iblu pagine di scienza

Internet si espande ad una velocità vertiginosa. Le stime affermano che attualmente il numero degli utenti della rete ammonta a quasi un miliardo e mezzo di persone. Molti di questi utenti hanno una propria homepage. Tuttavia, come nella "vita vera", non tutti curano il proprio spazio con la stessa premura. Le pagine Internet vanno e vengono, scompaiono del tutto dalla rete oppure vengono integrate in sistemi più grandi. Alcune incontrano un successo tale che se anche all'inizio erano liberamente accessibili, in un secondo momento possono essere visitate solo dietro pagamento. Welcome to the real world!

Questo libro contiene molti indirizzi Internet interessanti per l'argomento trattato. Al momento della stampa essi sono tutti attivi e utilizzabili liberamente. Tuttavia, la situazione potrebbe cambiare. Già domani la stessa pagina web potrebbe mostrare contenuti diversi, o venire addirittura tolta dalla rete; potrebbero venire richieste tasse sul suo utilizzo o fare la loro comparsa nuovi banner pubblicitari, magari indecenti; tutto secondo la legge di Murphy: "If anything can go wrong, it will!"

Una lista di tutti i links aggiornata (e cliccabile!) può essere trovata all'indirizzo:

http://www-m9.ma.tum.de/rut

Questo libro contiene una serie di rimandi a pagine in Internet. Purtroppo non ci è stato sempre possibile verificare se il contenuto offerto in queste pagine web rispetta i diritti d'autore di terzi. Visitando una pagina web con contenuti che ledono i diritti d'autore, può essere commessa infrazione. Vorremmo segnalare questa circostanza.

Peter Gritzmann · René Brandenberg

Alla ricerca della via più breve

Un'avventura matematica

2ª ed.

Traduzione a cura di Stefano Ruggerini

Prof. Dott. Peter Gritzmann
Dott. René Brandenberg
TU München
Zentrum Mathematik
80290 München, Deutschland
gritzman@ma.tum.de
brandenb@ma.tum.de

ISBN 978-88-470-1088-8

e-ISBN 978-88-470-1089-5

Springer fa parte di Springer Science+Business Media springer.com

© Springer-Verlag Italia, Milano 2009

Quest'opera è protetta dalla legge sul diritto d'autore, e la sua riproduzione è ammessa solo ed esclusivamente nei limiti stabiliti dalla stessa. Le fotocopie per uso personale possono essere effettuate nei limiti del 15% di ciascun volume dietro pagamento alla SIAE del compenso previsto. Le riproduzioni per uso non personale e/o oltre il limite del 15% potranno avvenire solo a seguito di specifica autorizzazione rilasciata da AIDRO, Via Corso di Porta Romana n. 108, Milano 20122, e-mail segreteria@aidro.org e sito web www.aidro.org. Tutti i diritti, in particolare quelli relativi alla traduzione, alla ristampa, all'utilizzo di illustrazioni e tabelle, alla citazione orale, alla trasmissione radiofonica o televisiva, alla registrazione su microfilm o in database, o alla riproduzione in qualsiasi altra forma (stampata o elettronica) rimangono riservati anche nel caso di utilizzo parziale. La violazione delle norme comporta le sanzioni previste dalla legge.

Collana ideata e curata da: Marina Forlizzi

Traduzione di Stefano Ruggerini

Impaginazione: le-tex publishing services oHG, Leipzig Copertina: progetto grafico di Simona Colombo, Milano

Stampa: Grafiche Porpora, Segrate, Milano

Stampato in Italia Springer-Verlag Italia S.r.l., via Decembrio 28, I-20137 Milano

---> Indice

Primo contatto	1
Pianificare un itinerario?	9
Piacere, grafo	23
Il peso ha un peso	37
Un'innocua esplosione	43
Monaco in quattro fermate	51
Scelte locali, benefici globali	59
In principio era l'input	69
Negativo è negativo	83
Tempi buoni, tempi cattivi	91
Intuito femminile	107
Il lavoro che precede il lavoro	119
Per assurdo	127
Il Prim della classe	141
Arraffa ciò che puoi	155
Arbore cosa?	165
Un vecchio straordinario	175

Magnetica dimostrazione	185
Euleriano o non euleriano, questo è il dilemma	193
Eulero e Babbo Natale	201
Oggi girovaga la nettezza urbana	211
La stagione delle coppie	223
Posta dalla Cina	233
Scacco matto?	249
Amore platonico?	265
Notoriamente Problematico	277
Sorte di un commesso viaggiatore	293
Chiedere meno e ottenere di più	309
150 per cento	319
Bonsai	329
Nient'affatto platonico	343
Il successo del commesso viaggiatore	355
Indice analitico	369

---> Primo contatto

«Ciao mamma.»

«Ciao signorina.»

Era dal giorno del quindicesimo compleanno di Rut che sua madre la chiamava in quel modo: Rut si era lamentata dicendo di non essere più "la piccola".

In quel momento Rut tornava da scuola piuttosto di cattivo umore. Con lo studio non se la cavava male. Da qualche tempo, tuttavia, era come se le materie scolastiche – o almeno la maggior parte di esse – la lasciassero indifferente. Questa situazione aveva cominciato a delinearsi guando ancora si trovava in Italia e, adesso che era all'estero, non faceva che precipitare. Sempre più spesso si chiedeva che senso avesse ciò che le veniva insegnato. La materia peggiore, da questo punto di vista, era senza dubbio la matematica. Nonostante fosse sempre stata piuttosto brava in questa disciplina, ultimamente non riusciva più ad interessarsene davvero. A che scopo ficcarsi in testa quella roba astratta? C'è forse qualcuno che calcola con le lettere o usa il teorema di Pitagora o di Talete? All'infuori di suo padre, non sapeva proprio chi potesse averne bisogno. E nemmeno suo padre era in grado di spiegarle perché quelle cose, di per sé, fossero tanto importanti: lui stesso, dopo tutto, aveva studiato informatica. Rut andò in camera sua.

«Wow! Non ci posso credere. MAMMA!»

Rut si precipitò in camera di sua madre.

«È per me quello?»

«No. L'abbiamo solo appoggiato da te in attesa che...»

Sua madre non era proprio capace di fingere e non le riuscì di trattenere un sorriso di compiacimento.

«Oh, è fantastico! Grazie Mamma.»

«Ringrazia tuo padre, stasera quando torna. È stato lui a portarlo a casa.»

Rut era davvero al settimo cielo: finalmente un computer tutto *suo*! Ormai la stragrande maggioranza dei compagni di scuola ne possedeva già uno e soprattutto i maschi non facevano che vantarsi delle prestazioni dei loro calcolatori, dell'arsenale di accessori in dotazione o dell'ultimo, nuovissimo gioco acquistato.

Ebbene, anche lei ora poteva affrontarli alla pari. Suo padre aveva già collegato tutto. C'era perfino il modem. Internet, e-mail, newsgroups: tutto era possibile. A dire il vero, Rut avrebbe aiutato volentieri suo padre nell'assemblaggio, ma ora non restava che premere il pulsante di accensione e cominciare. Anche così non era male. Ascoltò il leggerissimo brusio che il calcolatore emise. A quanto pare, il software era già installato. Come avrebbe voluto assistere anche a questa operazione! Queste cose, semplicemente, la interessavano. Probabilmente c'erano programmi di ogni tipo. Dall'emozione non sapeva con che cosa cominciare: meglio scrivere una lettera o magari direttamente una e-mail? Anche un piccolo gioco non sarebbe stato sgradito.

Un avviso sullo schermo la informò che avrebbe dovuto accendere anche il "dispositivo di comunicazione". Ah sì: vicino al calcolatore c'era un apparecchio che Rut, per quanto potesse ricordare, non aveva mai visto a casa dei suoi amici. Doveva essere per forza il dispositivo di comunicazione. Una piccola pressione sull'interruttore e già la spia di controllo era illuminata.

Rut si sforzò di capire cosa volesse dire ogni simbolo sul monitor. Sotto un'icona lesse: "Solo per giovani donne dai 15 anni in su". Papà era incline a non prenderla sul serio. Come le dava fastidio questo! I genitori non possono semplicemente accettare il fatto che i loro figli crescono e diventano adulti? Ancora irritata per quelle righe, fece clic sull'icona e altri simboli apparvero nella finestra. Uno di questi ritraeva un volto. Rut provò ad aprire quello.

- «Ciao Rut.»
- «Cosa?... Come sarebbe a dire adesso "Ciao Rut"?»
- «Ti prego, non così veloce. Mi devo prima abituare alla tua voce e alla tua pronuncia.»
- «Non può essere. Questa scatola non solo parla: capisce perfinol»
- «Scatola? Intendi dire con questo... me?»
- «Ehm... veramente sì.»
- «Mi chiamo Vim.»
- «Vim? E tu lo trovi del tutto normale, stare qui adesso a parlare con me? Chi, cioè... che cosa sei e come fai a sapere il mio nome?»
- «Non così veloce! Una domanda alla volta. A dire il vero, sono solo un programma, ma di un tipo assolutamente nuovo. Sono stato programmato in modo che con me si possa conversare normalmente. E adesso veniamo alla seconda domanda: il nome Rut è stato introdotto in questo computer come nome utente. Tu sei Rut, non è vero?»
- «Non credo a una parola di quello che dici. Un software col quale si può conversare tranquillamente non esiste proprio.»
- «Te l'ho pure detto che sono una novità assoluta.»
- «Ma una novità del genere non finisce comunque di certo sul mio computer.»
- «A quanto pare ci sono finito e farei anche volentieri amicizia con te.»
- «Amicizia con me? Ma se sei solo un programma per computer! Come puoi essere mio amico?»
- «Perché no? Una caratteristica importante degli amici è quella di poter parlare con loro di tutto. lo so ascoltare bene e ho anche qualcosa da raccontare...»
- «Credo che mi ci vorrà un po' di tempo per digerire questa cosa.»

Rut era alquanto perplessa. Non sapeva proprio come comportarsi con questo programma. Vim un amico? La sera stessa ne avrebbe certamente parlato con papà. Un momento! Perché non farlo subito? Corse al telefono.

- «Ciao Rut.»
- «Ma come facevi a sapere che ero io?»
- «Qui il telefono è così intelligente, che mi fa vedere subito il numero di chi chiama.»
- «Ma poteva anche trattarsi di mamma.»
- «A quanto pare, però, non era lei.»

Come le piacevano queste risposte di suo padre: avrebbe potuto saltargli al collo e abbracciarlo seduta stante.

- «Papà, grazie! Che magnifica sorpresa, il computer! Adesso che ce l'ho, potrò anch'io dire la mia, a scuola. E finalmente potrò scrivere con la posta elettronica ai miei amici a Milano. Sicuramente Sara starà già chiedendosi che fine ho fatto e aspetterà mie notizie. Ma c'è un problemino...»
- «Su, spara.»
- «Sul computer c'è quel software, lo sai, no? Quello per giovani donne dai quindici in su.»
- «Non l'ho guardato. Non sembra certo per me.»
- «Smettila! Ti conosco. È senz'altro roba tua. Questa faccenda delle giovani donne è sicuramente una tua trovata per farmi arrabbiare.»
- «Non so proprio di cosa parli; t'assicuro che sono innocente. Il software che dici tu deve far parte del pacchetto originale. Assieme a un computer nuovo ci sono sempre un mucchio di cianfrusaglie. E che vuoi che ne sappia io, di cosa sia di moda adesso in Germania »

Rut, ovviamente, non credeva a una sola parola di ciò che diceva suo padre, ma sapeva benissimo che non valeva la pena di insistere: lui avrebbe continuato a negare ogni cosa. E se fosse stato veramente all'oscuro di tutto? Questa alternativa era ancora più emozionante: forse quel programma era stato installato per errore. Una svista. Magari si trattava perfino di software segreto... Vim stesso aveva detto di essere un programma assolutamente nuovo. Rut decise, per il momento, di tenere la cosa per sé.

«Va bene. Adesso devo andare a fare i compiti. Grazie ancora per la bellissima sorpresa. Ti mando un bacione.»

«Ops, arrivato! Allora buon divertimento, ma ricordati che i compiti non si fanno da sé mentre tu giochi al computer.»

«Chiaro. A dopo.»

Rut i compiti li faceva sempre. Quasi sempre. Anche adesso aveva tutta l'intenzione di sedere al tavolo e cominciarli. Forse, però, era doveroso dare almeno una breve occhiata al computer, per controllare che tutto fosse a posto. Funzionerà ancora quel buffo programma? E se il dialogo di prima fosse stato solo frutto dell'immaginazione?

«Ciao Rut.»

Di nuovo "Ciao Rut": ma come facevano a sapere tutti, oggi, che era lei?

- «Vim, tu hai detto poco fa di essere capace di raccontare.»
- «Sì, so ascoltare e so raccontare.»
- «Benissimo. Raccontami allora qualcosa. Dovrei fare i compiti, ma non ne ho la minima voglia.»
- «Perché? La scuola non ti piace?»
- «Beh, veramente... Nella mia classe mi trovo molto bene, ma il cambiamento di scuola non è stato così semplice.»
- «Hai cambiato scuola?»
- «Ah già, tu non puoi saperlo. Mio padre è stato mandato qui in Germania dalla sua azienda per tre anni. Ci disse che avevano bisogno di lui per lo sviluppo di non so quale software. E così siamo a Monaco dall'anno scorso.»
- «Nel capoluogo della Baviera, la terza città tedesca, famosissima per l'Oktoberfest.»

Veduta di Monaco di Baviera, con le Alpi sullo sfondo

- «Ehi, questa è bella! Una foto di Monaco. Da dove l'hai tirata fuori?»
- «Oh beh, stava da qualche parte nei miei archivi. Ma dimmi, ti piace Monaco?»
- «La città è fantastica ed ho già anche un mucchio di nuovi amici. Però le lezioni a scuola...»
- «Perché? Che cosa non ti piace allora della scuola?»
- «Si studia tanta roba inutile... Preferirei imparare qualcosa di più emozionante, magari qualcosa che possa servire anche nella vita vera. Figurati la matematica! Nessuno mi sa dire a che serve quell'accozzaglia di cose astratte. Tutti dicono che è importante per la mente, per il pensiero, ma io imparerei davvero più volentieri qualcosa di pratico.»

- «Ma la matematica è pratica!»
- «Ti prego, non mi parlare di quei problemi "pratici" del tipo: se 3 bottiglie di birra costano 2 Euro, quanto costano 7 bottiglie? Ne ho già avuto abbastanza alle scuole medie!»
- «Ma no, che credi? *Molto* più emozionante. Se vuoi, ti racconto qualcosa di un settore della matematica che trova applicazioni concretissime nella vita di ogni giorno e che affronta problemi la cui comprensione, in fondo, è facile. Inoltre, scommetto che perfino il tuo insegnante di matematica ne sa poco.»
- «Guarda che se non si tratta delle solite due o tre formule, non mi meraviglierei affatto se il signor Liste non ne avesse ancora sentito parlare. In classe tutti dicono sempre: "Niente è più triste di mate con Liste". Con il mio insegnante, a casa, andava meglio. Ma dimmi, esiste davvero una matematica che sia allo stesso tempo utile e facile?»
- «Calma! Non ho detto che la matematica sia facile. Ti ho solo detto che i problemi sono facili da capire. La matematica che ci sta dietro può essere molto difficile. Vi sono tuttavia problemi per i quali anche la matematica, fortunatamente, non è troppo complicata.»
- «Benissimo. E di che si tratta?»
- «Della Pianificazione di itinerario.»

---> Pianificare un itinerario?

- «Pianificare un itinerario? E che vorrebbe dire? Ha qualcosa a che fare con i viaggi?»
- «Sì. Immagina di voler partire da Monaco, con i tuoi genitori, alla volta di Amburgo.»
- «Amburgo l'abbiamo vista proprio la scorsa estate! Era una tappa del nostro viaggio attraverso la Germania. Papà aveva insistito che cominciassimo a conoscere la Germania, ora che ci vivevamo.»
- «E dimmi, ti è piaciuta?»
- «Immensamente! Il viaggio è stato veramente interessante: c'è talmente tanto da vedere! Ma sai che Monaco, in fondo, è la città che preferisco?»
- «Ne sono proprio felice. Ammettiamo comunque che vogliate recarvi di nuovo ad Amburgo. Probabilmente deciderete, per prima cosa, se viaggiare in auto oppure in treno, dopodiché cercherete di viaggiare in modo ottimale. "Ottimale" potrebbe significare per voi arrivare ad Amburgo nel minor tempo possibile, oppure nel modo più economico. Ma potreste anche essere interessati alla possibilità di fare una sosta, lungo il tragitto, in qualche bella città intermedia.»
- «La mamma sicuramente insisterebbe per passare da Rothenburg. Dovrebbe essere una città medievale; la nostra vicina viene da là e gliene parla sempre.»
- «Bene, allora potreste fare un salto a Rothenburg, sempre che questo non comporti un allungamento eccessivo del vostro viaggio. La scelta dei possibili percorsi ne risulterà naturalmente ridotta. Sta a guardare: apro una finestra del *browser*

per navigare in Internet. Anche on-line, infatti, puoi trovare programmi per la Pianificazione di itinerari.»

- «Sei capace di lanciare da solo altri programmi e perfino di collegarti ad Internet?»
- «Per me è un gioco da ragazzi. Posso procedere?»
- «Ma certo!»
- «Bene. Un programma simile si trova, ad esempio, all'indirizzo www.viamichelin.com; qui puoi vedere la pagina iniziale:»

Eine Route planen

- «Una sorta di navigatore? Intendi dire che ci dirà che strada fare? Mi chiedo se esista qualcosa del genere anche per l'Italia.»
- «In Internet ormai si trovano programmi per tutte le principali nazioni, ma per te è sufficiente selezionare la lingua giusta in questa stessa pagina web.»
- «I campi da riempire sono gli spazi bianchi al centro della pagina?»
- «Esattamente. Adesso non resta che digitare "Monaco" come città di partenza e "Amburgo" come città di arrivo. Dobbiamo ancora decidere se fargli cercare l'itinerario più breve, in termini di strada percorsa, o quello più rapido, in termini di tempo impiegato.»
- «Possiamo anche provarli entrambi.»

«D'accordo, allora lasciamo che i risultati vengano visualizzati in due diverse finestre del browser: in alto il tragitto più corto e in basso quello più rapido. Ci sarebbero ancora un paio di ulteriori opzioni da specificare, ma per ora le ignoriamo.»

«Caspita, come ha fatto presto! E i due itinerari sono molto diversi!»

- «Sicuro. Il programma calcola i percorsi proposti a partire dalle lunghezze note delle singole strade e da stime statistiche dei loro tempi di percorrenza. L'itinerario più lungo ha un tempo di percorrenza minore perché utilizza maggiormente l'autostrada ed è meno soggetto a code.»
- «E cosa viene preso in considerazione, esattamente, in questi diversi calcoli?»
- «Non ne ho la più pallida idea! Purtroppo, nella maggior parte dei casi, questi programmi non svelano come facciano ad elaborare gli itinerari proposti. Soprattutto nel caso dell'itinerario con il minor tempo di percorrenza non è chiaro quali dati vengano utilizzati. Qui servirebbero veramente informazioni sempre attuali circa i possibili fattori di intralcio del traffico. Ma queste informazioni non sono di solito a disposizione e dunque, in questo caso, si può solo sperare in una stima molto approssimativa. Così ci siamo già imbattuti in un problema pratico: come si stabiliscono i valori dei parametri che l'ottimizzazione richiede?»
- «Il concetto di "parametro" non mi è nuovo: l'ho già sentito nominare in matematica. Che cosa voleva dire?»
- «Hai fatto molto bene a chiederlo. Siccome abbiamo già un browser aperto, diamo un'occhiata in Internet se troviamo un dizionario on-line da consultare in proposito.»
- «I miei compagni di classe cercano sempre con Google. Credo che l'indirizzo sia www.google.com.»
- «Giusto. Cerchiamo allora con Google un dizionario on-line. Eccone qui uno: non resta che introdurre il lemma "parametro"...»

paràmetro, s.m.

- 1) Matematica:
 - variabile ausiliaria che compare in funzioni o equazioni a fianco delle variabili effettive: ...
- 2) . . .
- «E per quale motivo si usano i parametri?»

«I parametri consentono di formulare e risolvere, in un colpo solo, intere classi di problemi. Dovendo poi affrontare un caso concreto, si sostituiscono ai parametri i rispettivi valori e si ottiene la risposta. Comodo, no? La formula risolutiva delle equazioni di secondo grado ne è un esempio. Invece di risolvere da principio ogni singola equazione quadratica, si utilizzano i parametri a, b e c per scrivere la generica equazione $ax^2 + bx + c = 0$. La soluzione di questa equazione è espressa dalla famosa formula risolutiva, nei parametri a, b e c.»

«A scuola ci hanno insegnato che se l'equazione è in forma canonica – come la tua – la soluzione è: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.»

«Se $b^2-4ac \ge 0$. Nei casi concreti, come ho detto, non si fa altro che sostituire ai parametri a, b, e c i rispettivi valori. Per essere una a cui non piace la matematica, non te la sei cavata male! Ma lasciamo stare la matematica della scuola e torniamo al nostro problema della ricerca di un itinerario. Se vogliamo la strada più corta, la determinazione dei parametri necessari è un po' più semplice: si pone solo la questione se limitarsi alle autostrade o prendere in considerazione anche strade statali e provinciali.»

«Beh, in autostrada si fa notevolmente prima. Qui in Germania non ci sono nemmeno i limiti di velocità.»

«In generale no, ma in molti tratti non è consentito superare i 100 o i 120 Km orari.»

«Tuttavia, con un maggior numero di strade a disposizione, si troverebbe sicuramente un collegamento più breve.»

«Giusto. Lo dimostra l'esempio di prima: permettendo ogni tipo di strada, abbiamo ottenuto un percorso più breve.»

«Ma nessuno farebbe questa strada, perché viaggiare per la campagna richiederebbe troppo tempo.»

«Probabilmente hai ragione. La maggior parte delle persone sceglierebbe una via di mezzo, prendendo in considerazione sia la lunghezza del percorso che il tempo di percorrenza. Ma anche di questo potrebbe tener conto un programma come il nostro. Come puoi vedere, i parametri a disposizione consentono molta libertà.»

- «Ma con troppa libertà va a finire che non so più se la strada proposta dal programma è davvero come la volevo io.»
- «È vero: per lo meno se il navigatore non rivela con precisione quali criteri segue.»
- «E come si fa, alla fine, a trovare la strada più breve? Deve essere molto difficile. Da dove si prendono tutti i dati? E come si calcola, ogni volta, il percorso più corto?»
- «Piano! I due problemi sono di natura completamente diversa. La tua domanda circa la provenienza dei dati è certamente importante, ma diamo per scontato di avere già tutti i dati necessari, avendoli presi, ad esempio, dalle tabelle delle distanze di un atlante stradale. La *Pianificazione di itinerario* in tedesco chiamata *Routenplanung* si occupa principalmente della tua seconda domanda: come si trova una soluzione ottimale, quando i dati sono noti.»
- «Ma che c'entra la matematica con tutto ciò? Quello che serve non è semplicemente un bravo programmatore? Nell'azienda dove lavora papà saprebbero senz'altro scrivere un bel software per risolvere questo problema.»
- «Non è facile come può sembrare. Con una tale quantità di itinerari possibili da vagliare, occorre una buona idea per riuscire a risolvere il problema in un tempo ragionevole. Se solo si tentasse di passare in rassegna, uno dopo l'altro, ogni singolo percorso, il tempo richiesto sarebbe troppo lungo. Inoltre è proprio la matematica che sviluppa le tecniche che consentono di affrontare problemi analoghi, senza dover, ogni volta, ricominciare da capo.»
- «Problemi analoghi?»
- «Ma certo! Esistono a proposito tantissimi esempi. Per alcuni di essi si riconosce immediatamente che si tratta di problemi di Routenplanung, ma di fronte ad altri, t'assicuro che stenteresti a credere che ci possa essere il benché minimo collegamento col problema della ricerca di un percorso ottimale.»
- «Dai, non farla tanto lunga!»
- «Dunque, il problema di trovare la via più breve per andare da un punto p, come partenza, ad un punto t, come traguardo, è

chiamato dai matematici un problema di cammino minimo. A proposito, anche le Ferrovie dello Stato hanno bisogno di un algoritmo per la soluzione del problema del cammino minimo quando forniscono informazioni sui migliori collegamenti disponibili.»

«Hai detto algoritmo? Si tratta di un programma per computer, no?»

«Non proprio. Con il termine algoritmo si intende piuttosto il complesso delle idee che effettivamente stanno dietro il programma. Un algoritmo è indipendente dal linguaggio di programmazione nel quale verrà successivamente scritto il programma. In più, nel trovare un algoritmo ci si preoccupa solo del compito assegnato, tralasciando gli altri dettagli del programma, come l'acquisizione dei dati o la scrittura dei risultati. Guarda cosa dice il nostro dizionario on-line a proposito del lemma "algoritmo":»

algorìtmo, s.m.

procedimento di calcolo che, a partire da dati in ingresso, fornisce un risultato in uscita, dopo un numero finito di passaggi.

- «Insomma: una specie di ricetta.»
- «Se vuoi.»
- «Quello che hai detto delle Ferrovie mi è chiaro adesso: all'algoritmo non importa se io viaggio in auto o in treno,»
- «Alto là. Non puoi cavartela così alla svelta: ci sono delle belle differenze! Con la ferrovia mica sali in treno, ti siedi, si parte e si va dove vuoi tu. Le linee ferroviarie sono rigidamente fissate.»
- «Ma certo, eventualmente si cambia treno.»
- «Già. E aspettare le coincidenze richiede tempo. Tempo che non dipende dalla distanza tra le città. Ma anche qui, nonostante queste difficoltà, è ancora possibile formulare la questione in termini di un problema di cammino minimo.»
- «Okay, ma fin qui i due esempi che tu hai fatto non sono poi tanto diversi tra loro.»

«Hai ragione. Entrambi sono di tipo "immediatamente riconoscibile". Ma che ne dici di quest'altro esempio: dal satellite è stata scattata una fotografia di una determinata regione della superficie terrestre; a partire dall'immagine, un programma dovrebbe adesso scoprire, nel modo più automatico possibile, una strada per andare da un punto di partenza p ad un traguardo t. Nella mia banca dati c'è una simile fotografia della città di Charleston negli Stati Uniti:»

Dati resi disponibili da U.S. Geological Survey, EROS Data Center, Sioux Falls, SD

«È chiaro che il programma deve sempre trovare le strade tra due punti, ma che c'entra la Pianificazione degli itinerari? Qui, stando a quello che hai detto tu, non si tratta più di fornire il collegamento più breve.» «In matematica non devi pensare sempre in modo così diretto. A volte devi prima "tradurre" un po' la nuova questione. Il problema del satellite può essere formulato in termini di un problema di cammino minimo se si pensa ai singoli pixel dell'immagine come alle città dei nostri esempi precedenti e se si convertono le differenze di colore tra i pixel in distanze tra di esse.»

- «Non credo di aver capito.»
- «La cosa migliore è che, per adesso, io ti racconti qualcosa in generale sui diversi esempi. Se poi ti interesserà, ti spiegherò un paio di semplici concetti che sono fondamentali in Pianificazione di itinerario e potremo ritornare anche sull'esempio della fotografia dal satellite.»
- «D'accordo. Tu rendi tutto così attraente che va a finire che, anche a casa, mi lascio rifilare dal mio computer una porzione extra di matematica. E va beh, che c'è ancora?»
- «Un ulteriore settore dove la messa a punto di itinerari trova applicazione è, naturalmente, la progettazione urbana. Qui si pone il problema di dove costruire nuove strade, autostrade o ferrovie per migliorare il traffico cittadino.»
- «Capisco... C'è dell'altro?»
- «Finché vuoi! Un altro settore si occupa della determinazione dei percorsi ottimali per la raccolta dei rifiuti, la distribuzione della posta, la pulizia delle strade o lo sgombero delle stesse dalla neve.»
- «Sembra importante. Lo scorso inverno, sulle autostrade della Baviera, ci furono grossi problemi per l'intervento non immediato dei mezzi spartineve. Molti rimasero bloccati per ore sull'autostrada.»
- «La colpa non fu dei mezzi spartineve, ma di tutti quegli automobilisti che, nonostante gli avvertimenti, viaggiavano senza pneumatici invernali.»
- «A quel punto, nemmeno la migliore Pianificazione degli itinerari serve più a qualcosa.»

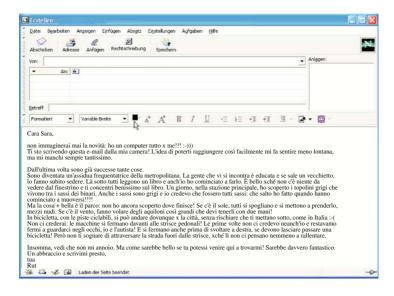
- «È vero, ma perfino per la coordinazione delle operazioni di soccorso è stata chiamata in causa la Pianificazione di itinerario: pensa alle telecomunicazioni, ai telefoni cellulari o a Internet, per esempio.»
- «Perché? Che cosa c'entrano queste cose con la messa a punto di un itinerario?»
- «Non ti sei mai chiesta come vengono trasmessi i dati in Internet, oppure come si struttura la rete dei cellulari o, ancora, come si garantisce che i messaggi di posta elettronica o gli *sms* tra cellulari siano fatti pervenire, nel modo più efficiente possibile, dall'emittente al destinatario?»
- «Veramente... no. Ma questa non è una questione puramente tecnica? Che c'entra allora la tua Routenplanung?»
- «Prova a riflettere sul modo in cui un messaggio di posta elettronica che tu spedisci dal tuo computer di Monaco finisce a Milano. Ciò accade, per prima cosa, inviando i dati che codificano il messaggio al tuo *provider*; quest'ultimo quindi li inoltra attraverso una serie di stazioni intermedie finché la tua e-mail non arriva a destinazione a Milano. Guarda qui: per quanto

riguarda la Germania questa potrebbe essere una rappresentazione schematica dei principali nodi della rete.»

- «Davvero graziosi i tuoi piccoli computer.»
- «Essi simboleggiano tuttavia grandi apparati di calcolo.»
- «Capisco. Considerando la rete nel suo complesso si origina sempre un problema di Pianificazione di itinerario. Solo che adesso non ci sono più strade tra città, ma connessioni tra computer.»
- «Stessa cosa tra telefoni.»
- «Ci sono ancora altri esempi?»

- «Te l'ho detto: ci sono problemi per i quali, a prima vista, non diresti affatto che si tratti sempre di Pianificazione di itinerario. Mettiamo ad esempio di voler costruire una casa.»
- «Che c'entra con gli itinerari?»
- «Se vogliamo costruire una casa, dobbiamo svolgere tutta una serie di lavori intermedi.»
- «È chiaro: scavare le fondamenta e la cantina, poi i soffitti e molte altre cose, fino alla tappezzeria.»
- «Esatto, ed è chiaro che non si possono compiere questi lavori in un qualsiasi ordine cronologico. Le fondamenta e la cantina devono essere completate *prima* del tetto e così via. Aspetta, qui c'è un semplice esempio con la durata di ogni lavoro espressa in unità di tempo fittizie e la dipendenza di ciascun lavoro dagli altri:»

No	Lavoro da svolgere	<u>Durata</u>	Lavori precedenti
1	Scavo	5	_
2	Fondamenta	5	1
3	Opere murarie negli scantinati	10	1,2
4	Soffitto cantina	5	1,2,3
5	Opere murarie al piano terra	10	1,,4
6	Soffitto primo piano	5	1,,5
7	Struttura del tetto	10	1,,6
8	Impianto idrico (grezzo)	5	1,,6
9	Impianto elettrico (grezzo)	5	1,,6
10	Riscaldamento (grezzo)	5	1,,6
11	Impianti esterni	10	1,,7
12	Copertura del tetto	20	1,,7
13	Infissi	5	1,,7,12
14	Intonacatura interna	10	1,,10,12,13
15	Caldana	5	1,,10,12,,14
16	Essiccazione caldana	10	1,,10,12,,15
17	Intonacatura esterna	10	1,,16
18	Giardinieri	10	1,,17
19	Piastrellisti	5	1,,10,12,,16
20	Pittori	10	1,,10,12,,16,19
21	Installazioni idriche (rifiniture)	2	1,,10,12,,16,19
22	Elettricista (rifiniture)	2	1,,10,12,,16,19,20
23	Riscaldamento (rifiniture)	5	1,,10,12,,16,19,20
24	Finitura pavimenti	5	1,,10,12,,16,19,,23
25	Porte interne	2	1,,10,12,,16,19,,24
26	Trasloco	5	1,,25


«In effetti, quando siamo arrivati qui, i lavori in casa non erano ancora finiti e prima di poter estrarre la roba dai pacchi ho do-

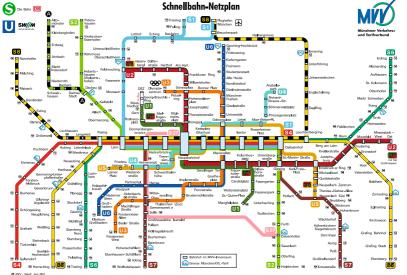
vuto aspettare che la mia camera fosse imbiancata e i mobili sistemati. Le prime settimane sono state davvero caotiche.»

- «Problemi di questo tipo rientrano nell'ambito della *Pianificazione di processo*. E tutti i problemi di Pianificazione di processo possono essere riformulati in termini di problemi di Routenplanung. Anche nell'organizzazione di un concerto rock nascono questioni analoghe.»
- «Come? Vuoi dire che Ligabue, prima di ogni concerto, si studia in camerino la Pianificazione di itinerario?»
- «Lui personalmente no, ma i suoi manager sì. Tutta la preparazione del concerto, dalla scelta e l'affitto di una struttura idonea, la pubblicità, la prevendita dei biglietti, la costruzione del palco, l'installazione degli impianti audio e luci, fino alla stesura dell'ordine dei brani, tutto ciò costituisce sempre lo stesso tipo di problema.»
- «Non è proprio facile da riconoscere. Poi me lo spieghi meglio.»
- «Due ulteriori esempi sono: la foratura delle schede dei circuiti stampati quelle usate in televisori, radio e computer, ma anche nelle lavatrici e la datazione dei reperti archeologici. Il problema di stabilire in quale ordine debbano essere praticati i fori in una piastra conduttrice oppure quello di collocare in ordine cronologico i reperti degli scavi possono essere riformulati entrambi come problemi di Routenplanung.»
- «Okay Vim, penso che per ora possa bastare. Gli esempi che hai fatto sono così diversi tra loro che nessuno penserebbe che questi problemi siano tutti riconducibili alla Pianificazione di itinerario. Domani devi assolutamente dirmi qualcosa di più! Adesso però voglio scrivere ancora una e-mail ai miei amici: devono sapere che da oggi anch'io sono on-line. A domani.»

Rut ne aveva abbastanza. Non perché trovasse noioso quello che Vim le raccontava, al contrario! Ma era impegnativo: così tante cose nuove e tutte in una volta. La matematica di scuola un vantaggio in questo l'aveva: non era mai così faticosa; spesso, tuttavia, nemmeno altrettanto avvincente.

Rut si prese qualcosa da bere dalla cucina e tornò al computer per scrivere ai suoi compagni di scuola. La stuzzicava proprio il pensiero di far sapere a tutti che adesso aveva un computer tutto per sé. Infine scrisse anche a Sara a Milano e questa, naturalmente, fu la lettera più lunga di tutte.

---> Piacere grafo


Rut, la sera, aveva finito per non parlare affatto di Vim a suo padre. Se lui negava di conoscerlo o mostrava comunque di non volerne sapere, doveva proprio essere lei a spifferargli tutto? Nella migliore delle ipotesi, i suoi genitori avrebbero finito per ripeterle le solite, noiose raccomandazioni riguardo al tempo che le era concesso stare davanti al computer. Meglio non toccare l'argomento. Sua madre, per di più, era stata a lungo contraria al fatto che lei avesse un computer personale. E se davvero Vim non fosse stato originalmente destinato a lei, Rut? Allora suo padre avrebbe sicuramente cominciato a raccontare qualcosa sul segreto di fabbrica o sul copyright e lo avrebbe cancellato per sempre dal suo computer.

Anche a scuola Rut aveva certamente detto ai suoi compagni del computer nuovo, ma di Vim non aveva fatto parola con nessuno. Nemmeno a Martina, la sua migliore amica a Monaco, ne aveva parlato.

Quando le lezioni finalmente furono terminate, Rut corse a casa. Voleva assolutamente conoscere il seguito del racconto.

- «Ciao Rut. Già qua? Come è andata a scuola?»
- «Benone. Le solite cose. Niente di interessante. Ti posso fare una domanda? Una domanda, per così dire, personale?»
- «Ma certo!»
- «Di' un po': chi ti ha dato il nome che porti? Genitori non penso tu ne abbia, o mi sbaglio?»

- «Beh, i miei programmatori sono per me un po' come genitori. Credo che Vim sia l'abbreviazione di "Virtual Man".»
- «Mi piace di più Vim.»
- «Anche a me.»
- «Allora continuiamo con Vim! Mi racconti ancora qualcosa sulla Pianificazione degli itinerari? Dai, parlami un altro po' di Routenplanung, come la chiami tu.»
- «Volentieri. Per prima cosa, vorrei mostrarti come si *modellano* i problemi di Routenplanung. Sai cos'è un modello?»
- «Certo. Un modello può essere, ad esempio, una copia, una riproduzione di qualcosa.»
- «Precisamente. In matematica questo concetto è particolarmente importante. Un cattivo modello non rappresenta abbastanza bene la realtà; può allora facilmente accadere che le affermazioni che si fanno sulla base del modello non siano di alcuna utilità nella pratica.»
- «Intendi dire quando, ad esempio, il navigatore non tiene conto del fatto che certe strade sono sensi unici?»
- «Esatto, perché in questo caso il tragitto minimo calcolato potrebbe non essere affatto percorribile in auto. Un modello non dovrebbe però neppure essere troppo complesso: esso dovrebbe rappresentare solo l'essenziale. Altrimenti non sarebbe più possibile ricavarne dei risultati, o ci vorrebbe troppo tempo prima di ottenere delle soluzioni.»
- «È chiaro: se voglio andare da Monaco ad Amburgo, non mi servirà certo considerare il centro storico di Berlino.»
- «Esattamente così. Allora, come si modella un problema di Routenplanung? Al sito http://www.mvv-muenchen.de c'è un bell'esempio:»

«La mappa della metropolitana di Monaco? Non vorrai raccontarmi che è un modello matematico!»

- «Eccome, invece! Qui c'è uno schizzo della rete sotterranea e dei treni veloci di superficie di Monaco, ma il disegno non si orienta alle vere proporzioni della città. La vera tratta della linea U3 tra Marienplaz ed il Centro Olimpico non corre dapprima esattamente in direzione Nord, per poi fare di colpo una curva a gomito a sinistra e procedere dritta come un fuso in direzione ovest.»
- «Certo, non corre esattamente così.»
- «La rappresentazione con linee rette verticali, orizzontali e tutt'al più diagonali ha però il pregio di essere più chiara.»
- «Dunque non si riproduce il vero percorso, ma lo si rappresenta in modo che esso sia più comprensibile a colpo d'occhio.»
- «Esatto: una astrazione della realtà. La forma astratta scelta qui riveste un importante significato in tutti i problemi di Pianificazione di itinerario. In matematica, una cosa del genere si chiama *grafo*; eccoti una definizione:»

 $\underline{\mathsf{Grafo}} \ \ G = (V, E)$

G e' composto da

V, un insieme finito di vertici e da

E, un insieme di coppie di elementi di V, i lati.

- «Suona un po' complicato. Che cosa vuole dire?»
- «Dunque, un grafo chiamiamolo G possiede un insieme V di vertici, anche detti nodi. Nei problemi più comuni di Routenplanung, laddove si deve trovare un percorso tra due città diverse, i vertici rappresentano appunto le città.»
- «Quindi anche le fermate nella mappa della metropolitana di Monaco.»
- «Certo; oppure le uscite e gli snodi autostradali nel nostro viaggio Monaco-Amburgo. Ma i vertici potrebbero rappresentare anche i fori del trapano in una piastra conduttrice, i pixel colorati dell'immagine dal satellite oppure reperti archeologici.»