorphisme et un seul 

d : Ker (h) + Coker ( f )  ayant la propriété suivante : si z E Ker (h),  y E N et x' E M '  
vérifient les relations v(y) = k(z)  et u'(xl) = g(y), on a d(z) = p(x'). De plus la suite 

est exacte. 



Ker ( f )  A Ker (g) A Ker (h) - 7 

t+ Coker ( f  ,-t Coker ( g )  7 Coker (h)  

Prouvons (i). Comme u ,  et v ,  ont mêmes graphes que les restrictions de u et v à 
Ker ( f )  et Ker ( g )  respectivement, on a v, 0 u ,  = O. On a 

Ker (v,) = Ker ( g )  n Ker (v) = Ker ( g )  n Im (u) = Im ( j )  n Im (u) . 

Mais d'après la prop. 1 (i), on a Ker (21,) = Im ( j  O u t )  = Im (u,) si u' est injectif. 
Prouvons (ii). Comme u, et v,  proviennent de u et v par passage aux quotients, il est 

clair que v,  o u ,  = O. Supposons v surjectif; comme q et p sont surjectifs, on a, en 
vertu des hypothèses et de la prop. 1 (ii) 

= q(Im (u')) = Im (q  0 u') = Im (u20 p) = Tm (24,) . 

Prouvons enfin (iii). Pour z E Ker (h), il existe y E N tel que v(y )  = k(z )  puisque v 
est surjectif; en outre, on a vl(g(y)) = h(k(z)) = 0, et par suite il existe un unique 
x' E M' tel que u'(xl) = g(y) puisque u' est injectif. Montrons que l'élément 
p(xl)  E Coker ( f )  est indépendant de l'élément y E N tel que v(y )  = k(z) .  En effet, si 
y ,  E N est un second élément tel que v(y,)  = k(z),  on a y ,  = y + u(x)  où x E M ; 
montrons que si x i  E M' est tel que ul(x;)  = g(y,), on a x i  = x' + f ( x )  ; en effet, 
on a u'(x' + f ( 4 )  = ~ ' ( x ' )  + u r ( f  ( x ) )  = g(y)  + g(u(x)) = g(y + W )  = d y , ) .  
Enfin, on en conclut que p(x;) = p(xr)  + p ( f  ( x ) )  = p(xl). On peut donc poser 
d(z) = p(xl)  et on a ainsi défini une application d : Ker (h) + Coker ( f  ). 

Si maintenant z,, z ,  sont des éléments de Ker (h), si A,, h2 E A et z = h l  2 ,  + h2 z,, 
on prendra des éléments y ,  et y,  de N tels que v(y,) = k(z,)  et v(y2)  = k(2,) et on 
choisira pour y E N l'élément h l  y ,  + h2 y,  ; il est alors immédiat que 

d ( z )  = hl d ( z , )  + h, cl(:,) , 

donc d est un homomorphisme. 
Supposons que z = v,(t) pour un t E Ker ( g )  ; on prendra alors pour y E N l'élé- 

ment j( t) .  Comme g(j ( t ) )  = O, on en conclut d(z) = O, donc d o  v,  = O. Inversement, 
supposons que d(z) = O. Avec les notations précédentes, on a donc x' = f ( x ) ,  où 



x E M. Dans ce cas, on a g(y) = u'(f(x)) = g(u(x)), ou encore g(y - u(x)) = O. 
L'élément y - u(x) est donc de la forme j(n) pour n E Ker (g), et on a 

comme k est injectif, z = v,(n), ce qui prouve que la suite (*) est exacte en Ker (h). 
Enfin, on a (toujours avec les mêmes notations) 

u2(d(z)) = u2(p(x1)) = q(u'(xl)) = q(g(y)) = O donc u20 d = O. 

Inversement, supposons qu'un élément w = p(xl) de Coker (f)  soit tel que 

UJW) = uZ(p(xl)) = O (avec x' E M') . 
On a donc q(ul(x')) = 0, et par suite u1(x') = g(y) pour un y E N ;  comme 
v'(ul(x')) = O, on a v ' (~(Y))  = O, donc h(t.(y)) = O, autrement dit v(y) = k(z) pour un 
z E Ker (h), et par définition w = d(z), ce qui montre que la suite (*) est exacte en 
Coker (f ). On a vu dans (i) qu'elle est exacte en Ker (g) et dans (ii) qu'elle est exacte 
en Coker (g), ce qui achève de prouver (iii). 

COROLLAIRE 1. - Supposons que le diagramme (4) soit commutatif et ait ses lignes 
exactes. Alors : 

(i) Si u', f et h sont injectifs, g est injectif. 
(ii) Si v, f et h sont surjectifs, g est surjectif. 
L'assertion (i) est conséquence de l'assertion (i) de la prop. 2 : en effet on a 

Ker (f) = O et Ker (h) = O, donc Ker (g) = 0. 
L'assertion (ii) est conséquence de l'assertion (ii) de la prop. 2 : en effet, on a 

Coker (f) = O et Coker (h) = O, donc Coker (g) = 0. 

COROLLAIRE 2. - Supposons que le diagramme (4) soit commutatif et ait ses lignes 
exactes. Dans ces conditions : 

(i) Si g est injectif et si f et v sont surjectifs, alors h est injectif. 
(ii) S ig  est surjectif et si h et u' sont injectifs, alors f est surjectif. 
Pour prouver (i), considérons le diagramme 

où f '  est l'application ayant même graphe que la restriction de g à u(M), w et w' 
les injections canoniques ; il est clair que ce diagramme est commutatif et a ses lignes 
exactes. En outre w' est injectif, et par hypothèse v est surjectif; on a donc par la 
prop. 2 (iii), une suite exacte 

Ker (g) 4 Ker (h) 4 Coker (f ') ; 

puisque g est injectif et que f '  est surjectif, on a donc Ker (h) = 0. 



Pour prouver (ii), considérons le diagramme 

où cette fois h' est l'application ayant même graphe que la restriction de h à v(N), 
et w et w' ont respectivement mêmes graphes que v et v' ; ce diagramme est commu- 
tatif et ses lignes sont exactes. En outre w est surjectif et par hypothèse ut est injectif; 
on a donc, par la prop. 2 (iii), une suite exacte 

Ker (ht) 4 Coker (f) + 

puisque g est surjectif et que h' est injectif, on a 

Coker (g) ; 

donc Coker (f)  = O. 

COROLLAIRE 3 (Lemme des cinq). - Considérons un diagramme commutatif de 
A-modules 

où les lignes sont exactes. 
(i) Si f2 et f, sont injectifs et f, surjectif; f3 est injectif. 
(ii) Si f, et f, sont surjectifs et f, injectif; f3 est surjectif. 
En particulier, si f,, f,, f, et f5 sont des isomorphismes, il en est de même de f3. 
Pour prouver (i), posons M, = Coker (u,), MS = Coker (u;) et notons 

f; : M, + M; l'application déduite de f,. Il résulte du cor. 2 (i) que f; est injectif. 
En appliquant le cor. 1 (i) au diagramme 

où Li2 et Li; sont déduits de u2 et u;, on voit que f3 est injectif. 
Pour prouver (ii), posons M, = Ker (u,), MA = Ker (u:) et notons 7, : M, + M; 

l'application induite par f,. Il résulte du cor. 2 (ii) que A est surjectif. En appliquant 
le cor. 1 (ii) au diagramme 

où U3 et U; ont même graphe que u3 et UA, on voit que f3 est surjectif. 



3. Modules plats 

DÉFINITION 1. - On dit que le A-module E est plat, si pour toute suite exacte de 
A-modules à droite et d'homomorphismes 

la suite d'applications Z-linéaires 

est exacte. 

PROPOSITION 3. - Pour que le A-module E soi? ~ l a t ,  il faut et il sufit que, pour tout 
A-homomorphisme injectif u : M' + M de A-modules à droite, l'application 
u @ 1 : M' Q A  E -+ M Q A  E soit injective. 

Si E est plat et u : Mt + M injectif, la suite O -+ M' A M est exacte, donc aussi 

la suite O - Mt Q A  E 4 M BA E, et u 8 1 est injectif. Inversement, considé- 
rons la suite exacte ( I l )  ; posons M;' = v(M),  et soit i : M;' + M" l'injection cano- 

nique et p : M -+ M'; l'application m H v(m). La suite M ' A  M 4 M'; - O 

est exacte ; d'après I I ,  p. 58, prop. 5, la suite M' Q A  E M Q A . E  a MF Q A  E 
est donc exacte. Par ailleurs, on a v = i o p, donc (v Q 1 )  = ( i  @ 1 )  0 ( p  Q 1 )  ; 
si E satisfait à la condition de l'énoncé, alors i @ 1 est injectif, donc 

Ker (v Q 1 )  = Ker ( p  @ 1) = Im (u 8 1) 

et la suite (12) est exacte. 

PROPOSITION 4. - (i) Soient (Ei)i une famille de A-modules, E = @ Ei leur somme 
i e I  

directe. Pour que le A-module E soit plat, il faut et il sufit que chacun des Ei le soit. 
(ii) Soient 1 un ensemble préordonné filtrant à droite, (E, , fp,) un système inductif de 

A-modules relatif à 1, E = $ En sa limite inductive. Si chacun des A-modules E, 
est plat, alors E est plat. 

Soit M' + M + M" une suite exacte de A-modules à droite. 
(i) Pour que la suite @ (M' Q A  Ei) + @ (M 63, Ei) + @ (M" Q A  Ei) soit 
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exacte, il faut et il suffit que chacune des suites M' BA Ei -+ M Q A  Ei -+ M" Q A  Ei 
le soit ( I I ,  p. 13, prop. 7) ce qui démontre (i) puisque @ (M Q A  E,) s'identifie cano- 
niquement a M Q A  E (II, p. 61, prop. 7) .  

(ii) Par hypothèse, chacune des suites M' BA Ei + M BA Ei + M" O A  Ei est 
exacte, donc aussi la suite M' Q A  E + M Q A  E + M" BA E, puisque le passage a la 
limite inductive commute avec le produit tensoriel ( I I ,  p. 93, prop. 7 )  et conserve 
l'exactitude (II, p. 91, prop. 3). 



Exemples. - 1) Il est clair que A, est un A-module plat; il résulte alors de la 
prop. 4 (i) que tout A-module libre, et plus généralement tout A-module projectif, 
est plat (voir aussi II, p. 63, cor. 6). 

* Inversement, tout A-module plat de présentation finie est projectif (no 5). , 
2) D'après la prop. 4 (ii), tout A-module qui est limite inductive d'un système 

inductif filtrant de A-modules libres est plat. Nous démontrerons une réciproque 
au no 6. 

3) Si A est semi-simple, tout A-module est projectif (VIII, Ç: 5, nu 1, prop. 1) 
donc plat. 

4) * Si A est un anneau local artinien (non nécessairement commutatif), un A- 
module est plat si et seulement s'il est libre (AC II, § 3, no 2, cor. 2 de la prop. 5). , 

5 )  Si A est intègre, le corps des fractions K de A est un A-module plat (II, p. 11 8, 
prop. 27). 

6) * En AC II et III, nous étudierons deux exemples importants de A-modules 
plats lorsque A est commutatif : les anneaux de fractions S-' A, et lorsque A est 
nœthérien, les séparés complétés de A pour les topologies J-adiques. , 

7) Soit a E A tel que l'application a, : x H ax de A dans A soit injective (a a n'est 
pas diviseur à gauche de O »). Si E est un A-module plat, alors l'homothétie a, est 
injective, puisque s'identifiant A u ,  O 1 : A, 8, E -+ Ad B A  E. En particulier, si A 
est intègre, tout A-module plat est sans torsion. Inversement, si A est principal, tout A- 
module sans torsion est plat : en effet, si le A-module E est sans torsion, tout sous- 
module de type fini de E est libre (V11, Ç: 4, no 4, cor. 2 au th. 4), et E est réunion 
filtrante croissante de sous-modules plats, donc est plat (prop. 4 (ii)). 

8) Soient B un anneau et p : A + B un homomorphisme. Si E est un A-module 
plat, le B-module E(,, = B 8,  E est plat. Soit en effet u : N' -+ N un homomor- 
phisme injectif de B-modules à droite ; alors u O B  1 EcB, s'identifie canoniquement a 
I'homomorphisme u 8, 1, : N'  BA  E + N 8 ,  E ,  qui est injectif si E est plat. 

9) Supposons que A = K p ,  Y], où K est un corps. Alors l'idéal maximal m 
engendré par X et Y est un A-module sans torsion, mais non plat. Considérons en 
effet l'anneau B = A/(Y), qui est isomorphe à K[X], donc intègre. Le B-module m(,, 
est isomorphe à m/Ym = (X, Y)I(XY, Y') dans lequel la classe de Y est de torsion. 
Par suite, nt(,, n'est pas un B-module plat, donc m n'est pas plat. 

10) Supposons A commutatif. Soit B l'algèbre A[X,, .. ., X,]/(P), où P est un 
polynôme non nul. Pour tout idéal premier p de A, notons ~ ( p )  le corps des fractions 
de l'anneau intègre A/p, E(p) l'algèbre ~ ( p )  [XI, ..., X,] et P(p) l'image de P dans 
E(p) par l'application canonique. 

On peut montrer que, pour que B soit un A-module plat, il suffit que P(p) # O 
pour tout idéal premier p de A. Si A est intègre, cette condition est nécessaire. 

* En langage géométrique, considérons la projection n : Spec (B) + Spec (A). 
Pour tout p E Spec (A), la fibre n-'(p) s'identifie à la sous-variété V, de l'espace 
affine A:(,, = Spec (E(p)) définie par P(p), et l'ensemble F des p pour lesquels cette 
sous-variété est l'espace tout entier (i.e. pour lesquels P(p) = 0) est un fermé de 



Spec (A). La condition précédente signifie que ce fermé est vide, autrement dit que 
pour tout p la sous-variété V, est une hypersurface dans A:(,,. , 

11) * Soient S et X deux espaces analytiques complexes et f : X + S un mor- 
phisme. On dit que f est plat en un point x de X si O,, , considéré comme 
module au moyen de l'homomorphisme f * : Os,f,,, + O,, , est plat. L'ensemble 
des points de X où f est plat est un ouvert de X, et la restriction de f à cet ouvert 
est une application ouverte. Si X et S sont des variétés analytiques connexes de 
dimension finie, f est plat (en tout point de X) si et seulement si f (X) est ouvert 
dans S et les fibres f -'(s), pour s E f (X), ont toutes la même dimension. , 

4. Modules de présentation finie 

On appelle présentation (ou présentation de longueur 1 )  d'un A-module E une suite 
exacte 

de A-modules où L, et L, sont libres. 
Tout A-module E admet une présentation. On sait en effet (II, p. 27, prop. 20) qu'il 

existe un homomorphisme surjectif u : L, -+ E, où L, est libre ; si R est le noyau de u, 
il existe.de même un homomorphisme surjectif v : LI -+ R où L, est libre. Si l'on 
considère u comme un homomorphisme de L, dans L,, la suite L, A L, A E -.t O 
est exacte par définition, d'où notre assertion. 

Si p : A + B est un homomorphisme d'anneaux, toute présentation (13) de E 
fournit une présentation de E,) = B O, E : 

en vertu de II, p. 58, prop. 5 et du fait que B O, L est un B-module libre lorsque L 
est libre. 

On dit qu'une présentation (13) d'un module E est $nie si les modules libres L, 
et L, ont des bases finies. Il est clair que si la présentation (13) est finie, il en est de 
même de la présentation (14). On dit que E est un A-module de présentation $nie 
s'il admet une présentation $nie. 

PROPOSITION 5. - (i) Tout module admettant une présentation finie est de type $ni. 
(ii) Si  A est un anneau nethérien à gauche, tout A-module de type jïni admet une 

présentation $nie. 
(iii) Tout module projectif de type fini admet une présentation finie. 

L'assertion (i) résulte trivialement des définitions. Supposons A nœthérien à 
gauche et E de type fini. Il existe alors un homomorphisme surjectif u : L, + E, 
où L, est un A-module libre ayant une base finie ; le noyau R de u est de type fini, 
donc il y a un homomorphisme surjectif v : L, + R où LI est libre de base finie, 
et la suite exacte LI - L, A E - O est une présentation finie de E ; d'où (ii). 



Enfin, supposons que E soit un module projectif de type fini ; il est alors facteur 
direct d'un module libre de type fini L ,  (II, p. 40, cor. 1 )  ; le noyau R de l'homomor- 
phisme surjectif L,  + E est alors isomorphe à un quotient de L,, donc est de type 
fini, et on termine comme ci-dessus. 

PROPOSITION 6. - Soient A un anneau, E un A-module de présentation $nie. Pour 
toute suite exacte 

O - . F & G P . E - r O  
où G est de type $ni, le module F est de type &ni. 

Soit L ,  4 L ,  4 E --, O une présentation finie ; si (ei) est une base de L,, il 
existe pour chaque i un élément gi E G tel que p(gi) = s(ei) ; l'homomorphisme 
u : L,  + G tel que u(ei) = gi pour tout i est donc tel que s = p O u. Comme s o r = 0 ,  
on a u(r(L,)) c Ker p, et comme Ker p est isomorphe à F, on voit qu'il y a un homo- 
morphisme v : L, + F tel que le diagramme 

L , G L o b E  - O 

soit commutatif. Comme j est injectif et s surjectif, on peut appliquer la proposi- 
tion 2 de X, p. 4, autrement dit il y a une suite exacte 

Ker 1 ,  b, Coker v + Coker u + Coker 1, . 
Ceci montre que Coker v est isomorphe a G/u(L,), qui est de type fini par hypothèse. 
On a en outre la suite exacte 

O + v(L,)  + F + Coker 2; + O 

et comme v(L,) et Coker v sont de type fini, il en est de même de F (II, p. 17, cor. 5). 

PROPOSITION 7. - Soit M un A-module. II existe un ensemble ordonné 1 Jiltrant Ù 

droite et un système inductif de A-modules de présentation $nie (Ma, Q,) relatif ù 1 
tel que M soit isomorphe à & Ma. Si M possède un système générateur de n éléments, 
on peut supposer qu'il en est de même des Ma. 

Considérons une présentation 

soit 1 l'ensemble des couples a = (Kt, L'),  où K' (resp. L') est une partie finie de K 
(resp.L), tels que u induise une application u, du sous-module At' de AS) dans le sous- 
module Ab' de AS' ; pour a E 1, soit M, le conoyau de u, et z;, : At' + M, l'applica- 
tion canonique, de sorte que l'on a un diagramme commutatif à lignes exactes : 



où ia et ja sont les injections canoniques, et où f, est déduit de ja par passage aux 
quotients. Ordonnons l'ensemble 1 par la relation 

pour a < B, soit qBa : Ma + Me l'homomorphisme déduit par passage aux quotients 
de l'inclusion de AL' dans A v .  On vérifie alors aussitôt que l'ensemble ordonné 1 est 
filtrant, que (Ma, qpa) est un système inductif de A-modules et que (cp,) est un système 
inductif de A-homomorphismes. Par passage à la limite inductive, on obtient un 
diagramme commutatif 

les lignes de ce diagramme sont exactes (II, p. 91, prop. 3) ; puisque i et j sont bijectifs, 
cp l'est aussi (X, p. 7, cor. 3), d'ou la proposition. 

5. Homomorphismes d'un module de présentation finie 

Soit E un A-module. Si 1 est un ensemble préordonné filtrant et (Gi , uji) un système 
inductif de A-modules relatif à 1, les applications canoniques Gi + Lm Gi induisent 
des homomorphismes Hom,(E, Gi) + Hom,(E, km Gi), d'où un homomorphisme 
dit canonique 

lim HomA(E, Gi) + HomA(E, lim Gi) 
s + 

i e I  

Soient B un autre anneau, F un B-module, G un (A, B)-bimodule ; on a défini en 
II, p. 75 un homomorphisme canonique : 

PROPOSITION 8. - a) Si le A-module E est de type fini (resp. de présentation finie), 
I'homomorphisme canonique (16) est injectif (resp. bijectif). 

b) Supposons que le B-module F soit plat ; si le A-module E est de type fini (resp. 
de présentation finie), I'homomorphisme canonique (17) est injectif (resp. bijectif). 

Démontrons par exemple b), la démonstration de a) étant analogue. Considérons 
A, B, F, G comme fixés, et, pour tout A-module a droite E, posons 

T(E) = Hom, (E, G) OB F , T1(E) = Hom, (E, G OB F) 

et notons v, l'homomorphisme (17) ; pour tout homomorphisme v : E + E' de 
A-modules à droite, posons T(v) = Hom (v, 1,) @ 1, et T1(v) = Hom (v, 1, @ 1,). 



Soit LI  A L, 4 E -+ O une présentation de E ; nous supposons le module libre 
L, (resp. les modules libres L, et LI) de type fini. Le diagramme 

est commutatif, et sa seconde ligne est exacte (II, p. 36, th. 1); en outre, la suite 

O -+ Hom, (E, G) -. Hom, (L,, G) -+ Hom, (LI, G) 

est exacte (loc. cit.), et comme F est plat, la première ligne de (18) est aussi une suite 
exacte (X ,  p. 8, déf. 1). Cela étant, on sait que v,, est bijectif (resp. que v,, et v,, 
sont bijectifs) (II, p. 75,  prop. 2). Si on suppose seulement v,, bijectif, il résulte 
de (18) que v,, o T(w) = Tf(w) o v, est injectif, donc v, l'est aussi. Si on suppose 
que v,, et v,, sont tous deux bijectifs, on déduit du cor. 2 (ii) de X, p. 6 que v, est 
surjectif, et comme on vient de voir que v, est injectif, il est bijectif. 

COROLLAIRE. - Tout module plat et de présentation finie est projectif. 
Soit en effet E un A-module plat et de présentation finie. Appliquant (b) au cas 

B = A, G = ,A,, F = E, on voit que l'homomorphisme canonique 

Hom, (E, A) Q A  E -+ Hom, (E, E) 

est surjectif. Cela implique que E est projectif (II, p. 77, remarque 1). 

D'après le corollaire précédent et la prop. 5 de X, p. 10, il y a identité entre 
modules plats de présentation finie et modules projectifs de type fini. En revanche, 
il existe des modules plats de type fini qui ne sont pas de présentation finie, donc qui 
ne sont pas projectifs (cf. X, p. 170, exercice 17, voir toutefois X, p. 169, exercices 13 
et 14). 

6. Structure des modules plats 

Lemme 2. - Soient 1 un ensemble ordonné jiltrant a droite, (Eu, qpa) un système 
inductif d'ensembles relatifa 1, E sa limite inductive et cp, : E, -+ E, a E 1, les appli- 
cations canoniques. Soit f : 1 -+ 1 une application telle que f (a) > a pour a E 1, et 
supposons donnés, pour chaque a E 1, un ensemble La et des applications u, : Eu -+ Lu 
et va : La -+ Ef(,) telles que va 0 ui = cpf(,,,,. Soit J l'ensemble ordonné obtenu en 
munissant 1 de la relation (( a < p si a = p o u f  (a) < P B. Si a,  P E J avec a ,< j3, 
soit \Irp, : L, -+ Lp l'application telle que \Irpa = Id si a = P, \Irp, = u, o cp,,,,,, o va 
si f (a) ,< p. Si a E J ,  soit \Ir, : Lu -+ E l'application cpf(,, 0 va. Alors l'ensemble 
ordonné J estjiltrant, (Lu, \Ir,) est un système inductifrelatifà J ,  (ilr,) est un système 
inductif d'applications et l'application \Ir : 5 Lu -+ E déduite des \Ir, est bijective. 
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11 est clair que J est filtrant. Si a, (3 E J avec a < p, on a 

de même, si a ,  (3, y E J avec a < (3 < y, on a 

Démontrons la dernière assertion : pour chaque a E J, on a 

donc qa(Ea) = $,(u,(E,)) c $,(La), et $ est surjective. Soit a E J et soient x, y E L, 
avec $a(x) = $ 3 ( ~ ) 3  i.e. (P f(a)(ua(x)) = (P f(u)(va(~)) ; il existe (3 E 1, (3 b f (a) tel que 

et 9 est injective. 

THÉORÈME 1 (D. Lazard). - Pour tout A-module E, les conditions suivantes sont 
équivalentes : 

(i) E est plat. 
(ii) Pour tout A-module P de présentation finie, 1 'homomorphisme canonique 

Hom, (P, A) O, E + Hom, (P, E) 

est surjectif. 
(iii) Pour tout A-module P de présentation finie et tout homomorphisme u : P + E, 

il existe un A-module L libre de type fini et des homomorphismes u : P + L et w : L + E 
tels que u = w O v .  

(iv) Il existe un ensemble ordonné filtrant J ,  un système inductif de modules libres de 
type j n i  (Lj)j,, et un isomorphisme de E sur 5 Lj. 

(iv) * (i) : cela résulte de la prop. 4 (ii) de X, p. 8. 
(i) (ii) : cela résulte de la prop. 8b) de X, p. 12. 
(ii) (iii) : soient P un A-module de présentation finie et u : P + E un homomor- 

phisme ; d'après (ii), il existe u,, ..., O, E Hom, (P, A), w,, ..., w, E E tels que 
u(x) = 1 ai(x) wi pour tout x E P ; si u : P + An est l'hori~omorphisme de compo- 
santes (ui) et w : An + E l'homomorphisme (a,) H 1 ai wi, on a bien u = w o u. 

(iii) - (iv) : supposons (iii) vérifiée, et soit (Eu, (P~,,) un système inductif, relatif à 
un ensemble filtrant 1, de A-modules de présentation finie, de limite inductive E 



(X, p. I l ,  prop. 7). Quitte à remplacer 1 par le produit lexicographique 1 x N, avec 
E,,,, = Eu pour tout n, on peut supposer que 1 n'a pas de plus grand élément. Pour 
chaque a E 1, soient L, un A-module libre de type fini et u, : Eu -, Lu,  : La + E des 
homomorphismes tels que v: o u, soit l'application canonique cp, de E, dans E ; 
puisque Lu est libre de type fini et 1 sans plus grand élément, il existe un indice P > a et 
un homomorphisme v: : Lu + EP tels que U A  = cpP o v," ; puisque cpP o v," o u, = cp P o V P , ~  
et que Eu est de présentation finie, il résulte de la prop. 8a) de X, p. 12, qu'il existe 
y 2 p tel que cpYP O U: O un = cpYP O cpP, = cpYa ; posons y = f (a) et soit va l'homo- 
morphisme cpYB 0 v i  de L, dans E,-(,) ; on a vu o u, = cp ,-(,,,, . On peut alors appliquer le 
lemme 2, d'où (iv). 

COROLLAIRE. - Supposons A commutatif: Pour tout A-module plat E, les A-modules 
T(E), S(E), A(E), Tn(E), Sn(E), An(E) sont plats. 

En effet, E est la limite inductive d'un système filtrant (Lj) de A-modules libres de 
type fini, donc T(E) (resp. S(E), etc.) est limite inductive du système filtrant des A- 
modules libres T(Lj) (resp. S(Lj), etc.), donc est plat (cf. III, p. 61, prop. 6, p. 62, th. l ,  
p. 73, prop. 8, p. 75, th. 1, p. 83, prop. 9, et p. 86, th. 1). 

Remarque. - Considérant dans (ii) une présentation finie AB A: -, P -, 0, 
on obtient la condition (ii') encore équivalente aux précédentes : 

(ii') Pour toute matrice finie (cij)i E r , j  E J  d'éléments de A, toute solution 

du système d'équations linéaires et homogènes 

peut s'écrire b, z, + ... + b,z,, où bl, ..., ~ , E E  et où, pour r = 1, ..., n, 
Z, = (z,,~)~ est une solution dans A' du système d'équations 

7. Modules injectifs 

DÉFINITION 2. - On dit que le A-module E est injectif si, pour toute suite exacte de 
A-modules et d'homomorphismes 

(19) M ' U ,  M A  M" ,  

la suite d'applications Z-linéaires 

est exacte. 



Lemme 3. - Pour que le A-module E soit injectif, il faut et il suffit que, pour toute 
application A-linéaire injective u : M' + M, l'application 

Hom, (u, 1) : Hom, (M, E) + Hom, (M', E) 
.soit su~jertive. 

Si E est injectif et si u : M' -+ M est injectif, alors la suite O + M' 4 M est exacte, 
donc aussi la suite Hom (M, E) Hom (M', El + O, et Hom (u, 1) est sur- 
jectif. Inversement considérons la suite exacte (19); posons Mt; = c(M) et soient 
i : M'; + Mt' l'injection canonique et p : M + M'; l'application m I+ dm). La suite 
M t  -U, M 4 M'; -, O est exacte ; d'après II, p. 36, th. 1, la suite 

H o m ( p , l )  Hom (u,  1)  Hom, (MY, E) - Hom, (M, E) - Hom, (M', E) 

est exacte. Par ailleurs, on a Hom (v, 1) = Hom (p, 1) o Hom (i, 1). Si E satisfait à la 
condition du lemme, Hom (i, 1) est surjectif, donc l'image de Hom ( L ; ,  1) est aussi 
celle de Hom (p, l), et la suite (20) est exacte. 

Remarque. - Soient E un A-module injectif, u : M' + M et f : M' + E des homo- 
morphismes de A-modules. Si Ker u c Ker f, il existe un homomorphisme g : M + E 
tel que g o u = f. Celarésulte en effet de ce qui précède appliqué à l'homomorphisme 
injectif M1/Ker u -+ M déduit de u. 

PROPOS~~ION 9. - Soient (Ei),,, une famille de A-modules, E = fl Ei leur produit. 
Pour que le A-module E soit injectif, il faut et il suffit que chacun des Ei le soit. 

Soit u : M t  -+ M un homomorphisme injectif de A-modules. Pour que l'homo- 
morphisme produit 11 Hom, (M, Ei) + n Hom, (M', E,) soit surjectif, il faut et 
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il suffit que chacun des homomorphismes Hom, (M, E,) + Hom, (M', E,) le soit 
(II, p. 10, prop. 5) ; cela démontre la proposition puisque n HomA(M, E,) s'iden- 
tifie canoniquement à Hom, (M, E). i S I  

PROPOSITION 10. - Soit E un A-module. Pour que E soit injectif, il faut et il sufit que, 
pour tout idéal a de A et tout A-homomorphisme f : a -+ E, il existe e E E tel que 
f (a) = ae pour tout a E a. 

Supposons E injectif; soient a un idéal de A, f : a + E un A-homomorphisme, 
et notons i : a -, A l'injection canonique. Alors l'application 

Hom, (i, 1) : Hom, (A, E) + Hom, (a, E) 
est surjective (déf. 2) ; si g E Hom, (A, E) est tel que f = g 0 i, on a 

f ( 4  = d a >  = as(1) 
pour tout a E a. 

Inversement, supposons la condition de l'énoncé vérifiée, soient M un A-module, 
N un sous-module de M, u : N + E un A-homomorphisme, et prouvons qu'il existe 
un A-homomorphisme Ü: M + E prolongeant u (cJ: lemme 3). Soit B l'ensemble 
des couples (P, v) où P est un sous-module de M contenant N et o un homomorphisme 
de P dans E prolongeant u. L'ensemble 9 ordonné par la relation de prolongement 


