
Eclipse Rich Ajax Platform i

Contents
Chapter 1: Rich Clients vs. Web Clients...1

A Rich Client Definition ... 2
Technical Aspects.. 2
Developer Aspects... 3
Enterprise Aspects... 3

A Web Client Definition.. 4
Technical Aspects.. 4
Developer Aspects... 5
Enterprise Aspects... 6

A Rich Web Client Definition... 7
Technical Aspects.. 7
Developer Aspects... 8
Enterprise Aspects... 9

History Is Repeating Itself ..10
What to Choose Now?...11

Chapter 2: Introducing Eclipse RAP ..15

The RAP Vision...15
Componentized and Event-Driven Design.. 15
Programming Using Java APIs ... 16
Developing for the Web Just As with Java SWT.. 17
Bringing Eclipse RCP to the Web... 18
Customizing Web Applications with Plug-ins .. 18
Evolving RCP Applications Through Code Reuse 19

ii Eclipse Rich Ajax Platform

RAP Case Studies..20
Scenario 1: Freedom of Choice... 20
Scenario 2: Business-to-Customer Solutions .. 20
Scenario 3: Intranet Productivity Tools .. 21
Scenario 4: End Customer Solutions... 23
Scenario 5: Business Solutions As Services ... 25

Pitfalls with RAP...27
Wrong Expectations .. 27
Lower Performance ... 29
No Web in Web... 30

Chapter 3: The RAP Architecture..31

The Runtime Layer ...32
The Server Side ... 32
The Client Side.. 33

Reimplemented APIs...35
Standard Widget Toolkit ... 35
JFace .. 36
The Workbench ... 36

Issues and Solutions..37
RAP Does Not Implement All APIs Yet... 37
RAP Will Never Implement Certain APIs .. 38
RAP is Multiuser ... 39

RAP Plug-ins and Packages ...40
RAP Version History...41
The RAP Community ..42

Eclipse Rich Ajax Platform iii

Chapter 4: Developing a RAP Application45

Installing the Eclipse and RAP SDKs ..45
Running the RAP Sample Application...48
Creating a Simple Application..52

Creating an Entry Point ... 55
Creating a WorkbenchAdvisor.. 56
Creating a Perspective ... 57
Creating a View... 58
Wrapping Up ... 60
Running the Application ... 61

Extending the Application ..63
Changing the Window Appearance... 63
Creating a Menu Bar and a Coolbar.. 65
Creating a Table .. 67
Creating an Editor ... 72
Creating a Form for the Editor .. 77

Chapter 5: Single Sourcing ..83

Pros and Cons of Single Sourcing ...83
Project Setup..85

RAP Proof of Concept... 87
Enabling RCP Support for a RAP Application ... 87
Developing for Both Platforms at the Same Time 88

Running the Mail Demo in RCP ..88
Running the Mail Demo in RAP ..89

Fixing Imports ... 90
Fixing Extension Points... 91
Fixing Nonexistent APIs ... 93
Adding the Entrypoint ... 96

iv Eclipse Rich Ajax Platform

Running maildemo in RAP ... 97

Rerunning the RCP Version...97
Wrapping Up ...99
More Single-Sourcing Techniques...100

Using Heavy Reflection .. 100
Using Interfaces and Reflection .. 102
Creating Unimplemented Classes ... 104
Patching RAP .. 107

Chapter 6: Advanced RAP Features .. 109

Changing the Look and Feel ..109
Configuring RAP to Use a Different Theme... 110
Applying the Theme.. 112
Branding the Application .. 113

Writing a Custom Widget..116
Creating a Java Widget.. 116
Creating a qooxdoo Widget... 117
Creating a JavaScript-to-Java Connection .. 119
Creating a View... 121
Creating a Resource Definition ... 122
Integrating the View.. 124

RAP Without the Workbench ...125
Unit Testing in RAP..127

Chapter 7: RAP Deployment .. 131

Running RAP in Jetty in Equinox ...131
Preparing the OSGi Runtime... 131
Creating and Exporting a Feature.. 133
Running the Application in OSGi ... 135

Eclipse Rich Ajax Platform v

Running RAP in Equinox in Tomcat...136
Preparing the Web Container .. 136
Creating and Exporting a Web Archive .. 136

Related Titles ... 141

vi Eclipse Rich Ajax Platform

Eclipse Rich Ajax Platform:
Bringing Rich Clients to the Web

by Fabian Lange

Eclipse Rich Ajax Platform (RAP) is a great technology; the only problem is that
there is no book available about the technology and how to use it. With this book,
I want to fill this gap and show where and how Eclipse RAP can be used.
I would like to thank the whole Eclipse RAP team, especially Frank Appel, for
supporting me while writing this book. I spent some time during fall 2007 with
Frank and his team trying to convert an Eclipse RCP application with RAP. This
is where I got firsthand experience and expert advice on this great technology.
Thank you for creating Eclipse RAP and providing me with valuable input.
I want also to thank Apress for allowing me to publish this book, especially Steve
Anglin, Sofia Marchant, and Damon Larson for the great professional support
during the creation of this book.
Additional thanks go to my employer, codecentric GmbH, and all of my
colleagues who supported me in one way or another during the creation of this
book. I am very proud of working with such a great team.
Very special thanks go to my lovely wife, Marie: thank you for supporting me in
a way no one else could, day and night, encouraging me to write this book. I love
you deeply.
Feel free to visit www.rap-book.com or e-mail me at fabian@rap-
book.com in case of any questions or comments.

Eclipse Rich Ajax Platform 1

Chapter 1: Rich Clients vs. Web Clients
This chapter describes the properties of rich clients and web clients, and
tries to establish a sound definition of each. The focus is on the differences
and characteristics that are important for this book—that is, differences that
matter for the Eclipse Rich Ajax Platform (RAP). Eclipse RAP combines
these technologies, allowing you to create rich web clients from rich
clients.
Each of the definitions is structured in three parts:

Technical aspects, which describe the technology and patterns involved or
used, and the implications they have.
Developer aspects, which describe key properties, like programming
language or tooling.
Enterprise aspects, which basically try to identify why big companies
should put money into a technology. Of course, enterprise aspects might
be important for end users or in other scenarios as well; however, software
and its related costs weigh much more in larger environments. Thus, small
differences can impose larger consequences.

The definitions are intended to be generic and valid for all programming
languages. However, readers of this book are more likely to be familiar
with Java than with any other language, so the examples and references are
based on Java.

Note If you are a developer and are just interested in the RAP
technology and how to implement it, you might want to skip directly to
Chapter 2; but keep in mind that your customers either might have read
this chapter or may need advice on finding a solution based on their
requirements. For these reasons, you might want to read this chapter first.

2 Eclipse Rich Ajax Platform

A Rich Client Definition
Rich client: Also knows as a desktop application, native application, thick
client, or fat client

Technical Aspects
Typically, applications that are considered rich clients don’t run in an
emulator or browser, but run natively on the operating system of the user’s
computer. The majority of these rich clients are written in C++, Java, or
.NET. Such rich clients have nearly unrestricted access to system resources
like memory, storage, input devices (e.g., keyboard and mouse), and output
devices (e.g., printer and screen). Only certain functionality, like modifying
memory used by other applications, can be restricted by the operating
system to prevent malicious applications compromising the system. This
access to many system resources allows the application to perform a wide
range of tasks, which include operations that can utilize the CPU
completely for a noticeable amount of time (e.g., multimedia editing).
Rich clients offer a large feature set optimized to work on a well-defined
range of use cases. Often, these applications contain many more features
than the user actually needs to perform her job. The look and feel is often
designed to be very similar to the host operating system, which makes it
easier for users to learn how to use the application, because they can
recognize common usage patterns across different applications.
Another feature of rich clients is extensibility using plug-ins. Plug-ins are
additions provided by vendors or third parties that are able to hook into
APIs provided by the rich client and deliver additional functionality.
Usually, data manipulated with the applications is local. If a network is
involved at all, it is often just used to pull data, which is then stored locally
for processing and sent back to a server later on. This design allows the
application to be used offline without any network connection.

Eclipse Rich Ajax Platform 3

Rich client applications are typically able interact with each other using
drag-and-drop functionality or other technologies like Microsoft OLE (for
Windows), or Bonobo and KParts (for Linux).

Developer Aspects
From a developer point of view, rich clients are easy to implement, because
the programming languages and operating systems are very mature and
offer a lot of APIs to develop the required functionality. That means that
developers don’t have to expend as much effort as they used to, as they can
reuse existing or provided functionality and can deal with business logic
most of the time. They also have access to advanced tooling that helps with
the creation, testing, and installation of rich client applications. As the
computers running these applications nowadays are powerful enough to run
applications that waste CPU power or memory, developers no longer have
to spend large amount of time optimizing applications for lesser CPU or
memory usage.
A Java, C++, or .NET developer can develop, test, and maintain an entire
application, because there is no second technology involved, which would
require a different set of competencies.
In the Java world, there are three main players for creating rich clients:

Eclipse Rich Client Platform
NetBeans Platform
Spring Rich

Enterprise Aspects
Rich clients need to be installed, maintained, and updated on each user’s
workstation. While solutions exist for managing the application
maintenance (like HP OpenView, IBM Tivoli, or Microsoft Systems
Management Server), users are almost always able to bypass the
mechanisms of these solutions. In extreme situations, outdated software

4 Eclipse Rich Ajax Platform

can expose security risks or corrupt data, so it is important to supply users
with the most recent version of their applications.
While green IT concepts advertise that end user workstations should be
very small to reduce costs and power consumption, rich clients are not
ideally designed for this. Rich client applications often need a powerful
CPU or a lot of memory, but do not utilize powerful hardware most of the
time. To be cost efficient, rich clients would need to move heavy
operations to the server side where they can be scaled more efficiently, so
that the client computers just need to be capable of handling the few
remaining lightweight operations.
In spite of these considerations, software and hardware costs are usually
less important than the costs of wasted working time when users have to
wait for their applications to respond. In the end, slow applications cost
more than what would be spent on enabling users to work as efficiently as
possible.
The use of plug-ins with rich clients enables more standardization in a
company. It’s possible to provide the same foundation application to every
department, and, for example, provide sales support for the sales
department and financial functionality for accounting using plug-ins. This
pattern allows for greater source code reuse than separate applications
would.

A Web Client Definition
Web client: Also known as a web application, Internet/intranet
application, web user interface, and thin client

Technical Aspects
Contrary to rich clients, web clients do not run on top of the computer
operating system, but inside the web browser. This imposes many
restrictions on web clients. Components cannot be drawn directly on the

Eclipse Rich Ajax Platform 5

screen; instead, HTML and CSS, which are the markup languages a
browser is able to understand, have to be used to lay out the application.
The original concept of HTML did not include multimedia or a high degree
of interactivity, so many of these features have been added with plug-ins.
However, for web applications, it is not predictable whether a certain plug-
in is installed on the client side and exactly what functionality the plug-in
delivers.
Classical web applications use the network heavily, because the browser
basically shows a screen that has been created remotely, on the server. This
slows down interaction between the user and the application, as each
interaction requires a server roundtrip. Additionally, the entire screen must
be re-requested from the server on each roundtrip. Implicitly, this already
indicates the main disadvantage of web clients: they cannot work without a
network connection and are impacted by the quality of service the network
connection provides. Even with a fast network, much data is transferred on
each request, which reduces application performance.
Usually, it is said that the advantage of web applications is that they are
good cross-platform applications. They can often be used on mobile phones
and kiosk systems—basically anywhere a web browser is installed.
However, this is somewhat true as well for rich clients that, for example,
just need a virtual machine, or a recompilation on the target platform to
run.
Web clients do not need to be installed on the user’s hardware, which
makes it possible for users to access the application even on a machine
where the application should not or cannot be installed.

Developer Aspects
The main language of web clients is HTML, combined with a bit of CSS
for better-looking interfaces. The complete layout of the screens has to be
done either by the application developer or a web designer. HTML and

6 Eclipse Rich Ajax Platform

CSS offer only limited support for creating user interfaces that are usable at
a variety of screen resolutions and that integrate into the native look and
feel of the user’s operating system. Additional issues arise from the fact
that end users can change many display settings of the browser and have
incompatible browsers or browser versions installed.
To enable user interaction with the application, developers need to provide
some kind of server-side logic that is able to render the required HTML
and deal with the data submitted by the user using HTML forms. This need
sparked such lightweight scripting languages as Perl and PHP, which were
well suited for this job. However, scripting languages often fail to provide
concepts that are required to develop structured and maintainable source
code.
From the Java point of view, much effort has been spent to create a sound
server-side solution for web applications with the Servlets, JSP, and JSF
standards. .NET also provides server-side solutions based on ASP.

Enterprise Aspects
From an enterprise perspective, web clients solve software maintenance
issues. A single server installation is used by all corporate users, which
improves data integrity. For example, a tax rate change can be deployed
once to the server and all bills created with the application on the server
will be correct. With rich clients, some users would be able to create bills
with an incorrect tax rate from their local machine, because their
application won’t have been updated yet. But this is only true as long all
users have a similar browser setup for corporate use; otherwise, cross-
browser issues could interfere with the application.
A further advantage is that sensitive data is stored only on the server, and
just the set of data being used by the user is transferred from the central
storage over the network.

Eclipse Rich Ajax Platform 7

The network dependency of web clients is of less impact for enterprise
applications, as internal networks are fast enough to power many
simultaneous users. For users working at a customer’s site, these
applications were impossible to use in the past; however, nowadays
wireless networks enable remote users to work with web clients. Still, the
issue of poor-quality wireless networks (or in some places, no network
access) remains.
Due to the limited functionality of web clients, many companies are using
web clients only for read-only data, like phone books or branch/department
information. These types of applications do not need much functionality
because data maintenance and updates are usually taken care of directly by
superusers on the main databases.

A Rich Web Client Definition
Rich web client: Also known as a rich Internet application, Ajax client,
Web 2.0 client, and fat thin client

Technical Aspects
Since the beginning of the Web 2.0 era, many old web client technologies
have been evolving quickly and the definition of web client has changed
fundamentally. The revised usage of JavaScript allows web applications to
modify static content and interact with page elements. By using Ajax as a
transport protocol for asynchronous requests, it has become possible to
interact with the server while staying on the same screen, which means that
users can continue to work while the application fetches data or updates
parts of its screen based on the outcome of a server-side computation. This
basically removes the disadvantage of unresponsive applications that
always refresh to load data from the server.
In rich web clients, state is not only kept on the server side, but also on
client side. Usually, data state is managed on the server side, while
application state, which does not need to be persisted longer than a browser

8 Eclipse Rich Ajax Platform

session, is handled on the client side. Also, it follows the separation-of-
concerns pattern, as user-relevant state is just managed by that user on that
user’s computer.
While network connection is still critical for rich web clients (or maybe
even more critical than for traditional web clients, as in total more requests
are made at shorter intervals, which are not very tolerant of timeouts), some
solutions are emerging, like Google Gears, that let rich web applications
continue to work without a network connection by queuing requests to the
server in a local storage.
Some people consider very well-designed applications or applications with
visual effects to be rich applications, as it’s actually not that easy to decide
from a user’s point of view what qualifies as a rich web application. As a
rule of thumb, you could say the following: if a web application uses
JavaScript to load data asynchronously, it is a rich web application.

Developer Aspects
Manually creating HTML markup is no longer the main method of
designing web applications. JavaScript has taken over the lead role,
wrapped by some frameworks that make it similar to a traditional
programming language, by dealing with cross-browser issues with HTML,
CSS, and JavaScript and providing consistent APIs. Additionally, browser
manufacturers have worked on adhering to standards, which guarantee that
regardless of the browser used, applications can look and work the same.
While the main programming language for the user interface will be often
JavaScript, the sever side just generates basic HTML and serves the data
used by the application in XML or JSON.
Still, JavaScript has not gained much more functionality than it had already
in traditional web clients, which might prevent some features from being
implemented in pure JavaScript. For example, many features require
Adobe Flash, which is perhaps the most commonly used plug-in for

Eclipse Rich Ajax Platform 9

multimedia functionality. So, in the end, developers of rich web
applications often need a broad technology knowledge.
Eclipse RAP and Google Web Toolkit are two frameworks that try to solve
server- and client-side programming in pure Java and just generate the
appropriate HTML and JavaScript dynamically. This would allow the
developers to focus on one development language and environment.

Enterprise Aspects
Rich web clients usually impose more requirements on the web browser.
As the technology is still evolving quickly, recent web browsers should be
used with rich web clients. On the one hand, it’s good for standardization
purposes that corporations usually have the same browser installed on all
workstations; however, this may be an older version that does not work
well with rich web clients. For example, Internet Explorer 6 can still be
found in many corporations as the default browser, which does not work
very well with rich web clients. The main reason for this is that companies
often still use early rich web clients with special ActiveX functionality that
made the applications work in Internet Explorer 6. Upgrading to Internet
Explorer 7 would be beneficial for many new rich web clients, but in some
cases it would make the existing rich web clients work incorrectly. This is a
big issue, as existing applications usually have higher priorities than new
applications, and it makes the total cost of deploying new applications
higher than expected.
Because JavaScript is employed in rich web clients slightly beyond its
original intentions, it is not a very stable runtime environment. For
business-critical applications that are used throughout an entire working
day, this could be an issue, as a browser crash could cause a user to lose
some of his work. However, browser manufacturers are working to make
JavaScript execution more robust and fix memory leaks.

