

Pro PHP Programming

■ ■ ■

Peter MacIntyre
Brian Danchilla
Mladen Gogala

Pro PHP Programming

Copyright © 2011 by Peter MacIntyre, Brian Danchilla, and Mladen Gogala

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-4302-3560-6

ISBN 978-1-4302-3561-3 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Frank Pohlmann
Technical Reviewer: Thomas Myer
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Coordinating Editor: Jessica Belanger
Copy Editor: Tracy Brown
Production Support: Patrick Cunningham
Indexer: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

Having dedicated my other writings to my wife Dawn and our kids, I would like to dedicate this book to
all those in the PHP community who are keeping this language fresh, robust, and ever growing. To the

open source community and its ideals and concepts—may it continue ad infinitum!

–Peter

For mom and dad

–Brian

To my beloved wife and son

–Mladen

iv

Contents at a Glance

About the Authors .. xiv

About the Technical Reviewer .. xv

Foreword ... xvi

Acknowledgments .. xvii

Introducing PHP ... xviii

■Chapter 1: Object Orientation .. 1

■Chapter 2: Exceptions and References .. 21

■Chapter 3: Mobile PHP ... 31

■Chapter 4: Social Media ... 57

■Chapter 5: Cutting Edge ... 93

■Chapter 6: Form Design and Management .. 111

■Chapter 7: Database Integration I .. 127

■Chapter 8: Database Integration II ... 161

■Chapter 9: Database Integration III ... 189

■Chapter 10: Libraries ... 213

■Chapter 11: Security .. 243

■Chapter 12: Agile Development with Zend Studio for Eclipse,
■Bugzilla, Mylyn, and Subversion ... 263

■Chapter 13: Refactoring, Unit Testing, and Continuous Integration 277

 ■ CONTENTS AT A GLANCE

v

■Chapter 14: XML .. 323

■Chapter 15: JSON and Ajax .. 347

■Chapter 16: Conclusion .. 385

■Appendix: Regular Expressions ... 391

Index ... 403

vi

Contents

About the Authors .. xiv

About the Technical Reviewer .. xv

Foreword ... xvi

Acknowledgments .. xvii

Introducing PHP ... xviii

■Chapter 1: Object Orientation .. 1

Classes .. 1

Inheritance and Overloading .. 3

Miscellaneous “Magic” Methods ... 8

The __get and __set Methods .. 8

The __isset Method .. 9

The __call method .. 9

The __toString() method ... 10

Copying, Cloning, and Comparing Objects ... 10

Interfaces, Iterators, and Abstract Classes .. 13

Class Scope and Static Members .. 17

Summary ... 19

■ CONTENTS

vii

■Chapter 2: Exceptions and References .. 21

Exceptions ... 21

References ... 26

Summary ... 30

■Chapter 3: Mobile PHP ... 31

Mobile Variance ... 31

Detecting Devices .. 32

The User-Agent ... 32

Built-in PHP Support ... 32

Detecting Mobile Capabilities .. 35

WURFL .. 36

Rendering Tools ... 48

WALL ... 48

Image Resizing ... 50

Responsive CSS .. 51

Emulators and SDKs .. 52

Developing on an Android ... 52

Adobe Flash Builder for PHP ... 52

QR Codes ... 53

Summary ... 54

■Chapter 4: Social Media ... 57

OAuth ... 57

Twitter ... 58

Public Search API ... 58

Private REST API ... 60

Using Twitter OAuth to Tie into Your Site Login .. 73

More API Methods and Examples ... 77

■ CONTENTS

viii

Facebook ... 80

Adding a Link to Log Out of Facebook .. 87

Requesting Additional Permissions .. 88

Graph API .. 89

Summary ... 91

■Chapter 5: Cutting Edge ... 93

Namespaces .. 93

Namespaces and Autoload ... 96

Namespaces Conclusion .. 97

Anonymous Functions (Closures) .. 97

Nowdoc .. 98

Local goto Statements ... 101

Standard PHP Library ... 102

SPL Conclusion ... 105

Phar Extension ... 105

Summary ... 108

■Chapter 6: Form Design and Management .. 111

Data Validation ... 111

Uploading Files / Images ... 118

Image Conversion and Thumbnails .. 119

Regular Expressions .. 121

Multi-Language Integration ... 125

Summary ... 126

■Chapter 7: Database Integration I .. 127

Introduction to MongoDB ... 128

Querying MongoDB ... 133

Updating MongoDB ... 137

■ CONTENTS

ix

Aggregation in MongoDB .. 139

MongoDB Conclusion .. 142

Introduction to CouchDB .. 142

Using Futon ... 143

CouchDB Conclusion... 150

Introduction to SQLite .. 150

SQLite Conclusion ... 160

Summary ... 160

■Chapter 8: Database Integration II ... 161

Introduction to MySQLi Extension .. 161

Conclusion of the MySQLi Extension .. 168

Introduction to PDO .. 169

Conclusion of the PDO .. 172

Introduction to ADOdb .. 172

ADOdb Conclusion .. 177

Full-Text Searches with Sphinx ... 177

Summary ... 187

■Chapter 9: Database Integration III ... 189

Introduction to Oracle RDBMS ... 189

The Basics: Connecting and Executing SQL .. 192

Array Interface ... 195

PL/SQL Procedures and Cursors .. 198

Working with LOB types... 202

Connecting to DB Revisited: Connection Pooling ... 207

Character Sets in the Database and PHP ... 209

Summary ... 211

■ CONTENTS

x

■Chapter 10: Libraries ... 213

SimplePie ... 214

TCPDF .. 218

Scraping Website Data ... 225

Google Map Integration.. 231

E-mail and SMS ... 235

gChartPHP: a Google Chart API Wrapper ... 238

Summary ... 242

■Chapter 11: Security .. 243

Never Trust Data .. 243

register_globals .. 244

Whitelists and Blacklists .. 245

Form Data ... 245

$_COOKIES, $_SESSION, and $_SERVER.. 247

Ajax Requests ... 247

Common Attacks .. 248

Same Origin Policy ... 248

Cross Site Scripting (XSS) .. 248

Cross-Site Request Forgery (CSRF) .. 251

Sessions .. 252

Preventing SQL Injection .. 253

The Filter Extension ... 254

php.ini and Server Settings ... 258

Server Environment .. 258

Hardening PHP.INI .. 258

Password Algorithms ... 260

Summary ... 261

■ CONTENTS

xi

■Chapter 12: Agile Development with Zend Studio for Eclipse,
■Bugzilla, Mylyn, and Subversion ... 263

Principles of Agile Development .. 263

The Agile Development Rally ... 264

Introduction to Bugzilla .. 266

Mylyn for Eclipse ... 268

Bugzilla and Mylyn Combined Within Eclipse .. 270

Extrapolating the Benefits ... 274

Summary ... 275

■Chapter 13: Refactoring, Unit Testing, and Continuous Integration 277

Refactoring .. 278

Small Refactorings ... 278

A Larger Legacy Code Example .. 282

Unit Testing .. 296

Continuous Integration... 314

Continuous Integration Server .. 315

Version Control ... 315

Static Analysis .. 316

Build Automation .. 317

Jenkins Server Setup ... 318

Summary ... 322

■Chapter 14: XML .. 323

XML Primer .. 323

Schemas .. 324

SimpleXML ... 325

Parsing XML from a String .. 325

Parsing XML from a File ... 326

■ CONTENTS

xii

Namespaces ... 331

RSS ... 334

Generating XML with SimpleXML ... 336

DOMDocument ... 341

XMLReader and XMLWriter .. 344

Summary ... 345

■Chapter 15: JSON and Ajax .. 347

JSON .. 348

PHP and JSON .. 349

Ajax .. 355

The Traditional Web Model ... 355

Ajax Web Model .. 356

Asynchronous Versus Synchronous Events .. 357

XMLHttpRequest Object .. 359

Using XMLHttpRequest ... 361

High Level JavaScript APIs ... 367

jQuery Examples ... 367

Sending Data to a PHP Script via Ajax .. 373

A Simple Graphic Program ... 375

Maintaining State ... 378

Summary ... 383

■Chapter 16: Conclusion .. 385

Resources .. 385

www.php.net .. 385

www.zend.com .. 386

devzone.zend.com .. 387

PHP| Architect Magazine: www.phparch.com .. 387

Conferences ... 387

■ CONTENTS

xiii

PHP Certification .. 388

Summary ... 390

■Appendix: Regular Expressions ... 391

Regular Expression Syntax .. 391

Regular Expression Examples ... 393

Internal Options .. 395

Greediness .. 396

PHP Regular Expression Functions .. 397

Replacing Strings: preg_replace .. 397

Other Regular Expression Functions .. 399

Index ... 403

xiv

About the Authors

■Peter MacIntyre has over 20 years’ experience in the information technology industry, primarily in the
area of software development.

Peter is a Zend Certified Engineer (ZCE), having passed his PHP certification exam. He has
contributed to many IT industry publications, including Using Visual Objects (Que, 1995), Using
PowerBuilder 5 (Que, 1996), ASP.NET Bible (Wiley, 2001), Zend Studio for Eclipse Developer's Guide
(Sams, 2008), Programming PHP (Second Edition) (O’Reilly Media, 2006), and PHP: The Good Parts
(O’Reilly Media, 2010).

Peter has been a speaker at North American and international computer conferences, including CA-
World in New Orleans, USA; CA-TechniCon in Cologne, Germany; and CA-Expo in Melbourne, Australia.
Peter lives in Prince Edward Island, Canada, where he is the Senior Solutions Consultant for OSSCube
(www.osscube.com), a world leader in open source software development and consultancy. He assists
OSSCube with running its Zend Center of Excellence. Peter can be reached at: peter@osscube.com.

■Brian Danchilla is a Zend Certified PHP developer and seasoned Java programmer, and holds a BA in
computer science and mathematics. Danchilla has been writing computer programs for more than half
his life, including web applications, numerical analysis, graphics, and VOIP (Voice Over IP) programs.
Danchilla has a strong ability to learn new technologies and APIs. He is an avid technical reader with a
strong sense of the elements that make a compelling read. Through his work as a university teaching
assistant, private tutor, and PHP workshop leader, Danchilla has honed the ability to transfer knowledge
in an accessible way. Danchilla can also be found actively contributing to the stackoverflow community.
When not programming, he likes to spend time playing guitar or being outside.

■Mladen Gogala is long-term database professional who has had a long and distinguished career as an
Oracle DBA, Linux, and Unix system administrator, VAX/VMS system administrator and, recently,
database performance architect. He has been working with multi-terabyte databases, primarily of the
Oracle variety, since the late 1990s. He knows Linux, Perl, and PHP. The latter became his favorite
language in the early 2000s, and he is the author of Easy Oracle PHP: Create Dynamic Web Pages with
Oracle Data Rampant Techpress, 2006). He has also written several articles about PHP, Oracle, and
Symfony. Mladen was born in 1961 in Zagreb, Croatia.

xv

About the Technical Reviewer

■Thomas Myer is a technical author, consultant, and developer. He spends most of his time working on
PHP projects (particularly CodeIgniter, ExpressionEngine, WordPress, and MojoMotor), but is also
known to dabble in Python, Perl, and Objective-C projects.

Follow Thomas on twitter (if you dare) as @myerman. Don't forget to check out www.tripledogs.com for
more on Triple Dog Dare Media, which he founded in 2001.

Thomas currently lives in Austin, Texas, with wife, Hope, and dogs, Kafka and Marlowe.

xvi

Foreword

Because of PHP’s humble beginning as a hackers’ project – an attempt to develop an easy and enjoyable
way to develop web sites – nobody expected it to become nearly as popular as it is today.

Over the years we’ve used many different metrics to measure PHP’s popularity, looking at the
number of web sites that have PHP deployed on them, the number of PHP books on sale at
Amazon.com, the amount of prominent companies using PHP, the number of PHP-based projects, the
size of the communities that create them, and so on.

And then, there was one other, much less “scientific” metric.
Back in 2008, when I was on my honeymoon with my wife, Anya, we stayed at a small hotel called

Noster Bayres in Buenos Aires. We arrived after a long flight, visiting a brand-new country full of new
faces and things we’d never seen before. Imagine my surprise when, after I filled in my hotel registration
form, the receptionist asked me if I was Suraski, “that PHP guy.” It turned out that he was developing a
social network for the San Telmo neighborhood in PHP.

Although all of the previous metrics were rock-solid proof of PHP’s extreme reach, importance, and
popularity, for me, this incident in a small hotel halfway across the world sealed the deal. If the
receptionist at that hotel was writing PHP, we were most certainly mainstream.

Almost three years later, advanced PHP skills are essential to any power web developer, and
arguably – with the explosive growth of web and HTTP-based communications – to any and all
developers. Pro PHP Programming guides you through some of the more advanced aspects of modern
PHP development, including object orientation, mobile application development, and scalable data
sources that can be important for cloud-enablement. I’m sure the knowledge you’ll gain will be an
important part of your toolset going forward, and will help you avail of the advanced features of PHP 5.3
to their fullest. Happy PHP-ing!

Zeev Suraski, CTO, Zend

xvii

Acknowledgments

I would like to thank Frank Pohlmann and Jessica Belanger at Apress, who were instrumental in getting
this book off the ground and into the hands of the PHP community. Having written a few other PHP
books for various publishers, I was initially reluctant to commence this additional writing task, but Frank
twisted my arm and got me to commit. I thank him for the encouragement and opportunity; we have
become good friends in the process as well, so there is more value in this project than just writing more
about PHP.

The technical editor, Thomas Meyer, and the copy editor, Tracy Brown, also did a bang-up job, and
I tip my hat to you all as well.

To my coauthors, thanks! This has been a great journey and I have grown and learned a lot from
each of you. Working with authors with different backgrounds, nationalities, and expertise is always a
pleasure and a growth exercise.

Peter MacIntyre

I would like to thank my companion, Tressa, for supporting and putting up with me while I hid away to
work on this book. Thanks to my mom and dad, my brother, Robert, and sister, Karen, for always
believing in me and what I do – even though they do not know what I do, exactly. I would also like to
thank my coauthors, Peter and Mladen, and the entire Apress team.

Brian Danchilla

I have learned a great deal from those who have worked with me over the years, and I gratefully
acknowledge my debt to them, especially my colleagues from Video Monitoring Services, Vinod
Mummidi and Arik Itkis, with whom I engaged in endless discussions about the language concepts. My
manager, Gerry Louw, was also very supportive and helpful. I would also like to express my thanks to our
coordinating editor, Jessica Belanger of Apress, for her enthusiastic and expert guidance, without which
this book wouldn’t have happened, and to Peter MacIntyre and Brian Danchilla, my coauthors, for
tirelessly proofreading the drafts and giving me suggestions that were crucial for the book. I am also truly
grateful to Tom Welsh and Tim Hawkins for all their efforts and good ideas, many of which have found
their rightful place in this book. Last, but certainly not least, I have to express my eternal gratitude to my
wife, Beba, and son, Marko, for their love, support, and patience during the writing of this book.

Mladen Gogala

xviii

Introducing PHP

W elcome to yet another book on the great programming language of PHP. This book is unique in that it
focuses on higher-end materials and more advanced, cutting-edge topics. We have kept it as modern as
possible with the fast-paced world of the Internet. We take the reader from an intermediate level to a
more advanced level of this great programming language.

Origins of PHP
PHP began as a project led and designed by Mr. Rasmus Lerdorf. In June 1995, he released version 1.0 of
Personal Home Page Tools (its original product name). It was a small collection of functions that helped
to automate the creation and maintenance of simple home pages on the then-burgeoning Internet.
Since then, PHP has grown by leaps and bounds to where it is today at version 5.3.4 (at the time of
writing). PHP was one of the first web development programming languages to be open source from the
outset. Lerdorf was visionary enough to see the need and the potential for a tool and language that could
grow with this vein of the Internet community and expand far beyond it as well.

What Is PHP?
So then, what exactly is PHP? What does it look like and “feel” like in its current version? Well, in its
simplest terms, PHP is merely an HTML markup generator. If you look at the source code of a PHP-
generated web page, you will see only HTML tags; maybe some JavaScript as well, but no raw PHP code.
Of course, that is an overly simplistic view of the language that has captured between 35 and 59 percent
(depending on the source) of the languages in use for web development. Whatever number you settle
on, PHP is the single most popular web development language on the market today.

When I use the term “on the market,” you also have to appreciate that PHP is free. Yes, free! It is an
open source product, so in reality there isn’t an actual market for it. So it has done very well in terms of
popularity and range of use for a product that is led and steered by no one entity or personality.

■ Note For more information on open source, be sure to read “The Cathedral and the Bazaar” by Eric S.
Raymond for comparisons of open source products (Bazaar) and closed source products (Cathedral). You can find
it here: www.catb.org/~esr/writings/cathedral-bazaar/.

■ INTRODUCING PHP

xix

Actually, Zend Corporation (zend.com) is probably the leader of the PHP world in that it has built
many additional products to support and enhance PHP, and it is a key player in its guidance, since the
two founding members of the company – Zeev Suraski and Andi Gutmans – have really taken up the
gauntlet since version 3 of the product.

PHP is also very open and forgiving in its language structure, in that it is loosely typed (among other
things). This means that variables don’t have to be defined in the type of data that they will hold prior to
their use in the way that some other programming languages do. Rather, it interrogates the data and
tries to determine its data type based on the content the variable is holding at the time. This means, for
example, that a variable called $information can have many different values during the execution of a
code file. This can also be a drawback in some ways, because the data could change during the running
of the code and therefore negate some code segments that may be expecting an integer but receiving a
string.

PHP can also be written with an object-oriented programming (OOP) design in mind. Classes,
properties, and methods; inheritance, polymorphism, and encapsulation are all part of the language.
This adds a lot of robustness and re-use to code and allows for more ease of use overall. Of course, the
OOP approach to programming has been around for a long time in technology-years, and PHP has been
adopting and expanding on its integration for a few good years now as well.

Another valuable feature that PHP possesses is that it can be run from the command prompt (Linux
or Windows), and can therefore be used in scheduled un-attended (CRON) scripts. This added level of
flexibility is wonderful because you (the programmer) do not have to learn another language to
accomplish different tasks while working on the server environment. You can generate web pages with
the same language that you use to manage the file system (if you so choose).

PHP also has many integration points; it is a very open language, to say the least. PHP can be used
for many things other than straight web development. Combine it with a database source through an
appropriate connecting library, and you can have a very dynamic web presence even a web application.
Combine it with an additional library (tcpdf, for example), and you can generate Adobe PDF documents
on the fly. These are just two examples and we will be covering a lot of these add-on libraries throughout
this book, so stay tuned!

High- Level Overview of This Book
So what do we hope to accomplish with this book for you, the reading programmer? We have made every
effort to make this diatribe of current, cutting-edge value so that you will be aware of and able to use
some of the most recent features and integrations of PHP. We are not spending time on the more
simplistic topics of the language, such as what is a variable or how to write for / next loops.

It is our desire that you become a more advanced PHP programmer overall, and that this material
may even assist you in becoming ready to take and pass the Zend Certified Engineer’s exam. Following is
a brief summary of what will be covered in each chapter.

Chapter 1: Object Orientation
This initial chapter is designed to get you ready for many of the concepts and code examples that will be
coming in the remainder of the book. We introduce some basic concepts of OOP and how it is
implemented in PHP, and then get into some of the more advanced issues right away. Be sure you really
understand this chapter before going too far into the following chapters.

■ INTRODUCING PHP

xx

Chapter 2: Exceptions and References
Here we follow up on some of the OOP concepts and get into exception coding with try / catch blocks.
This is a more elegant way of handling potential errors in your PHP code, and it is quite a powerful
approach once it is mastered. This is followed by a discussion on reference coding and what it means in
relation to the classes and functions that you may be using.

Chapter 3: PHP on the Run (Mobile PHP)
This world is getting more mobile-dependant; we see smaller and more powerful devices being released
all the time. Apple, RIM, HTC, and many others are trying to capture the mindshare of this lucrative
market. But there need to be applications available for these devices, and in this chapter we show you
some ways that PHP is growing and adapting to also embrace this shift in mobility.

Chapter 4: Social Media and PHP
In a similar vein of technological growth, the rapid expansion of social media use is also being greatly
assisted by PHP. Most of the forward-facing aspects of Facebook, for example, are written in PHP. Many
other sites like Flickr, portions of Yahoo!, and even many blog applications are heavily dependent on
PHP. In this chapter, we look at some of the interfaces that exist for integration with these social media
sites.

Chapter 5: Cutting-Edge PHP
In its current release at the time of writing, version 5.3.4, PHP has many new features added to its actual
language. Many of these features were slated for the long-awaited version 6.0, but because some of the
features were ready before others, this initial collection was released as 5.3. In this chapter, we will be
looking at some of the “best” of these new features and how they can be employed in your web projects.

Chapter 6: Form Design and Management
Here we take a little more time going over the features and techniques that can be implemented in
designing and managing data entry forms. Controlling the data that is entered into them, responding to
bad data (invalid date formats for example), and how to gracefully get that data into a web system.

Chapters 7 and 8: Database Interaction
Of course, one of the major aspects to web development these days is the ability to store and display
data that is coming from a data source. In these two chapters, we look at the many different ways that
data can be manipulated. From smaller footprint databases like those of the NoSQL variety to the big
iron database engines like MySQLi and the techniques we can gather from using additional tools like
PDO and Sphinx.

■ INTRODUCING PHP

xxi

Chapter 9: Oracle
PHP and Oracle have a special connection when it comes to extra-large data sets. In this chapter, we are
looking at matters that are specific to this relationship and how to make the most of their “union.”

Chapter 10: PHP Libraries
As was mentioned already, PHP is very open to working with other libraries. In Chapter 10, we take a
look at some of the more popular and advanced of these libraries. Being able to generate PDF forms on
the fly, consume RSS feeds, generate professional e-mail, and integrate with Google maps are just a few
of the library integrations that will be covered in this chapter.

Chapter 11: Basic PHP Security
Naturally it would not be a complete book if we did not cover the latest techniques in web security.
Chapter 11 covers this large topic. We look at the most secure (currently) encryption algorithm called
SHA-1. Other topics covered are protecting data that is being input to the web system as well as data that
is going out from the web system.

Chapter 12: Team Development with Zend Studio
This chapter goes on a little tangent in that it is not purely a PHP topic. Here we look at how to use one of
the more popular Integrated Development Environments (IDEs) for PHP development, Zend Studio for
Eclipse. With Zend Studio, we look at how a team of developers can work together in an agile way (have
you heard of Extreme Programming?) We will look at the use of SVN, Bugzilla, and MyLyn all working in
concert to make the job of a team more productive on many fronts.

Chapter 13: Refactoring Unit Testing
This is actually an extension of what is covered in the previous chapter. There is more coverage here on
what can be done to make PHP development more agile in how to program it. Refactoring and unit
testing are the focus here, and you will learn how to make good use of them both in your day-to-day
coding projects.

Chapter 14: XML and PHP
XML use has certainly become more mainstream over the years since it first became a buzzword. In this
chapter, we look at how to use SimpleXML to consume XML from an outside source. We also cover the
ability to generate XML data from within our own systems for use by others.

Chapter 14: JSON / Ajax
Again, we take a little step away from pure PHP with the look into the JSON library and how we can use it
along with Ajax to make our web applications more responsive.

■ INTRODUCING PHP

xxii

Chapter 15: Conclusion
In this last chapter, we look at additional resources for PHP that we could not fit into this book. Here we
look at the many web resources available and some of the magazines and conferences that can deepen
your knowledge and understanding of this great language and community.

The Future of PHP
This is a topic that I find hard to write about. With PHP being a true open source product, it is hard to
really predict what direction the community will take in the near and distant future. I have implicit faith
in this community however; in the years that I have been a PHP programmer, I have yet to really see a
misstep taken by this collective. I know that the mobile aspect of our lives will continue to grow and
expand, and PHP is already taking steps to fully embrace this truth. What else will happen in the near
future? Maybe some more integration with telephony in the aspect of smart-phones and data
interoperability. Possibly more expansion into voice recognition technology and web applications—who
knows? I do know from my experiences so far that PHP and its supporting community will continue to
have its finger on the pulse of the world of technology and they will not let us down.

Looking to the future of PHP is a comforting thing to do; it’s like looking at a beautiful sunrise
knowing that the coming day can only get better as it goes along.

C H A P T E R 1

1

Object Orientation

The purpose of this chapter is to introduce the basic concepts of object orientation. What does it actually
mean to say, “PHP is object oriented?” The simplest answer is that PHP allows for the definition and
hierarchical organization of user data types. This book is about PHP 5.3, which introduced some new
elements to PHP object apparatus. PHP underwent a fairly radical change since the version 4, which also
included rudimentary object-oriented (OO) capabilities. In PHP 4, for instance, it wasn’t possible to
define visibility of methods and members. In PHP 5.3, namespaces were added.

In this chapter we will introduce the ideas of classes, inheritance, object creation, and interface
definition. We will also introduce some less elementary stuff, like iterators. So, let’s get started.

Classes
Classes are simply user defined types. In OO languages, a class serves as a template for creating objects
or instances (functional copies) of that class. A class contains the description of the common
characteristics of all items belonging to it. The purpose of a class (or classes) is to encapsulate object
definition and behavior, and to hide its actual implementation from the end user and to enable the end
user to employ the class objects in the documented and expected way. Encapsulation also makes
programs smaller and more manageable, because the objects already contain the logic needed to handle
them. There is also a feature called autoloading that helps with breaking scripts into smaller, more
manageable pieces.

Before we see a simple example of a PHP class, let’s introduce some more terminology:

• Class member or property: A variable, data part of the class

• Class method: A function defined within a class

Now we will define a class for a point in a 2-dimensional plane, defined with its Cartesian
coordinates (see Listing 1-1). As it is designed purely for instructional purposes, this class has several
serious drawbacks. We recommend that you don’t use it as a code base for any code of your own.

Listing 1-1. A 2D Plane

<?php
class Point {
 public $x;
 public $y;

CHAPTER 1 ■ OBJECT ORIENTATION

2

 function __construct($x,$y) {
 $this->x=$x;
 $this->y=$y;
 }
 function get_x() {
 return($this->x);
 }
 function get_y() {
 return($this->y);
 }
 function dist($p) {
 return(sqrt(pow($this->x-$p->get_x(),2)+
 pow($this->y-$p->get_y(),2)));
 }
} // Class ends here
$p1=new Point(2,3);
$p2=new Point(3,4);
echo $p1->dist($p2),"\n";
$p2->x=5;
echo $p1->dist($p2),"\n";
?>

This class is not trivial; there are quite a few things to analyze and fix. First, as we have previously
stated, this class describes a point in a plane, defined by its Cartesian coordinates, $x and $y. There is a
keyword public to which we will return later. There is also a constructor method __construct, which is
called when a new object (or instance) of the class Point is created in memory by invoking the operator
new. In other words, when the line $p1=new Point(2,3) is executed, the method __construct is
automatically referenced and executed, and the arguments behind the class name, in parenthesis, are
passed into the __construct method for possible use.

The method __construct references the variable $this. The variable $this is the OO way of referring
to the class instance itself. It always refers to the current object in focus. It is an OO equivalent of “me.” A
variant of this variable is present in almost all OO-based languages, although it is called “self” in some
languages.

The class constructor is the method that initializes (instantiates) objects of the given class. In this
particular case, it assigns coordinates. The coordinates (the variables named $x and $y) are members of
this class. Several other methods are also defined, two get methods and a method called dist, which
calculates the distance between two points.

The next thing to observe is the keyword public. Marking members as “public” allows the full access
to the data members that are marked public. In our script, there is a line that reads $p2->x=5;. The x-
coordinate of one of our points is being manipulated directly. Such access is impossible to control, and
in all but the simplest cases is highly discouraged. Good practice is to write get and set methods that will
read or write into class members in a controlled way. In other words, with get and set methods, it is
possible to control the values of the data members. With public members, get and set functions are
redundant, because it is possible to set the members directly, as in $p2->x=5. However, with the public
members, it is not possible to control the value of the members. Set and get functions can be written
directly, for each member, but PHP also provides so-called “magic methods” that can be used instead of
having to write two functions for each member.

It is possible to protect the members much better, with the keywords private and protected. The
exact meaning of these two keywords will be explained in the next section. It is also worth noting that
public is the default visibility. If the visibility for a member or method is not specified, it defaults to
public. Writing

CHAPTER 1 ■ OBJECT ORIENTATION

3

class C {
$member;
 function method() {...}
….
}

is completely equivalent to writing :

 class C {
 public $member;
 pubic function method() {…}
….
}

In contrast with the public class members, private class members or methods are only visible to the
methods of the same class. Methods that are not connected to the class cannot access any of the private
members, nor can they call any of the other private methods. If the keyword “public” is replaced with the
keyword “private” for the class members $x and $y, and access is attempted, the result will be

PHP Fatal error: Cannot access private property Point::$x in script2.1 on line 25

In other words, our neat little trick on line 25, which reads $p2->x=5, will no longer work. The
constructor function has no problems whatsoever, and neither do functions get_x() and get_y(), as
they are class members. This is a good thing, because it will no longer be possible to manipulate the class
objects directly, potentially radically altering their behavior in a way that the class is not meant to do. In
short, the class is more self-contained, like a controlled access highway – there are limited access and
exit ramps.

Public and private members are now clear, but what are protected members and methods?
Protected methods and members are accessible by the methods of the class they belong to, and by the
methods of the classes that inherit from the base class they belong to. We will take a closer look at this in
the next section.

Inheritance and Overloading
As stated in the beginning of this chapter, classes can be organized in a hierarchical way. The hierarchy
is established through inheritance. In order to demonstrate inheritance, let us develop another class
called employee. Some of a company’s employees are managers, which will be a class that inherits from
the more general employee class. Inheritance is also known as specialization. So, without further ado,
let’s see the class (see Listing 1-2).

Listing 1-2. Example of employee Class
<?php

class employee {
 protected $ename;
 protected $sal;
 function __construct($ename, $sal = 100) {
 $this->ename = $ename;
 $this->sal = $sal;
 }

CHAPTER 1 ■ OBJECT ORIENTATION

4

 function give_raise($amount) {
 $this->sal+= $amount;
 printf("Employee %s got raise of %d dollars\n", $this->ename, $amount);
 printf("New salary is %d dollars\n", $this->sal);
 }
 function __destruct() {
 printf("Good bye, cruel world: EMPLOYEE:%s\n", $this->ename);
 }
}

class manager extends employee {
 protected $dept;
 function __construct($ename, $sal, $dept) {
 parent::__construct($ename, $sal);
 $this->dept = $dept;
 }
 function give_raise($amount) {
 parent::give_raise($amount);
 print "This employee is a manager\n";
 }
 function __destruct() {
 printf("Good bye, cruel world: MANAGER:%s\n", $this->ename);
 parent::__destruct();
 }
} // Class definition ends here.

$mgr = new manager("Smith", 300, 20);
$mgr->give_raise(50);
$emp = new employee("Johnson", 100);
$emp->give_raise(50);
?>

This class is just an artificial example; it is not meant to be used as a template. It is worth noticing
that the __construct method is public in both classes. If it wasn’t public, it wouldn’t be possible to create
new objects of either class. When executed, this script will produce the following result:

Employee Smith got raise of 50 dollars
New salary is 350 dollars
This employee is a manager
Employee Johnson got raise of 50 dollars
New salary is 150 dollars
Good bye, cruel world: EMPLOYEE:Johnson
Good bye, cruel world: MANAGER:Smith
Good bye, cruel world: EMPLOYEE:Smith

This little example is perfect for explaining the concept of inheritance. Every manager is an
employee. Note the phrase “is a” characteristics for the inheritance relationship. In this case, class
employee is the parent class for the class employee. Contrary to everyday life, a class in PHP can have
only a single parent; multiple inheritance is not supported.

Furthermore, parent functions can be addressed using the parent:: construct shown in the
class manager. When an object of the child class is created, the constructor for the parent class is not
called automatically; it is the responsibility of the programmer to call it within the constructor of the
child class.

CHAPTER 1 ■ OBJECT ORIENTATION

5

The same applies to the destructor method. The destructor method is the exact opposite of the
constructor method. Constructor is called when an object is being established in memory, while the
destructor is called when the object is no longer needed, or when the “unset” function is explicitly called
on that object. Explicitly calling the unset function is not a common practice; it is usually used to save
memory. This also means that the destructor is automatically called for all objects when the script
execution is finished. Destructor methods are usually used to clean up resources, such as closing open
files or disconnecting from a database. Finally, note that the destructor method of our manager class has
complete access to the member ename, despite the fact that it is actually a member of the employee class.
That is precisely the purpose of the protected members. If ename was a private member of the employee
class, our little example would not have worked.

The method get_raise exists in both classes. PHP knows which method to call for which object; this
is one aspect of a fundamental principle of OO: encapsulation. Object $x belongs to the manager class
and the give_raise method generated the output, “This employee is a manager,” after producing its
normal output. We can rephrase this by saying that the give_raise function in the class manager
overloads or supersedes the give_raise method in the employee class. Note that the meaning of the term
“overload” in PHP is different from the meaning of the same term in C++ or Python, where it signifies a
function (not a class method) with the same name but different argument types. Back to PHP: if the
method is marked as final, it cannot be overloaded. If the method give_raise in the employee class was
declared like this

final function give_raise($amount) {
….
}

overloading it in the class manager wouldn’t be possible. We recommend that you try the basic OO
concepts on this little script and play a bit by marking various members and methods private, protected,
or public to see the results.

Finally, when speaking of inheritance, one also needs to mention abstract classes. Abstract classes
cannot be instantiated; no objects belonging to them can be created. They’re used primarily as
templates, to force all classes that inherit from them to have the desired structure. The class is abstract if
it is marked by the keyword “abstract,” like this:

abstract class A {
….
}

No object of this class can be created; PHP will throw a runtime error and stop the script execution.
It is also possible to declare abstract methods of an abstract class. This is done like this

abstract class A {
abstract protected method(...);
}

This is done to force classes that extend the abstract class to implement the specified method.
Abstract classes are usually used as templates for the classes that extend them. A good example of

the abstract classes can be found in the Standard PHP Library (SPL). Classes for the sorted heap
(SplMinHeap, SplMaxHeap) extend the abstract class SplHeap and implement the compare method
differently. SplMinHeap will sort the elements from the smallest to the largest, while SplMaxHeap will sort
them the other way around. Common characteristics of both classes are contained in the abstract class
SplHeap, which is documented here:

http://ca2.php.net/manual/en/class.splheap.php

CHAPTER 1 ■ OBJECT ORIENTATION

6

Rather than inventing an artificial example of abstract classes, let’s see how they are used in SPL.
Here is a brief example of how to use the SplMinHeap class

<?php
$heap = new SplMinHeap();
$heap->insert('Peter');
$heap->insert('Adam');
$heap->insert('Mladen');
foreach ($heap as $h) {
 print "$h\n";
}
?>

When executed, the output will be:

Adam
Mladen
Peter

Names are sorted in alphabetic order–not quite the way they were inserted into the heap. Later we
will see how is it possible to use an object of the SplMaxHeap class in a loop, as if it was an array.

Now, let’s turn our attention to more practical OO programming techniques. For example, you may
have been wondering how we make classes available to PHP scripts. Classes are usually written to be re-
used over and over again. The obvious answer is that we create separate files which we can then include
with require or include directives, but that can soon get awkward or cumbersome as the files multiply. It
turns out that PHP has a tool to help with precisely that problem–namely, the function called
__autoload. That function takes a class name as an argument and will be called whenever PHP cannot
find a class definition in the currently executing script. Essentially, the __autoload function is a trap
handler for a “class not found” exception error. We will get back to the exceptions later. Our example in
Listing 1-2 can now be rewritten in two files (see Listing 1-3).

Listing 1-3. Listing 1-2 Rewritten in Two Files
File script1.3.php:

<?php
function __autoload ($class) {
 require_once("ACME$class.php");
}

$x = new manager("Smith", 300, 20);
$x->give_raise(50);
$y = new employee("Johnson", 100);
$y->give_raise(50);
?>

File ACMEmanager.php:

<?php
class employee {
 protected $ename;
 protected $sal;
 // Note that constructor is always public. If it isn't, new objects cannot

CHAPTER 1 ■ OBJECT ORIENTATION

7

 // be created.
 function __construct($ename, $sal = 100) {
 $this->ename = $ename;
 $this->sal = $sal;
 }
 function give_raise($amount) {
 $this->sal+= $amount;
 printf("Employee %s got raise of %d dollars\n", $this->ename, $amount);
 printf("New salary is %d dollars\n", $this->sal);
 }
 function __destruct() {
 printf("Good bye, cruel world: EMPLOYEE:%s\n", $this->ename);
 }
} // End of class "employee"

class manager extends employee {
 protected $dept;
 function __construct($ename, $sal, $dept) {
 parent::__construct($ename, $sal);
 $this->dept = $dept;
 }
 function give_raise($amount) {
 parent::give_raise($amount);
 print "This employee is a manager\n";
 }
 function __destruct() {
 printf("Good bye, cruel world: MANAGER:%s\n", $this->ename);
 parent::__destruct();
 }
} // End of class "manager"

This code is completely equivalent to the original script1.2.php in Listing 1-2, except it is much
easier to read, because the most important part is contained in the file script1.3.php in Listing 1-3. The
other file, ACMEmanager.php, only contains the class declarations. If we’re not really interested in the
internals of the class declarations, we don’t have to read them; we only have to know how the objects of
the declared classes behave. Also, note that the file is named after the first class that is being
instantiated. When that file is loaded, the class employee will also be defined, because the definition of
both classes is in the same file.

The second thing to note is that the class name was prefixed by “ACME.” This is to alert the reader of
the possibility of creating specialized, per-project class libraries. The function __autoload implemented
here uses require_once instead of an include directive. The reason for that is the behavior of PHP, which
will terminate the script if a file requested by the require directive is not available. The execution will
proceed if the file simply included by an include directive is not available. Executing a script that
depends on class definitions without those definitions being available doesn’t make much sense.

Also, class definition files should not have a trailing ?> defined. This is because they can often be
autoloaded or included in a “header” file before the page is assembled, and any extra white space
between the ?> and EOF will be injected into the html output stream of the page at the start. PHP is quite
happy not to have the trailing ?>, omitting it is a best practice. This is probably the single biggest cause of
“output already started” errors when using the header() function to send HTTP headers back to the
browser, and for the unaware it is a death trap.

