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Mode d’emploi de ce traité

NOUVELLE EDITION

1. Le traité prend les mathématiques a leur début, et donne des démonstrations
complétes. Sa lecture ne suppose donc, en principe, aucune connaissance mathéma-
tique particuliére, mais seulement une certaine habitude du raisonnement mathéma-
tique et un certain pouvoir d’abstraction. Néanmoins, le traité est destiné plus parti-
culierement a des lecteurs possédant au moins une bonne connaissance des matieres
enseignées dans la premiere ou les deux premiéres années de I'Université.

2. Le mode d’exposition suivi est axiomatique et procéde le plus souvent du
général au particulier. Les nécessités de la démonstration exigent que les chapitres
se suivent, en principe, dans un ordre logique rigoureusement fixé. L’utilité¢ de cer-
taines considérations n’apparaitra donc au lecteur qu’a la lecture de chapitres
ultérieurs, & moins qu’il ne posséde déja des connaissances assez étendues.

3. Le traité est divisé en Livres et chaque Livre en chapitres. Les Livres actuelle-
ment publiés, en totalité ou en partie, sont les suivants :

Théorie des Ensembles désigné par E
Algebre — A
Topologie générale — TG
Fonctions d’une variable réelle — FVR
Espaces vectoriels topologiques — EVT
Intégration — INT
Algébre commutative — AC
Variétés différentielles et analytiques — VAR
Groupes et algébres de Lie — LIE
Théories spectrales — TS

Dans les six premiers Livres (pour 'ordre indiqué ci-dessus), chaque énoncé ne
fait appel qu’aux définitions et résultats exposés précédemment dans le chapitre
en cours ou dans les chapitres antérieurs dans I’ordre suivant . E; A, chapitres I
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alI1; TG, chapitres 14 II1; A, chapitres IV et suivants ; TG, chapitres IV et suivants;
FVR ; EVT; INT. A partir du septiéme Livre, le lecteur trouvera éventuellement,
au début de chaque Livre -ou chapitre, I'indication précise des autres Livres ou
chapitres utilisés (les six premiers Livres étant toujours supposés connus).

4. Cependant, quelques passages font exception aux régles précédentes. Ils sont
placés entre deux astérisques : * ... ,. Dans certains cas, il s’agit seulement de faci-
liter la compréhension du texte par des exemples qui se référent a des faits que le
lecteur peut déja connaitre par ailleurs. Parfois aussi, on utilise, non seulement
les résultats supposés connus dans tout le chapitre en cours, mais des résultats
démontrés ailleurs dans le traité. Ces passages seront employés librement dans les
parties qui supposent connus les chapitres ol ces passages sont insérés et les cha-
pitres auxquels ces passages font appel. Le lecteur pourra, nous ’espérons, vérifier
I'absence de tout cercle vicieux.

5. A certains Livres (soit publiés, soit en préparation) sont annexés des fascicules
de résultats. Ces fascicules contiennent 1’essentiel des définitions et des résultats du
Livre, mais aucune démonstration.

6. L’armature logique de chaque chapitre est constituée par les définitions, les
axiomes et les théorémes de ce chapitre ; ¢’est 1a ce qu’il est principalement nécessaire
de retenir en vue de ce qui doit suivre. Les résultats moins importants, ou qui peuvent
étre facilement retrouvés a partir des théorémes, figurent sous le nom de « proposi-
tions », « lemmes », « corollaires », « remarques », etc. ; ceux qui peuvent étre omis
en premiére lecture sont imprimés en petits caractéres. Sous le nom de « scholie »,
on trouvera quelquefois un commentaire d’un théoréme particuliérement important.

Pour éviter des répétitions fastidieuses, on convient parfois d’introduire certaines
notations ou certaines abréviations qui ne sont valables qu’a l'intérieur d’un seul
chapitre ou d’un seul paragraphe (par exemple, dans un chapitre o1 tous les anneaux
considérés sont commutatifs, on peut convenir que le mot « anneau » signifie tou-
jours « anneau commutatif »). De telles conventions sont explicitement mentionnées
a la téte du chapitre ou du paragraphe dans lequel elles s’appliquent.

7. Certains passages sont destinés & prémunir le lecteur contre des erreurs graves,

ol il risquerait de tomber'; ces passages sont signalés en marge par le signe Z
(« tournant dangereux »). ’

8. Les exercices sont destinés, d’une part, a permettre au lecteur de vérifier qu’il a
bien assimilé le texte ; d’autre part a lui faire connaitre des résultats qui n’avaient pas
leur place dans le texte ; les plus difficiles sont marqués du signe .

9. La terminologie suivie dans ce traité a fait ’objet d’une attention particuliere.
On s’est efforcé de ne jamais s’ écarter de la terminologie recue sans de trés sérieuses
raisons.
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10. On a cherché a utiliser, sans sacrifier la simplicité de 'exposé, un langage
rigoureusement correct. Autant qu’il a été possible, les abus de langage ou de notation,
sans lesquels tout texte mathématique risque de devenir pédantesque et méme
illisible, ont été signalés au passage.

11. Le texte étant consacré a ’exposé dogmatique d’une théorie, on n’y trouvera
qu’exceptionnellement des références bibliographiques ; celles-ci sont groupées dans
des Notes historigues. La bibliographie qui suit chacune de ces Notes ne comporte
le plus souvent que les livres et mémoires originaux qui ont eu le plus d’importance
dans I’évolution de la théorie considérée; elle ne vise nullement & étre complete.

Quant aux exercices, il n’a pas été jugé utile en général d’indiquer leur provenance,
qui est trés diverse (mémoires originaux, ouvrages didactiques, recueils d’exercices).

12. Dans la nouvelle édition, les renvois a des théorémes, axiomes, définitions,
remarques, etc. sont donnés en principe en indiquant successivement le Livre (par
I'abréviation qui lui correspond dans la liste donnée au n° 3), le chapitre et la page
ou ils se trouvent. A I'intérieur d’un méme Livre la mention de ce Livre est supprimée ;
par exemple, dans le Livre d’Algebre,

E, III, p. 32, cor. 3
renvoie au corollaire 3 se trouvant au Livre de Théorie des Ensembles, chapitre III,
page 32 de ce chapitre ;

11, p. 24, prop. 17
renvoie a la proposition 17 du Livre d’Algébre, chapitre 11, page 24 de ce chapitre.

Les fascicules de résultats sont désignés par la lettre R ; par exemple : EVT, R
signifie « fascicule de résultats du Livre sur les Espaces vectoriels topologiques ».

Comme certains Livres doivent seulement étre publiés plus tard dans la nouvelle
édition, les renvois a ces Livres se font en indiquant successivement le Livre, le cha-
pitre, le paragraphe et le numéro ol se trouve le résultat en question ; par exemple :

AC.TII, § 4. n° 5, cor. de la prop. 6.



CHAPITRE X

Algebre homologique

§ 1. COMPLEMENTS D’ALGEBRE LINEAIRE

Dans ce paragraphe, la lettre A désigne un anneau. Sauf mention expresse du
contraire, tous les modules considérés sont des modules a gauche, tous les idéaux
considérés sont des idéaux a gauche.

Les définitions et les résultats s’appliquent aux modules a droite, en les considérant
comme modules a gauche sur I’anneau opposé.

Si M est un A-module et si a € A, on note ay [’homothétie x — ax de M. On a
donc 1y = ldy (application identique de M) ; lorsqu’il n’y a pas de confusion possible,
on écrit parfois simplement 1 au lieu de ly.

Enfin, on note O un A-module réduit a son élément neutre, choisi une fois pour toutes

(cf. 11, p. 8).

1. Diagrammes commutatifs

Soient par exemple B, C, D, E, F cinq ensembles, et soient f une application
de E dans F, g une application de B dans C, & une application de D dans E,  une
application de B dans D et v une application de C dans E. Pour résumer une situa-
tion de ce genre, on fait souvent usage de diagrammes ; par exemple, on résumera
la situation préc.édente par le diagramme suivant (E, II, p. 14) :

@

v

ey “

O—w

Te—

— F.

N
—

h S

Dans un tel diagramme, le groupe de signes E —L{— F schématise le fait que f
est une application de E dans F. Lorsqu’il ne peut y avoir d’ambiguité sur f, on
supprime la lettre f, et on écrit simplement E — F.

Lorsque B, C, D, E, F sont des groupes (resp. des A-modules) et f, g, A, u, v des
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homomorphismes de groupes (resp. A-modules), on dit pour abréger que le dia-
gramme (1) est un diagramme de groupes (resp. de A-modules).

En principe, un diagramme n’est pas un objet mathématique, mais seulement
une figure, destinée a faciliter la lecture d’un raisonnement. En pratique, on se sert
souvent des diagrammes comme de symboles abréviateurs, qui évitent de nommer
tous les ensembles et toutes les applications que 'on veut considérer ; on dit ainsi
« considérons le diagramme (1) » au lieu de dire : « soient B, C, D, E, F cinq ensem-
bles... et v une application de C dans E » ; voir par exemple 1’énoncé de la prop. 1
du n° 2.

Considérons par exemple le diagramme suivant :

B—~.C 45D S E
@) bl cl d el
B'— C— D' — .

A tout chemin composé d’un certain nombre de segments du diagramme par-
couru dans le sens indiqué par les fléches, on fait correspondre une application de
Iensemble représenté par 'origine du premier segment dans I’ensemble représenté
par l'extrémité du dernier segment, savoir la composée des applications représentées
par les divers segments parcourus. Pour tout sommet du diagramme, par exemple
C, on convient qu’il y a un chemin réduit a C et on lui fait correspondre 'application
identique 1.

Dans (2), il y a par exemple trois chemins partant de B et aboutissant & D’; les
applications correspondantes sont dogof, g'occof et g'of’ ob. On dit quun
diagramme est commutatif si, pour tout couple de chemins du diagramme ayant
méme origine et méme extrémité, les deux applications correspondantes sont égales ;
en particulier si un chemin a son extrémité confondue avec son origine, 'application
correspondante doit &tre 'identité.

Pour que le diagramme (2) soit commutatif, il faut et il suffit que l'on ait les
relations :

) fleb=rcof, gloc=deg, Koed=eoh;

autrement dit, il faut et il suffit que les trois diagrammes carrés extraits de (2) soient
commutatifs. En effet, les relations (3) entralnent dogof = g'ecof puisque
dog=g'ocet gocof=g of ob puisque cof = f"ob; donc les trois che-
mins partant de B et aboutissant 4 D’ donnent la méme application. On vérifie
de méme que les quatre chemins partant de B et aboutissant & E’ (resp. les trois
chemins partant de C et aboutissant & E’) donnent la méme application. Les rela-
tions (3) signifient que les deux chemins partant de B (resp. C, D) et aboutissant
a C’ (resp. D', E’) donnent la méme application. Tous les autres couples de sommets
de (2) ne peuvent étre joints que par un chemin au plus, et le diagramme (2) est
donc bien commutatif.
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Par la suite, nous laisserons au lecteur le soin de formuler et de vérifier des résul-
tats analogues pour d’autres types de diagrammes.

2. Le diagramme du serpent
PROPOSITION 1. — Considérons un diagramme commutatif de A-modules
M~ NP
@ Lol
M’ ——u,—> N’ T) P/ .
On suppose que les deux lignes de (4) sont exactes. Alors :
(1) Si h est injectif, on a
(5) Im(g)nIm@)=Im@of)=Im(gou).
(il) Si f est surjectif, on a
(6) ~ Ker(g) +Im ) = Ker (v o g) = Ker (hov).

Prouvons (i). II est clair que I'on a
Im@ of)=Im(gou) = Im(g) »Im ().

Inversement, soit 3’ € Im (g) » Im (»'). Il existe y € N tel que y' = g(»). Comme
v'ou' =0, on a 0 =10'(y)=1(g9(y) = hlv(y), dout v(y) =0 puisque A est
injectif. Comme (u, v) est une suite exacte, il existe x e M tel que y = u(x), d’ou

y' = glu(x)).
Prouvons (ii). Comme vou =0 et v'ou’ = 0, il est clair que

Ker(g) +Im (u) = Ker (v og) = Ker (hov).

" Inversement, soit yeKer (v' o g). Alors g(y) € Ker (v'), et il existe x’ € M’ tel que
u'(x") = g(») puisque la suite (v, v’) est exacte. Comme f est surjectif, il existe
xeM tel que f(x) = x', dou g(») = u'(f(x)) = g(u(x)); on en conclut que
v — u(x) € Ker (g), ce qui termine la démonstration.

Lemme 1. — Considérons un diagramme commutatif de A-modules
M —5 N

(7) s l gl
M'— N'.

Alors il existe un homomorphisme et un seul u; : Ker (f) - Ker (g), et un homo-
morphisme et un seul u, : Coker (f) — Coker (g), tels que les diagrammes

Ker (f) —%> Ker (g)
® | i
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et
u

M N’

©) g g

Coker (f)—> Coker (9)

soient commutatifs, i et j désignant les injections canoniques, p et q les surjections
canoniques.
En effet, si x e Ker (f), on a f(x)=0 et g(u(x))=u'(f(x))=0, donc u(x) & Ker (g),
et 'existence et l'unicité de u, sont alors immédiates. De méme, on a
u'(fM)) = g(uM) = gN),
donc u' donne par passage aux quotients un homomorphisme
u, : Coker (f) — Coker (g),

qui est le seul homomorphisme pour lequel (9) soit commutatif.

Partons maintenant d’un diagramme commutatif (4) de A-modules; il lui cor-
respond en vertu du-4emme ! un diagramme commutatif

Ker (‘f)—“‘—» Ker (g)—> Ker (4)

4 j ‘

ES

M i N —4/— P
(10) 4 4 h ;
M — N — P

g 44

Coker (f) - Coker (g) - Coker (h)

ol i, j, k sont les injections canoniques, p, ¢, r les surjections canoniques, u,, 4,
(resp. vy, v,) les homomorphismes déduits de u, «’ (resp. v, v) par le lemme 1.

PROPOSITION 2. — Supposons que dans le diagramme commutatif (4), les suites (u, v)
et (W, v') soient exactes. Alors :

(1) Onav,ou, = 0;siu’ estinfectif, la suite (uy, v,) est exacte.

(i) Omav,ou, = 0;sivest surjectif, la suite (u,, v,) est exacte.

(iii) Supposons u’ injectif et v surjectif. Il existe alors un homomorphisme et un seul
d : Ker (h) - Coker (f) ayant la propriété suivante : si z € Ker (h),ye Netx' e M’
vérifient les relations v(y) = k(2) et u'(x") = g(y), on a d(z) = p(x"). De plus la suite

(x) Ker (f) 5 Ker (g) < Ker (h) ~& Coker ( f) 22 Coker (g) - Coker (h)

est exacte.
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{ A |

Ker (f) —— Ker(g) —— Ker(h) -
|
|
|
|
|
|

M —_— N —_— P
——— i, e e e 4
I ‘| )
E M’ — N’ —_ P’
oy 4 !
[

— Coker (f) e Coker (g) ——> Coker (h)

V2

Prouvons (i). Comme u, et v; ont mémes graphes que les restrictions de et v &
Ker (f) et Ker (g) respectivement, ona v, ou; = 0.On a

Ker (v;) = Ker (g) n Ker (v) = Ker(g) nIm () = Im (j) n Im (v) .

Mais d’aprés la prop. 1 (i), on a Ker (v,) = Im (jo u;) = Im (u,) si »’ est injectif.

Prouvons (ii). Comme u, et v, proviennent de et v par passage aux quotients, il est
clair que v, o u, = 0. Supposons v surjectif ; comme ¢ et p sont surjectifs, on a, en
vertu des hypothéses et de la prop. 1 (ii)

Ker (v;) = g(Ker (v 0 g)) = g(Ker (v') + Im (g)) = g(Ker (1)
= g(Im (u")) = Im (gou’) = Im (u, 0 p) = Im (uy) .

Prouvons enfin (iii). Pour z € Ker (h), il existe y € N tel que v(y) = k(z) puisque v
est surjectif ; en outre, on a v'(g(y)) = h(k(z)) = 0, et par suite il existe un unique
x' e M’ tel que w'(x") = g(y) puisque u' est injectif. Montrons que I’é¢lément
p(x") e Coker (f) est indépendant de ’élément y € N tel que v(y) = k(z). En effet, si
v, € N est un second élément tel que v(y,) = k(z), ona y; =y + u(x) oh xe M ;
moritrons que si x; € M’ est tel que #'(x]) = g(y,), ona x; = x' + f(x); en effet,
on a w(x' + f(x)=u(x) + w(f(x) = g(») + glux) = gly + u(x)) = g(yy).
Enfin, on en conclut que p(x}) = p(x’) + p(f(x)) = p(x’). On peut donc poser
d(z) = p(x') et on a ainsi défini une application d : Ker (h) —» Coker (f).

Simaintenant z,, z, sont des élémentsde Ker (h),sid,, A, € Aetz = Ay z;, + A, 25,
on prendra des éléments y, et y, de N tels que v(y,) = k(z,) et v(y,) = k(z,) et on
choisira pour y € N I’élément A, y, + A, y,; il est alors immédiat que

dz) = Ay d(zy) + A, diz,),
donc d est un homomorphisme.
Supposons que z = v,(f) pour un ¢ € Ker (g); on prendra alors pour y € N I’élé-
ment j (7). Comme g{j(#)) = 0, on en conclut d(z) = 0, doncdo v; = 0. Inversement,
supposons que d(z) = 0. Avec les notations précédentes, on a donc x' = f(x), ou
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x € M. Dans ce cas, on a g(¥) = u'(f(x)) = g(u(x)), ou encore g{y — u(x)) = 0.
L’élémenty — u(x)estdoncde la formej(n) pourn € Ker (g),etona

k(2) = v(y) = v(u(x) + j(n) = v(j(n) = klv,(n);

comme k est injectif, z = v,(n), ce qui prouve que la suite (x) est exacte en Ker (/).
Enfin, on a (toujours avec les mémes notations)

uy(d(2)) = uy(p(x) = qlu'(x")) = g(g(»)) = 0 donc uod=0.
Inversement, supposons qu'un élément w = p(x”) de Coker (f) soit tel que
u,(w) = u,(p(x)) = 0 (avecx' e M").

On a donc q(u'(x)) =0, et par suite u'(x’) = g(y) pour un ye N; comme
V(' (x")) = 0,onav'(g(y)) = 0,donc A(u(y)) = 0, autrement dit v(y) = k(z) pour un
z € Ker (h), et par définition w = d(z), ce qui montre que la suite () est exacte en
Coker (f). On a vu dans (i) qu’elle est exacte en Ker (g) et dans (ii) qu’elle est exacte
en Coker (g), ce qui achéve de prouver (iii).

COROLLAIRE 1. — Supposons que le diagramme (4) soit commutatif et ait ses lignes
exactes. Alors :

(1) Siu', f et h sont injectifs, g est injectif.

(iiy Siv, f et h sont surjectifs, g est surjectif.

L’assertion (i) est conséquence de l'assertion (i) de la prop. 2 : en effeton a
Ker (f) = 0 et Ker (h) = 0, donc Ker (g) = 0.

L’assertion (ii) est conséquence de ’assertion (ii) de la prop. 2 : en effet, on a
Coker (f) = 0 et Coker (h) = 0, donc Coker (g) = 0.

COROLLAIRE 2. — Supposons que le diagramme (4) soit commutatif et ait ses lignes
exactes. Dans ces conditions :

(1) Si g est injectif et si f et v sont surjectifs, alors h est injectif.

(ii) Sig est surjectif et sih et u' sont injectifs, alors f est surjectif.

Pour prouver (i), considérons le diagramme

uM) = N — P

ook

u'(M") - N’ - P’
ol f' est 'application ayant méme graphe que la restriction de g & u(M), w et w’
les injections canoniques ; il est clair que ce diagramme est commutatif et a ses lignes

exactes. En outre w' est injectif, et par hypothése v est surjectif ; on a donc par la
prop. 2 (iii), une suite exacte

Ker (g) — Ker (h) =% Coker () ;

puisque g est injectif et que f’ est surjectif, on a donc Ker (4) = 0.
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Pour prouver (ii), considérons le diagramme
M S N = p(N)
O T

M —= N —= p'(N’)

ou cette fois /' est 'application ayant méme graphe que la restriction de 4 & v(N),
et w et w' ont respectivement mémes graphes que v et v’ ; ce diagramme est commu-
tatif et ses lignes sont exactes. En outre w est surjectif et par hypothése u' est injectif’;
on a donc, par la prop. 2 (iii), une suite exacte

Ker (h') =% Coker (f) — Coker (g);

puisque g est surjectif et que 4’ est injeéat:, on a donc Coker (f) = 0.

CoRroLLAIRE 3 (Lemme des cinq). — Considérons un diagramme commutatif de
A-modules

U u u 123
M, > Mz'i»M3'i>M4_4_>M5

flL le fsl | f«‘ | fsl

’

M Ls My “= M) S M S My

out les lignes sont exactes.

(i) Sif; et f,sontinjectifs et f, surjectif, f, est injectif.

(ii) Si f, et f, sont surjectifs et fs injectif, f, est surjectif.

En particulier, si fi, f,, f4 et fs sont des isomorphismes, il en est de méme de f,.

Pour prouver (i), posons M, = Coker (u;), Mj = Coker (1;) et notons
f2 : M, — M} I'application déduite de f£,. Il résulte du cor. 2 (i) que f, est injectif.
En appliquant le cor. 1 (i) au diagramme

ou i, et #i, sont déduits de u, et u3, on voit que f; est injectif.

Pour prouver (ii), posons M, = Ker (u,), My = Ker (uy) et notons f, : M, - M,
I’application induite par f,. I1 résulte du cor. 2 (ii) que f, est surjectif. En appliquant
le cor. 1 (ii) au diagramme

M, Ly M 3 Ly M 4
A l fsl fll
M; e My S M

ou ii; et ii; ont méme graphe que uj et uj, on voit que f; est surjectif.
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3. Modules plats

DEFINITION 1. — On dit que le A-module E est plat, si pour toute suite exacte de
A-modules & droite et d’homomorphismes

(11) M-5M-5M,

la suite d’applications Z-linéaires

(12) M’ ®,E 425 M @, E-22L M’ @, E

est exacte.

PROPOSITION 3. — Pour que le A-module E soit plat, il faut et il suffit que, pour tout
A-homomorphiisme injectif u:M' — M de A-modules d droite, [’application
u®1:M ®,E —>M ®,E soit injective.

SiE est plat et u : M’ — M injectif, la suite 0 — M’ — M est exacte, donc aussi

lasuite0 — M’ ®, E+&L M ®, E, etu ® 1 est injectif. Inversement, considé-
rons la suite exacte (11) ; posons M| = v(M), et soit i : M{ — M” P’injection cano-

nique et p : M —» M lapplication m — v(m). La suite M’ M & M{-— 0

est exacte ; d’apreés IL, p. 58, prop. 5, lasuite M’ ® , E 424 M ® , E-22L M/ ®, E
est donc exacte. Par ailleurs, on a v = iop, donc W@ DN =GR Do (p ®1);
si E satisfait a la condition de I’énoncé, alors i ® 1 est injectif, donc

Kero@D)=Ker(p®@1)=Im@u® 1)
et la suite (12) est exacte.

PROPOSITION 4. — (i) Soient (E,); ., une famille de A-modules, E = @ E, leur somme
iel
directe. Pour que le A-module E soit plat, il faut et il suffit que chacun des E, le soit.

(i1) Soient Lun ensemble préordonné filtrant a droite, (E,, fy,) un systéme inductif de
A-modules relatif a1, E = ll_m) E, sa limite inductive. Si chacun des A-modules E,
est plat, alors E est plat.

Soit M’ - M — M" une suite exacte de A-modules & droite. A -

(i) Pour que la suite @ M ®,E)> P M®®,E)> P M ®,E) soit

iel iel iel
exacte, il faut et il suffit que chacune des suitess M’ ® , E; > M ®, E; > M" ®, E,
le soit (II, p. 13, prop. 7) ce qui démontre (i) puisque @ (M ® , E,) s’identifie cano-
niquementaM ®, E(IL,p. 61, prop. 7).

(i) Par hypothése, chacune des suites M’ @, E; > M ®, E, > M” @, E; est
exacte, donc aussilasuite M’ ® , E - M ®, E - M” ®, E, puisque le passage a la
limite inductive commute avec le produit tensoriel (II, p. 93, prop. 7) et conserve
I’exactitude (I, p. 91, prop. 3).
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Exemples. — 1) Il est clair que A, est un A-module plat; il résulte alors de la
prop. 4 (i) que tout A-module libre, et plus généralement tout A-module projectif,
est plat (voir aussi II, p. 63, cor. 6).

* Inversement, tout A-module plat de présentation finie est projectif (n° 5). ,

2) D’aprés la prop. 4 (i), tout A-module qui est limite inductive d’un systéme
inductif filtrant de A-modules libres est plat. Nous démontrerons une réciproque
au n° 6.

3) Si A est semi-simple, tout A-module est projectif (VIIL, § 5, nv 1, prop. 1)
donc plat.

4) *Si A est un anneau local artinien (non nécessairement commutatif), un A-
module est plat si et seulement s’il est libre (AC IL, § 3, n° 2, cor. 2 de la prop. ). ,

S) Si A est integre, le corps des fractions K de A est un A-module plat (II, p. [ 18,
prop. 27).

6) * En AC II et III, nous étudierons deux exemples importants de A-modules
plats lorsque A est commutatif : les anneaux de fractions S™! A, et lorsque A est
neethérien, les séparés complétés de A pour les topologies J-adiques. |,

7) Soita € A tel que I'application a, : x — ax de A dans A soit injective (« a n’est
pas diviseur & gauche de 0 »). Si E est un A-module plat, alors 'homothétie ag est
injective, puisque s'identifiant a a, ® 1 : A; ®4 E - A; ® 4 E. En particulier, si A
est intégre, tout A-module plat est sans torsion. Inversement, si A est principal, tout A-
module sans torsion est plat : en effet, si le A-module E est sans torsion, tout sous-
module de type fini de E est libre (VII, § 4, n© 4, cor. 2 au th. 4), et E est réunion
filtrante croissante de sous-modules plats, donc est plat (prop. 4 (ii)).

8) Soient B un anneau et p : A —» B un homomorphisme. Si E est un A-module
plat, le B-module Ez = B ®, E est plat. Soit en effet # : N’ - N un homomor-
phisme injectif de B-modules a droite ; alors u ®p 1, s’identifie canoniquement a
I’homomorphisme u ®, 1g : N'®, E - N ®4 E, qui est injectif si E est plat.

9) Supposons que A = K[X, Y], ou K est un corps. Alors I'idéal maximal m
engendré par X et Y est un A-module sans torsion, mais non plat. Considérons en
effet 'anneau B = A/(Y), qui est isomorphe & K[X], donc intégre. Le B-module m g,
est isomorphe & m/Ym = (X, Y)/(XY, Y?) dans lequel la classe de Y est de torsion.
‘Par suite, m, n’est pas un B-module plat, donc m n’est pas plat.

10) Supposons A commutatif. Soit B l'algébre A[X,, ..., X,)/(P), ol P est un
polynéme non nul. Pour tout idéal premier p de A, notons k(p) le corps des fractions
de I’anneau intégre A/p, E(p) l'algébre x(p) [X4, ..., X,] et P(p) I'image de P dans
E(p) par l'application canonique.

On peut montrer que, pour que B soit un A-module plat, il suffit que P(p) # 0
pour tout idéal premier p de A. Si A est intégre, cette condition est nécessaire.

* En langage géométrique, considérons la projection 7 : Spec (B) — Spec (A).
Pour tout p € Spec (A), la fibre n~1(p) s’identifie & la sous-variété V, de l'espace
affine A%, = Spec (E(p)) définie par P(p), et 'ensemble F des p pour lesquels cette

k(p)
sous-variété est I’espace tout entier (i.e. pour lesquels P(p) = 0) est un fermé de
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Spec (A). La condition précédente signifie que ce fermé est vide, autrement dit que
pour tout p la sous-variété V, est une hypersurface dans A %

11) * Soient S et X deux espaces analytiques complexes et f : X — S un mor-
phisme. On dit que f est plat en un point x de X si O ,, considéré comme Og g
module au moyen de ’homomorphisme f* : Og ., = Ox . est plat. L’ensemble
des points de X ou f est plat est un ouvert de X, et la restriction de f a cet ouvert
est une application ouverte. Si X et S sont des variétés analytiques connexes de
dimension finie, f est plat (en tout point de X) si et seulement si f(X) est ouvert
dans S et les fibres f~1(s), pour s € f(X), ont toutes la méme dimension.

4. Modules de présentation finie

On appelle présentation (ou présentation de longueur 1) d’un A-module E une suite
exacte

(13) L,-L,-E—-0

de A-modules o1 L, et L, sont libres.

Tout A-module E admet une présentation. On sait en effet (II, p. 27, prop. 20) qu’il
existe un homomorphisme surjectifu : L, — E, ot L, est libre ; si R est lenoyau de u,
il existe, de méme un homomorphisme surjectif v : L; — R ott L, est libre. Si ’on
considére v comme un homomorphismede L, dans L, lasuiteL, % L, % E— 0
est exacte par définition, d’ol notre assertion.

Si p: A — B est un homomorphisme d’anneaux, toute présentation (13) de E
fournit une présentationde Ez) = B ® , E :

(14) B®,L,-B®,L,-B®,E—>0

en vertu de II, p. 58, prop. 5 et du fait que B ® , L est un B-module libre lorsque L
est libre.

On dit qu’'une présentation (13) d’un module E est finie si les modules libres L,
et L, ont des bases finies. Il est clair que si la présentation (13) est finie, il en est de
méme de la présentation (14). On dit que E est un A-module de présentation finie
s’il admet une présentation finie.

PROPOSITION 5. — (i) Tout module admettant une présentation finie est de type fini.
(ii) Si A est un anneau nethérien d gauche, tout A-module de type fini admet une
présentation finie.
(iii) Tout module projectif de type fini admet une présentation finie.

L’assertion (i) résulte trivialement des définitions. Supposons A ncethérien a
gauche et E de type fini. Il existe alors un homomorphisme surjectif « : L, —» E,
ou L, est un A-module libre ayant une base finie ; le noyau R de u est de type fini,
donc il y a un homomorphisme surjectif v : L; - R ol L, est libre de base finie,
et la suite exacte L, — L, — E 0 est une présentation finie de E ; d’ou (ii).
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Enfin, supposons que E soit un module projectif de type fini; il est alors facteur
direct d’un module libre de type fini L, (II, p. 40, cor. 1); le noyau R de ’homomor-
phisme surjectif L, — E est alors isomorphe & un quotient de L, donc est de type
fini, et on termine comme ci-dessus.

PROPOSITION 6. — Soient A un anneau, E un A-module de présentation finie. Pour
toute suite exacte

0—F-LGZ-E—0
ot G est de type fini, le module F est de type fini.

Soit L; 4 L, — E — 0 une présentation finie; si (e;) est une base de L, il
existe pour chaque i un élément g; € G tel que p(g;,) = s(e;) ; 'homomorphisme
u:Ly, —» Gtelqueu(e;)) = g;pour toutiestdonctelques = pou. Commesor = 0,
onau(r(L,)) = Ker p, et comme Ker p est isomorphe & F, on voit qu’il y a un homo-
morphisme v : Ly — F tel que le diagramme

L, > 1L, —> E — 0

R

soit commutatif. Comme j est injectif et s surjectif, on peut appliquer la proposi-
tion 2 de X, p. 4, autrement dit il y a une suite exacte

Ker 1z ~& Coker v — Coker u — Coker 1 .

Ceci montre que Coker v est isomorphe a G/u(L,), qui est de type fini par hypothese.
On a en outre la suite exacte

0—ovL,)—> F— Cokerv — 0
et comme v(L,) et Coker v sont de type fini, il en est de méme de F (I, p. 17, cor. 5).

PROPOSITION 7. — Soit M un A-module. Il existe un ensemble ordonné 1 filtrant a
droite et un systéme inductif de A-modules de présentation finie (M,, @g,) relatif da 1
tel que M soit isomorphe d lim M,. Si M posséde un systéme générateur de n éléments,
on peut supposer qu’il en est de méme des M.

Considérons une présentation
K u Ly_v .
A( ) U, A( ) Y, M— 0 ;

soit I ’ensemble des couples o = (K’, L), oit K’ (resp. L’) est une partie finie de K
(resp.L), tels que u induise une application u, du sous-module A¥" de A® dans le sous-
module AL de A% ; pour o € I, soit M, le conoyau de «, et v, : AY — M, Iapplica-
tion canonique, de sorte que 'on a un diagramme commutatif & lignes exactes :

AKX o AL o M — 0

b A

oo .o
A¥ = A S M, — 0,
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oll i, et j, sont les injections canoniques, et ol f, est déduit de j, par passage aux
quotients. Ordonnons ’ensemble I par la relation

a=K,LY<p=K"L") si K'<«K", L'cL”;

poura < B, soit @g, : M, —» M ’homomorphisme déduit par passage aux quotients
de I'inclusion de AL dans AL". On vérifie alors aussit6t que 'ensemble ordonné I est
filtrant, que (M, , @4,) €st un systeéme inductif de A-modules et que (¢,) est un systeéme
inductif de A-homomorphismes. Par passage a la limite inductive, on obtient un
diagramme commutatif

AR e AL 2 M s 0
= v

lim AY — lim AY — lim M,— 0 ;

— — —

les lignes de ce diagramme sont exactes (II, p. 91, prop. 3) ; puisque i et j sont bijectifs,
o l’est aussi (X, p. 7, cor. 3), d’ot1 la proposition.

5. Homomorphismes d’un module de présentation finie

Soit E un A-module. Si I est un ensemble préordonné filtrant et (G;, u;) un systeéme
inductif de A-modules relatif & I, les applications canoniques G; — lim G; induisent
des homomorphismes Hom,(E, G;) - Hom,(E, lim G;), d’olt un h_c;r-ﬁomorphisme
dit canonigue -

(16) 11? Hom,(E, G,) — Hom,(E, 11%1 G).

Soient B un autre anneau, F un B-module, G un (A, B)-bimodule ; on a défini en
II, p. 75 un homomorphisme canonique :

(17) Hom,(E, G) ®; F - Hom,(E, G ®; F) .

ProOPOSITION 8. — a) Si le A-module E est de type fini (resp. de présentation finie),
["homomorphisme canonique (16) est injectif (resp. bijectif).
b) Supposons que le B-module F soit plat ; si le A-module E est de type fini (resp.
de présentation finie), I’homomorphisme canonique (17) est injectif (resp. bijectif).
Démontrons par exemple b), la démonstration de a) étant analogue. Considérons
A, B, F, G comme fixés, et, pour tout A-module a droite E, posons

T(E) = Hom, (E, G) ®s F, T'(E) = Hom, (E, G ®g F)

et notons vg ’homomorphisme (17); pour tout homomorphisme v : E —» E’ de
A-modules a droite, posons T(v) = Hom (v, 1g) ® lget T'(v) = Hom (v, g ® 1p).
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Soit L; ~ L, =% E — 0 une présentation de E; nous supposons le module libre
Lo (resp. les modules libres L, et L,) de type fini. Le diagramme

0 - T(E) % T(Ly) % T(Ly)

a N

0+ T(B) 7> TLo) 7 TL)

est commutatif, et sa seconde ligne est exacte (Il, p. 36, th. 1); en outre, la suite
0 - Hom, (E, G) -» Hom, (L,, G) - Hom, (L,, G)

est exacte (Joc. cit.), et comme F est plat, la premiere ligne de (18) est aussi une suite
exacte (X, p. &, déf. 1). Cela étant, on sail que v, est bijectif (resp. que vi, et vy,
sont bijectifs) (IT, p. 75, prop. 2). Si on suppose seulement v bijectif, il résulte
de (18) que vp, o T(w) = T'(w) o v est injectif, donc vg I'est aussi. Si on suppose
que v, et v, sont tous deux bijectifs, on déduit du cor. 2 (ii) de X, p. 6 que v est
surjectif, et comme on vient de voir que vg est injectif, il est bijectif.

COROLLAIRE. — Tout module plat et de présentation finie est projectif.
Soit en effet E un A-module plat et de présentation finie. Appliquant (b) au cas
B = A, G = A, F = E, on voit que ’homomorphisme canonique

Hom, (E, A) ® , E - Hom, (E, E)
est surjectif. Cela implique que E est projectif (II, p. 77, remarque 1).

- D’apres le corollaire précédent et la prop. 5 de X, p. 10, il y a identité entre
modules plats de présentation finie et modules projectifs de type fini. En revanche,
il existe des modules plats de type fini qui ne sont pas de présentation finie, donc qui
ne sont pas projectifs (¢f. X, p. 170, exercice 17, voir toutefois X, p. 169, exercices 13
et 14).

6. Structure des modules plats

Lemme 2. — Soient 1 un ensemble ordonné filtrant d droite, (E,, @p,) un systéme
inductif d’ensembles relatif a 1, E sa limite inductive et ¢, : E, > E, a €1, les appli-
cations canoniques. Soit f :1 — 1 une application telle que f(o) > o pour a el et
supposons donnés, pour chaque o € 1, un ensemble L, et des applications u, : E, - L,
et v, : L, = E;q) telles que v, 0uy = Qe Soit J I’ensemble ordonné obtenu en
munissant 1 de la relation «o < Bsio = Bouf(o) < P». Sia, BeJaveca < B,
soit g, : Ly = Ly Papplication telle que Vg, = Id si o = B, Vpy = tUp 0 Qg ey © Vg
si f(@) < B. Si ael, soit Y, : L, » E Dapplication @y, o v, Alors Iensemble
ordonné J est filtrant, (L,, \Vg,) est un systéme inductif relatif a J, (\1,) est un systéme
inductif d’applications et I’application lln) L, — E déduite des \, est bijective.

ael)
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11 est clair que J est filtrant. Si o, feJ avec o < B, on a

Vg o Wpy = @y © Up oty © Pp s © Uy
= Qrp)° Prp)p® Pps)® Ve = Priy© Vs = Vo 3

de méme, sia, B, yeJaveca < f <y, ona

Vg © Wpy = Uy © Py sy © Vp 0 Up © P 1) © Uy

= Uy © Py p(p) © Pripr.p © Ppusia) © Vs = Uy © Py 1 © Vs = Wia -
Démontrons la derniére assertion : pour chaque a€J, on a

\I’a ° uu = (pf(a) ° Uu © ua = (pf(u) ° (pf(a),a = (pu ’

donc @ (E,) = Y (u,(E,)) = Y (L,), et \ est surjective. Soit o €J et soient x, y € L,
avec \lja(-x) = \p:z(y)’ 18 (pf(a)(va(x)) = (Pf(a)(va(y)); 11 eXiSte BE L B > f(d) tel que

Pp, 1 (ta(X)) = g, y(v(¥)) »
donc
Vpa(X) = Up(@p, re(Va(x)) = 1p(Pp, s (Va(¥))) = Ypo(3) -
- et \r est injective.

THEOREME 1 (D. Lazard). — Pour tout A-module E, les conditions suivantes sont
équivalentes :

(i) E est plat.

(i) Pour tout A-module P de présentation finie, I’homomorphisme canonique

Hom, (P, A) ®4, E - Hom, (P, E)

est surjectif.

(iii) Pour tout A-module P de présentation finie et tout homomorphisme u : P — E,
il existe un A-module L libre de type fini et des homomorphismes v :P - Letw :L > E
tels que u = wo .

(iv) Il existe un ensemble ordonné filtrant J, un systeme inductif de modules libres de
type fini(L)); . yetunisomorphisme de E surE)n L,

(iv) = (i) : cela résulte de la prop. 4 (ii) de X, p. 8.

(i) = (ii) : cela résulte de la prop. 8b) de X, p. 12.

(i1) = (iii) : soient P un A-module de préséntation finie et u : P —» E un homomor-
phisme; d’apres (ii), il existe vy, ..., v, € Homy (P, A), wy, ..., w, € E tels que
u(x) = Y, v(x) w; pour tout x e P; si v : P > A" est 'hormomorphisme de compo-
santes (v;) et w : A" - E I'homomorphisme (;)— ) a;w;, on a bien u = wouv.

(iii) = (iv) : supposons (iii) vérifiée, et soit (E,, @p,) un systéme inductif, relatif a
un ensemble filtrant I, de A-modules de présentation finie, de limite inductive E
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X, p. 11, prop. 7). Quitte a remplacer I par le produit lexicographique I x N, avec
E.n = E, pour tout n, on peut supposer que I n’a pas de plus grand élément. Pour
chaque o € I, soient L, un A-module libre de type finietu, : E, - L, v, : L, — E des
homomorphismes tels que v, ¢ u, soit 'application canonique ¢, de E, dans E;
puisque L, est libre de type fini et I sans plus grand élément, il existe un indice B > a et
un homomorphisme v, : L, — Egtels que v, = ¢go vy ; puisque @gotvyou, = @gopg,
et que E, est de présentation finie, il résulte de la prop. 8a) de X, p. 12, qu’il existe
Y = B tel que @ g0 050U, = @50 Qg = P ; posons ¥ = f(a) et soit v, 'homo-
morphisme @, 0 v, de L, dans E, ; ona v, o 4, = @, 4. On peut alors appliquer le
lemme 2, d’ou (iv).

COROLLAIRE. — Supposons A commutatif. Pour tout A-module plat E, les A-modules
T(E),S(E), A(E), T*(E), S"(E), A"(E) sont plats.

En effet, E est la limite inductive d’un systéme filtrant (L)) de A-modules libres de
type fini, donc T(E) (resp. S(E), etc.) est limite inductive du systéme filtrant des A-
modules libres T(L,) (resp. S(L)), etc.), donc est plat (cf. IIL, p. 61, prop. 6, p. 62, th. 1,
p- 73, prop. 8, p. 75, th. 1, p. 83, prop. 9, et p. 86, th. 1).

Remarque. — Considérant dans (ii) une présentation finie Al — Al - P — 0,
on obtient la condition (ii") encore équivalente aux précédentes :
(ii") Pour toute matrice finie (c;)); v jy @ éléments de A, toute solution

¢ = () eE

du systéme d’équations linéaires et homogénes

zcij€i=0, ]GJ,

iel

peut sécrire b,z + -+ b,z,, ou by, ..,b,€E et ou, pour r=1,..,n,
2z, = (2, )i 1 €t une solution dans A' du systéme d’équations

er,i.cijzos JGJ
iel
7. Modules injectifs

DEFINITION 2. — On dit que le A-module E est injectif si, pour toute suite exacte de
A-modules et d’homomorphismes

(19) M-LH5M-5HM,

la suite d’applications Z-linéaires

(20) Hom, (M", E) He2ale:d, Hom, (M, E) Hematl, Hom, (M, E)

est exacte.
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Lemme 3. — Pour que le A-module E soit injectif, il faut et il suffit que, pour toute
application A-linéaire injectiveu : M' - M, Iapplication

Hom, (4, 1) : Homy, (M, E) - Hom, (M, E)
SOit surjective.

Si E est injectif et siz : M’ — M est injectif, alors la suite 0 - M’ —% M est exacte,
donc aussi la suite Hom (M, E) 224 Hom (M’, E) - 0, et Hom (i, 1) est sur-
jectif. Inversement considérons la suite exacte (19): posons M7 = (M) et soient
i : M{ — M" Pinjection canonique et p : M — M{ I'application m — v(m). La suite
M- M & M{ — Oestexacte ;d’aprésIl, p. 36, th. 1, la suite

Hom (p,1) Hom (u, 1)
— Hom, (M, b)) ————

Hom, (M7, E) Hom, (M, E) Hom, (M, E)
est exacte. Par ailleurs, on a Hom (v, 1) = Hom (p, 1) o Hom (i, 1). Si E satisfaita la
condition du lemme, Hom (i, 1) est surjectif, donc I'image de Hom (v, 1) est aussi

celle de Hom (p, 1), et la suite (20) est exacte.

Remarque. — Soient E un A-module injectif, u : M’ — M et f : M’ — E des homo-
morphismes de A-modules. SiKer u < Ker f; il existe un homomorphismeg : M — E
telque g o u = f. Celarésulte en effet de ce qui précéde appliqué & ’homomorphisme
injectif M'/Ker u — M déduit de u.

PROPOSITION 9. — Soient (E)), ., une famille de A-modules, E = [ E; leur produit.
Pour que le A-module E soit injectif, il faut et il suffit que chacun des E; le soit.

Soit u : M’ - M un homomorphisme injectif de A-modules. Pour que 'homo-
morphisme produit [[ Homs (M, E)) — [ Hom, (M’, E)) soit surjectif, il faut et

iel iel

il suffit que chacun des homomorphismes Hom, (M, E;) - Hom, (M’, E)) le soit
(11, p. 10, prop. 5); cela démontre la proposition puisque [[ Homa (M, E,) s’iden-
tifie canoniquement &4 Hom, (M, E). Pel

PropPOSITION 10. — Soit E un A-module. Pour que E soit injectif, il faut et il suffit que,
pour tout idéal a de A et tout A-homomorphisme [ :a — E, il existe ec E tel que
f(a) = ae pour tout a € a.

Supposons E injectif ; soient a un idéal de A, f : a - E un A-homomorphisme,
et notons i : a = A linjection canonique. Alors 'application

Homy (i, 1) : Homy, (A, E) - Homy (a, E)
est surjective (déf. 2); si g e Hom, (A, E) est tel que f=goi, ona
fa) = g(a) = ag(1)
pour tout g € a.

Inversement, supposons la condition de I’énoncé vérifiée, soient M un A-module,
N un sous-module de M, 1 : N - E un A-homomorphisme, et prouvons qu’il existe
un A-homomorphisme # : M — E prolongeant u (¢f. lemme 3). Soit 2 I’ensemble
des couples (P, v) oli P est un sous-module de M contenant N et v un homomorphisme
de P dans E prolongeant u. L’ensemble 2 ordonné par la relation de prolongement



