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Foreword 

Because of PHP’s humble beginning as a hackers’ project – an attempt to develop an easy and enjoyable 
way to develop web sites – nobody expected it to become nearly as popular as it is today.  

Over the years we’ve used many different metrics to measure PHP’s popularity, looking at the 
number of web sites that have PHP deployed on them, the number of PHP books on sale at 
Amazon.com, the amount of prominent companies using PHP, the number of PHP-based projects, the 
size of the communities that create them, and so on.  

And then, there was one other, much less “scientific” metric. 
Back in 2008, when I was on my honeymoon with my wife, Anya, we stayed at a small hotel called 

Noster Bayres in Buenos Aires. We arrived after a long flight, visiting a brand-new country full of new 
faces and things we’d never seen before. Imagine my surprise when, after I filled in my hotel registration 
form, the receptionist asked me if I was Suraski, “that PHP guy.” It turned out that he was developing a 
social network for the San Telmo neighborhood in PHP. 

Although all of the previous metrics were rock-solid proof of PHP’s extreme reach, importance, and 
popularity, for me, this incident in a small hotel halfway across the world sealed the deal. If the 
receptionist at that hotel was writing PHP, we were most certainly mainstream. 

Almost three years later, advanced PHP skills are essential to any power web developer, and 
arguably – with the explosive growth of web and HTTP-based communications – to any and all 
developers. Pro PHP Programming guides you through some of the more advanced aspects of modern 
PHP development, including object orientation, mobile application development, and scalable data 
sources that can be important for cloud-enablement. I’m sure the knowledge you’ll gain will be an 
important part of your toolset going forward, and will help you avail of the advanced features of PHP 5.3 
to their fullest. Happy PHP-ing! 

 
Zeev Suraski, CTO, Zend 
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Introducing PHP 

W elcome to yet another book on the great programming language of PHP. This book is unique in that it 
focuses on higher-end materials and more advanced, cutting-edge topics. We have kept it as modern as 
possible with the fast-paced world of the Internet. We take the reader from an intermediate level to a 
more advanced level of this great programming language. 

Origins of PHP 
PHP began as a project led and designed by Mr. Rasmus Lerdorf. In June 1995, he released version 1.0 of 
Personal Home Page Tools (its original product name). It was a small collection of functions that helped 
to automate the creation and maintenance of simple home pages on the then-burgeoning Internet. 
Since then, PHP has grown by leaps and bounds to where it is today at version 5.3.4 (at the time of 
writing). PHP was one of the first web development programming languages to be open source from the 
outset. Lerdorf was visionary enough to see the need and the potential for a tool and language that could 
grow with this vein of the Internet community and expand far beyond it as well. 

What Is PHP? 
So then, what exactly is PHP? What does it look like and “feel” like in its current version? Well, in its 
simplest terms, PHP is merely an HTML markup generator. If you look at the source code of a PHP-
generated web page, you will see only HTML tags; maybe some JavaScript as well, but no raw PHP code. 
Of course, that is an overly simplistic view of the language that has captured between 35 and 59 percent 
(depending on the source) of the languages in use for web development. Whatever number you settle 
on, PHP is the single most popular web development language on the market today.  

When I use the term “on the market,” you also have to appreciate that PHP is free. Yes, free! It is an 
open source product, so in reality there isn’t an actual market for it. So it has done very well in terms of 
popularity and range of use for a product that is led and steered by no one entity or personality. 

■ Note For more information on open source, be sure to read “The Cathedral and the Bazaar” by Eric S. 
Raymond for comparisons of open source products (Bazaar) and closed source products (Cathedral). You can find 
it here: www.catb.org/~esr/writings/cathedral-bazaar/. 
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Actually, Zend Corporation (zend.com) is probably the leader of the PHP world in that it has built 
many additional products to support and enhance PHP, and it is a key player in its guidance, since the 
two founding members of the company – Zeev Suraski and Andi Gutmans – have really taken up the 
gauntlet since version 3 of the product.  

PHP is also very open and forgiving in its language structure, in that it is loosely typed (among other 
things). This means that variables don’t have to be defined in the type of data that they will hold prior to 
their use in the way that some other programming languages do. Rather, it interrogates the data and 
tries to determine its data type based on the content the variable is holding at the time. This means, for 
example, that a variable called $information can have many different values during the execution of a 
code file. This can also be a drawback in some ways, because the data could change during the running 
of the code and therefore negate some code segments that may be expecting an integer but receiving a 
string.  

PHP can also be written with an object-oriented programming (OOP) design in mind. Classes, 
properties, and methods; inheritance, polymorphism, and encapsulation are all part of the language. 
This adds a lot of robustness and re-use to code and allows for more ease of use overall. Of course, the 
OOP approach to programming has been around for a long time in technology-years, and PHP has been 
adopting and expanding on its integration for a few good years now as well.  

Another valuable feature that PHP possesses is that it can be run from the command prompt (Linux 
or Windows), and can therefore be used in scheduled un-attended (CRON) scripts. This added level of 
flexibility is wonderful because you (the programmer) do not have to learn another language to 
accomplish different tasks while working on the server environment. You can generate web pages with 
the same language that you use to manage the file system (if you so choose). 

PHP also has many integration points; it is a very open language, to say the least. PHP can be used 
for many things other than straight web development. Combine it with a database source through an 
appropriate connecting library, and you can have a very dynamic web presence even a web application. 
Combine it with an additional library (tcpdf, for example), and you can generate Adobe PDF documents 
on the fly. These are just two examples and we will be covering a lot of these add-on libraries throughout 
this book, so stay tuned! 

High- Level Overview of This Book 
So what do we hope to accomplish with this book for you, the reading programmer? We have made every 
effort to make this diatribe of current, cutting-edge value so that you will be aware of and able to use 
some of the most recent features and integrations of PHP. We are not spending time on the more 
simplistic topics of the language, such as what is a variable or how to write for / next loops.  

It is our desire that you become a more advanced PHP programmer overall, and that this material 
may even assist you in becoming ready to take and pass the Zend Certified Engineer’s exam. Following is 
a brief summary of what will be covered in each chapter. 

Chapter 1: Object Orientation 
This initial chapter is designed to get you ready for many of the concepts and code examples that will be 
coming in the remainder of the book. We introduce some basic concepts of OOP and how it is 
implemented in PHP, and then get into some of the more advanced issues right away. Be sure you really 
understand this chapter before going too far into the following chapters. 
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Chapter 2: Exceptions and References  
Here we follow up on some of the OOP concepts and get into exception coding with try / catch blocks. 
This is a more elegant way of handling potential errors in your PHP code, and it is quite a powerful 
approach once it is mastered. This is followed by a discussion on reference coding and what it means in 
relation to the classes and functions that you may be using. 

Chapter 3: PHP on the Run (Mobile PHP)  
This world is getting more mobile-dependant; we see smaller and more powerful devices being released 
all the time. Apple, RIM, HTC, and many others are trying to capture the mindshare of this lucrative 
market. But there need to be applications available for these devices, and in this chapter we show you 
some ways that PHP is growing and adapting to also embrace this shift in mobility. 

Chapter 4: Social Media and PHP  
In a similar vein of technological growth, the rapid expansion of social media use is also being greatly 
assisted by PHP. Most of the forward-facing aspects of Facebook, for example, are written in PHP. Many 
other sites like Flickr, portions of Yahoo!, and even many blog applications are heavily dependent on 
PHP. In this chapter, we look at some of the interfaces that exist for integration with these social media 
sites. 

Chapter 5: Cutting-Edge PHP 
In its current release at the time of writing, version 5.3.4, PHP has many new features added to its actual 
language. Many of these features were slated for the long-awaited version 6.0, but because some of the 
features were ready before others, this initial collection was released as 5.3. In this chapter, we will be 
looking at some of the “best” of these new features and how they can be employed in your web projects. 

Chapter 6: Form Design and Management 
Here we take a little more time going over the features and techniques that can be implemented in 
designing and managing data entry forms. Controlling the data that is entered into them, responding to 
bad data (invalid date formats for example), and how to gracefully get that data into a web system. 

Chapters 7 and 8: Database Interaction 
Of course, one of the major aspects to web development these days is the ability to store and display 
data that is coming from a data source. In these two chapters, we look at the many different ways that 
data can be manipulated. From smaller footprint databases like those of the NoSQL variety to the big 
iron database engines like MySQLi and the techniques we can gather from using additional tools like 
PDO and Sphinx. 
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Chapter 9: Oracle 
PHP and Oracle have a special connection when it comes to extra-large data sets. In this chapter, we are 
looking at matters that are specific to this relationship and how to make the most of their “union.” 

Chapter 10: PHP Libraries  
As was mentioned already, PHP is very open to working with other libraries. In Chapter 10, we take a 
look at some of the more popular and advanced of these libraries. Being able to generate PDF forms on 
the fly, consume RSS feeds, generate professional e-mail, and integrate with Google maps are just a few 
of the library integrations that will be covered in this chapter. 

Chapter 11: Basic PHP Security 
Naturally it would not be a complete book if we did not cover the latest techniques in web security. 
Chapter 11 covers this large topic. We look at the most secure (currently) encryption algorithm called 
SHA-1. Other topics covered are protecting data that is being input to the web system as well as data that 
is going out from the web system. 

Chapter 12: Team Development with Zend Studio 
This chapter goes on a little tangent in that it is not purely a PHP topic. Here we look at how to use one of 
the more popular Integrated Development Environments (IDEs) for PHP development, Zend Studio for 
Eclipse. With Zend Studio, we look at how a team of developers can work together in an agile way (have 
you heard of Extreme Programming?) We will look at the use of SVN, Bugzilla, and MyLyn all working in 
concert to make the job of a team more productive on many fronts. 

Chapter 13: Refactoring Unit Testing 
This is actually an extension of what is covered in the previous chapter. There is more coverage here on 
what can be done to make PHP development more agile in how to program it. Refactoring and unit 
testing are the focus here, and you will learn how to make good use of them both in your day-to-day 
coding projects. 

Chapter 14: XML and PHP  
XML use has certainly become more mainstream over the years since it first became a buzzword. In this 
chapter, we look at how to use SimpleXML to consume XML from an outside source. We also cover the 
ability to generate XML data from within our own systems for use by others.  

Chapter 14: JSON / Ajax 
Again, we take a little step away from pure PHP with the look into the JSON library and how we can use it 
along with Ajax to make our web applications more responsive.  
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Chapter 15: Conclusion 
In this last chapter, we look at additional resources for PHP that we could not fit into this book. Here we 
look at the many web resources available and some of the magazines and conferences that can deepen 
your knowledge and understanding of this great language and community. 

The Future of PHP 
This is a topic that I find hard to write about. With PHP being a true open source product, it is hard to 
really predict what direction the community will take in the near and distant future. I have implicit faith 
in this community however; in the years that I have been a PHP programmer, I have yet to really see a 
misstep taken by this collective. I know that the mobile aspect of our lives will continue to grow and 
expand, and PHP is already taking steps to fully embrace this truth. What else will happen in the near 
future? Maybe some more integration with telephony in the aspect of smart-phones and data 
interoperability. Possibly more expansion into voice recognition technology and web applications—who 
knows? I do know from my experiences so far that PHP and its supporting community will continue to 
have its finger on the pulse of the world of technology and they will not let us down. 

Looking to the future of PHP is a comforting thing to do; it’s like looking at a beautiful sunrise 
knowing that the coming day can only get better as it goes along. 
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Object Orientation 

The purpose of this chapter is to introduce the basic concepts of object orientation. What does it actually 
mean to say, “PHP is object oriented?” The simplest answer is that PHP allows for the definition and 
hierarchical organization of user data types. This book is about PHP 5.3, which introduced some new 
elements to PHP object apparatus. PHP underwent a fairly radical change since the version 4, which also 
included rudimentary object-oriented (OO) capabilities. In PHP 4, for instance, it wasn’t possible to 
define visibility of methods and members. In PHP 5.3, namespaces were added.  

In this chapter we will introduce the ideas of classes, inheritance, object creation, and interface 
definition. We will also introduce some less elementary stuff, like iterators. So, let’s get started. 

Classes 
Classes are simply user defined types. In OO languages, a class serves as a template for creating objects 
or instances (functional copies) of that class. A class contains the description of the common 
characteristics of all items belonging to it. The purpose of a class (or classes) is to encapsulate object 
definition and behavior, and to hide its actual implementation from the end user and to enable the end 
user to employ the class objects in the documented and expected way. Encapsulation also makes 
programs smaller and more manageable, because the objects already contain the logic needed to handle 
them. There is also a feature called autoloading that helps with breaking scripts into smaller, more 
manageable pieces. 

Before we see a simple example of a PHP class, let’s introduce some more terminology: 

• Class member or property: A variable, data part of the class 

• Class method: A function defined within a class 

Now we will define a class for a point in a 2-dimensional plane, defined with its Cartesian 
coordinates (see Listing 1-1). As it is designed purely for instructional purposes, this class has several 
serious drawbacks. We recommend that you don’t use it as a code base for any code of your own. 

Listing 1-1. A 2D Plane 

<?php 
class Point { 
    public $x; 
    public $y; 
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    function __construct($x,$y) { 
        $this->x=$x; 
        $this->y=$y; 
    } 
    function get_x() { 
        return($this->x); 
    } 
    function get_y() { 
        return($this->y); 
    } 
    function dist($p) { 
        return(sqrt( pow($this->x-$p->get_x(),2)+ 
                     pow($this->y-$p->get_y(),2))); 
    } 
} // Class ends here 
$p1=new Point(2,3); 
$p2=new Point(3,4); 
echo $p1->dist($p2),"\n"; 
$p2->x=5; 
echo $p1->dist($p2),"\n"; 
?> 

This class is not trivial; there are quite a few things to analyze and fix. First, as we have previously 
stated, this class describes a point in a plane, defined by its Cartesian coordinates, $x and $y. There is a 
keyword public to which we will return later. There is also a constructor method __construct, which is 
called when a new object (or instance) of the class Point is created in memory by invoking the operator 
new. In other words, when the line $p1=new Point(2,3) is executed, the method __construct is 
automatically referenced and executed, and the arguments behind the class name, in parenthesis, are 
passed into the __construct method for possible use.  

The method __construct references the variable $this. The variable $this is the OO way of referring 
to the class instance itself. It always refers to the current object in focus. It is an OO equivalent of “me.” A 
variant of this variable is present in almost all OO-based languages, although it is called “self” in some 
languages.  

The class constructor is the method that initializes (instantiates) objects of the given class. In this 
particular case, it assigns coordinates. The coordinates (the variables named $x and $y) are members of 
this class. Several other methods are also defined, two get methods and a method called dist, which 
calculates the distance between two points. 

The next thing to observe is the keyword public. Marking members as “public” allows the full access 
to the data members that are marked public. In our script, there is a line that reads $p2->x=5;. The x-
coordinate of one of our points is being manipulated directly. Such access is impossible to control, and 
in all but the simplest cases is highly discouraged. Good practice is to write get and set methods that will 
read or write into class members in a controlled way. In other words, with get and set methods, it is 
possible to control the values of the data members. With public members, get and set functions are 
redundant, because it is possible to set the members directly, as in $p2->x=5. However, with the public 
members, it is not possible to control the value of the members. Set and get functions can be written 
directly, for each member, but PHP also provides so-called “magic methods” that can be used instead of 
having to write two functions for each member. 

It is possible to protect the members much better, with the keywords private and protected. The 
exact meaning of these two keywords will be explained in the next section. It is also worth noting that 
public is the default visibility. If the visibility for a member or method is not specified, it defaults to 
public. Writing  
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class C { 
$member; 
       function method() {...} 
…. 
} 

is completely equivalent to writing : 

 class C { 
       public $member; 
       pubic  function method() {…} 
…. 
} 

In contrast with the public class members, private class members or methods are only visible to the 
methods of the same class. Methods that are not connected to the class cannot access any of the private 
members, nor can they call any of the other private methods. If the keyword “public” is replaced with the 
keyword “private” for the class members $x and $y, and access is attempted, the result will be 

PHP Fatal error:  Cannot access private property Point::$x in script2.1 on line 25 

In other words, our neat little trick on line 25, which reads $p2->x=5, will no longer work. The 
constructor function has no problems whatsoever, and neither do functions get_x() and get_y(), as 
they are class members. This is a good thing, because it will no longer be possible to manipulate the class 
objects directly, potentially radically altering their behavior in a way that the class is not meant to do. In 
short, the class is more self-contained, like a controlled access highway – there are limited access and 
exit ramps. 

Public and private members are now clear, but what are protected members and methods? 
Protected methods and members are accessible by the methods of the class they belong to, and by the 
methods of the classes that inherit from the base class they belong to. We will take a closer look at this in 
the next section. 

Inheritance and Overloading 
As stated in the beginning of this chapter, classes can be organized in a hierarchical way. The hierarchy 
is established through inheritance. In order to demonstrate inheritance, let us develop another class 
called employee. Some of a company’s employees are managers, which will be a class that inherits from 
the more general employee class. Inheritance is also known as specialization. So, without further ado, 
let’s see the class (see Listing 1-2). 

Listing 1-2. Example of employee Class 
<?php 

class employee { 
    protected $ename; 
    protected $sal; 
   function __construct($ename, $sal = 100) { 
        $this->ename = $ename; 
        $this->sal = $sal; 
    } 
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    function give_raise($amount) { 
        $this->sal+= $amount; 
        printf("Employee %s got raise of %d dollars\n", $this->ename, $amount); 
        printf("New salary is %d dollars\n", $this->sal); 
    } 
    function __destruct() { 
        printf("Good bye, cruel world: EMPLOYEE:%s\n", $this->ename); 
    } 
} 
 
class manager extends employee { 
    protected $dept; 
    function __construct($ename, $sal, $dept) { 
        parent::__construct($ename, $sal); 
        $this->dept = $dept; 
    } 
    function give_raise($amount) { 
        parent::give_raise($amount); 
        print "This employee is a manager\n"; 
    } 
    function __destruct() { 
        printf("Good bye, cruel world: MANAGER:%s\n", $this->ename); 
        parent::__destruct(); 
    } 
} // Class definition ends here. 
 
$mgr = new manager("Smith", 300, 20); 
$mgr->give_raise(50); 
$emp = new employee("Johnson", 100); 
$emp->give_raise(50); 
?> 

This class is just an artificial example; it is not meant to be used as a template. It is worth noticing 
that the __construct method is public in both classes. If it wasn’t public, it wouldn’t be possible to create 
new objects of either class. When executed, this script will produce the following result: 

Employee Smith got raise of 50 dollars  
New salary is 350 dollars  
This employee is a manager  
Employee Johnson got raise of 50 dollars  
New salary is 150 dollars  
Good bye, cruel world: EMPLOYEE:Johnson  
Good bye, cruel world: MANAGER:Smith  
Good bye, cruel world: EMPLOYEE:Smith  

This little example is perfect for explaining the concept of inheritance. Every manager is an 
employee. Note the phrase “is a” characteristics for the inheritance relationship. In this case, class 
employee is the parent class for the class employee. Contrary to everyday life, a class in PHP can have 
only a single parent; multiple inheritance is not supported.  

Furthermore, parent functions can be addressed using the parent:: construct shown in the  
class manager. When an object of the child class is created, the constructor for the parent class is not 
called automatically; it is the responsibility of the programmer to call it within the constructor of the 
child class.  
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The same applies to the destructor method. The destructor method is the exact opposite of the 
constructor method. Constructor is called when an object is being established in memory, while the 
destructor is called when the object is no longer needed, or when the “unset” function is explicitly called 
on that object. Explicitly calling the unset function is not a common practice; it is usually used to save 
memory. This also means that the destructor is automatically called for all objects when the script 
execution is finished. Destructor methods are usually used to clean up resources, such as closing open 
files or disconnecting from a database. Finally, note that the destructor method of our manager class has 
complete access to the member ename, despite the fact that it is actually a member of the employee class. 
That is precisely the purpose of the protected members. If ename was a private member of the employee 
class, our little example would not have worked. 

The method get_raise exists in both classes. PHP knows which method to call for which object; this 
is one aspect of a fundamental principle of OO: encapsulation. Object $x belongs to the manager class 
and the give_raise method generated the output, “This employee is a manager,” after producing its 
normal output. We can rephrase this by saying that the give_raise function in the class manager 
overloads or supersedes the give_raise method in the employee class. Note that the meaning of the term 
“overload” in PHP is different from the meaning of the same term in C++ or Python, where it signifies a 
function (not a class method) with the same name but different argument types. Back to PHP: if the 
method is marked as final, it cannot be overloaded. If the method give_raise in the employee class was 
declared like this 

final function give_raise($amount) { 
…. 
} 

overloading it in the class manager wouldn’t be possible. We recommend that you try the basic OO 
concepts on this little script and play a bit by marking various members and methods private, protected, 
or public to see the results. 

Finally, when speaking of inheritance, one also needs to mention abstract classes. Abstract classes 
cannot be instantiated; no objects belonging to them can be created. They’re used primarily as 
templates, to force all classes that inherit from them to have the desired structure. The class is abstract if 
it is marked by the keyword “abstract,” like this: 

abstract class A { 
…. 
} 

No object of this class can be created; PHP will throw a runtime error and stop the script execution. 
It is also possible to declare abstract methods of an abstract class. This is done like this 

abstract class A { 
abstract protected method(...); 
} 

This is done to force classes that extend the abstract class to implement the specified method. 
Abstract classes are usually used as templates for the classes that extend them. A good example of 

the abstract classes can be found in the Standard PHP Library (SPL). Classes for the sorted heap 
(SplMinHeap, SplMaxHeap) extend the abstract class SplHeap and implement the compare method 
differently. SplMinHeap will sort the elements from the smallest to the largest, while SplMaxHeap will sort 
them the other way around. Common characteristics of both classes are contained in the abstract class 
SplHeap, which is documented here:  

http://ca2.php.net/manual/en/class.splheap.php 
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Rather than inventing an artificial example of abstract classes, let’s see how they are used in SPL. 
Here is a brief example of how to use the SplMinHeap class 

<?php  
$heap = new SplMinHeap();  
$heap->insert('Peter');  
$heap->insert('Adam');  
$heap->insert('Mladen');  
foreach ($heap as $h) {  
    print "$h\n";  
}  
?>  

When executed, the output will be: 

Adam 
Mladen 
Peter 

Names are sorted in alphabetic order–not quite the way they were inserted into the heap. Later we 
will see how is it possible to use an object of the SplMaxHeap class in a loop, as if it was an array. 

Now, let’s turn our attention to more practical OO programming techniques. For example, you may 
have been wondering how we make classes available to PHP scripts. Classes are usually written to be re-
used over and over again. The obvious answer is that we create separate files which we can then include 
with require or include directives, but that can soon get awkward or cumbersome as the files multiply. It 
turns out that PHP has a tool to help with precisely that problem–namely, the function called 
__autoload. That function takes a class name as an argument and will be called whenever PHP cannot 
find a class definition in the currently executing script. Essentially, the __autoload function is a trap 
handler for a “class not found” exception error. We will get back to the exceptions later. Our example in 
Listing 1-2 can now be rewritten in two files (see Listing 1-3). 

Listing 1-3. Listing 1-2 Rewritten in Two Files 
File script1.3.php: 

<?php  
function __autoload ($class) {  
    require_once("ACME$class.php");  
}  
 
$x = new manager("Smith", 300, 20);  
$x->give_raise(50);  
$y = new employee("Johnson", 100);  
$y->give_raise(50);  
?>  

File ACMEmanager.php: 

<?php 
class employee { 
    protected $ename; 
    protected $sal; 
    // Note that constructor is always public. If it isn't, new objects cannot 
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    // be created. 
    function __construct($ename, $sal = 100) { 
        $this->ename = $ename; 
        $this->sal = $sal; 
    } 
    function give_raise($amount) { 
        $this->sal+= $amount; 
        printf("Employee %s got raise of %d dollars\n", $this->ename, $amount); 
        printf("New salary is %d dollars\n", $this->sal); 
    } 
    function __destruct() { 
        printf("Good bye, cruel world: EMPLOYEE:%s\n", $this->ename); 
    } 
} // End of class "employee" 
 
class manager extends employee { 
    protected $dept; 
    function __construct($ename, $sal, $dept) { 
        parent::__construct($ename, $sal); 
        $this->dept = $dept; 
    } 
    function give_raise($amount) { 
        parent::give_raise($amount); 
        print "This employee is a manager\n"; 
    } 
    function __destruct() { 
        printf("Good bye, cruel world: MANAGER:%s\n", $this->ename); 
        parent::__destruct(); 
    } 
} // End of class "manager" 

This code is completely equivalent to the original script1.2.php in Listing 1-2, except it is much 
easier to read, because the most important part is contained in the file script1.3.php in Listing 1-3. The 
other file, ACMEmanager.php, only contains the class declarations. If we’re not really interested in the 
internals of the class declarations, we don’t have to read them; we only have to know how the objects of 
the declared classes behave. Also, note that the file is named after the first class that is being 
instantiated. When that file is loaded, the class employee will also be defined, because the definition of 
both classes is in the same file.  

The second thing to note is that the class name was prefixed by “ACME.” This is to alert the reader of 
the possibility of creating specialized, per-project class libraries. The function __autoload implemented 
here uses require_once instead of an include directive. The reason for that is the behavior of PHP, which 
will terminate the script if a file requested by the require directive is not available. The execution will 
proceed if the file simply included by an include directive is not available. Executing a script that 
depends on class definitions without those definitions being available doesn’t make much sense. 

Also, class definition files should not have a trailing ?> defined. This is because they can often be 
autoloaded or included in a “header” file before the page is assembled, and any extra white space 
between the ?> and EOF will be injected into the html output stream of the page at the start. PHP is quite 
happy not to have the trailing ?>, omitting it is a best practice. This is probably the single biggest cause of 
“output already started” errors when using the header() function to send HTTP headers back to the 
browser, and for the unaware it is a death trap. 


