Pro JSP 2
Fourth Edition

Simon Brown, Sam Dalton, Daniel Jepp,
David Johnson, Sing Li, and Matt Raible
Edited by Kevin Mukhar

Apress*

Pro JSP 2, Fourth Edition
Copyright © 2005 by Simon Brown, Sam Dalton, Daniel Jepp, Dave Johnson, Sing Li, and Matt Raible

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-513-0
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Steve Anglin and Kevin Mukhar

Technical Reviewers: Scott Davis and Dilip Thomas

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Beckie Brand

Copy Edit Manager: Nicole LeClerc

Copy Editor: Sharon Wilkey

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: ContentWorks

Proofreader: Sue Boshers

Indexer: Julie Grady

Artist: Kinetic Publishing Services, LLC

Interior Designer: Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

Contents at a Glance

About the AUthOrso xvii
Aboutthe Editor XXi
About the Technical Reviewers Xxiii
ACKNOWIBdgmeNtSo XXV
INtrodUCHION XXVii
CHAPTER 1 The Anatomy of a JavaServerPage 1
CHAPTER 2 Servietsand Deployment 45
CHAPTER 3 The JavaServer Pages Expression Language 95
CHAPTER 4 JavaServer Pages Standard Tag Library 135
CHAPTER 5 JavaServerFacesc.oiiiiiiiiiiiin. 183
CHAPTER 6 TagFilesand SimpleTags 251
CHAPTER 7 ClasSicCTagscoooiiiiiii i 289
CHAPTER 8 Custom Tag Advanced Features and Best Practices 327
CHAPTER 9 Data Access Options for Web Applications..................... 359
CHAPTER 10 Introductionto Filtering 399
CHAPTER 11 Advanced Filtering Techniques 433
CHAPTER 12 Security in Web Applications 469
CHAPTER 13 Improving Web-Application Performance and Scalability 515
CHAPTER 14 Web-Application Design and Best Practices 535
CHAPTER 15 Using Struts, XDoclet, and OtherTools 571
APPENDIX A JavaServer Pages Syntax Reference 633
APPENDIX B JSP Implicit Objectsoiiiiiiiiin.. 653
INDEX . 671

Contents

About the AUthOrs Xvii
Aboutthe Editor Xxi
About the Technical ReVIBWEISt e XXiii
ACKNOWIBdgmeNtSo XXV
Introduction XXVii
CHAPTER 1 The Anatomy of a JavaServerPage 1
BeforeYouBegin............oo i 2

JavaServlets ... 2

JSPUndertheHood 3

The JSP LifeCycle i 4

JavaServer Pages Best Practices 7

Reusability 7

Readability 8

Maintainability 8

JavaServer Pages Application Architecture 8

Model 1 Architecturel 9

Model 2 Architecture (Model-View-Controller) 10

JSP Fundamentals—HandsOn 12

Basic Deployment i 12

JavaServer Pages 17

Template Text 18

Scripting Elements 19

JSP Implicit Objectso i 23

JSPDirectives 25

ActionElements 34

SUMMANY ... 43

CHAPTER 2 Servilets and Deployment 45
WhatlsaServlet? 45

Why Serviets? ... 46

JavaServer Pages Are Servlets! 47

vi

CONTENTS

CHAPTER 3

The javax.servlet Interfaces 49
The javax.servlet Classesiiiiiii.. 54
The Life CycleofaServlet.............. 54
ASimple Servlet 56
HTTP Serviets 59
HTTP Responses and Requests 60
HttpServiet Example L 65
Deploying Java Servlet—Based Web Applications 68
Servlet Definitions 70
Servlet Mappings ... 71
Servlet Context Initialization Parameters 72
ErrorPages ... 73
JavaServer Pages Configuration Elements 76
An Example Web Application 78
The Store ... 78
SUMMANY ... 93
The JavaServer Pages Expression Language 95
The Syntax and Use of the Expression Language 96
Basic Syntax 96
Default Values and the Expression Language 98
Using the Expression Languagecoovnns. 98
ReservedWords 100
Disabling Scriptlets 101
Disabling the Expression Language 102
Arithmetic Evaluation Using the Expression Language 103
Comparisons in the Expression Language 107
Logical Operators in the Expression Language 111
Other Operators ...t 113
JavaBeans and the Expression Language 113
Nested PropertiesofadJavaBean 117
Expression-Language Implicit Objects 122
Expression-Language Functions 125
ASimple Function 126
A More Complex Function 128
Functions in Tag Attributes 131
Nesting Functions i 132
Expression-Language Functions vs. CustomTags 133

SUMMArY 134

CHAPTER 4

CHAPTER 5

CONTENTS
JavaServer Pages Standard Tag Library 135
Installing the JavaServer Pages Standard Tag Library 136
Understanding the JavaServer Pages Standard Tag Libraries 141
TheCoreTag Library ..., 142
The Internationalization and Formatting Tag Library 142
The SQLTag Library i 142
The XML Processing Tag Library 142
Using the JavaServer Pages Standard Tag Libraries 143
The CoreTag Librarycco ... 143
The Internationalization and Formatting Tag Library 157
The SQLTagLibraryc.co i 168
The XML Processing Tag Library 171
SUMMArY 182
JavaServerFaces .. 183
Introductionto JSF 184
The Relationship Between JSF and Other
JavaEETechnologies ...t 184
Request-Processing Life Cycle 185
Installing JSF 187
Using JSF with JSPPages ...t 188
Creating a Simple JSF Application 189
Reviewing the JSF Life Cycle for the Sample Application 199
UsingManaged Beans ..., 200
Configuring ManagedBeans 200
Using Value-Binding Expressions in JSP Pages 205
Using Method-Binding Expressions in JSP Pages 207
Expanding the JSF Sample Application....................... 207
Controlling Page Navigationt 217
Static and Dynamic Navigation 218
NavigationRules i, 218
Adding Dynamic Navigation to the Sample JSF Application 220
Accessing Context DatainBeans 228
Converting Data, 229
Using Standard Converterscoiiininn... 231
Using Custom Convertersccooiiiiit. 232
Validating Input 236
Using Standard Validators 236
Using Custom Validators 237

Bypassing Validation.................. 239

vii

viii

CONTENTS

CHAPTER 6

CHAPTER 7

EventHandling 240
Value Change Listeners ..., 240
Action Listenersc i 244
Calling Multiple Listeners, 245

Using Message Bundlesooiiiiiiiiit 246

SUMMArY ... 249

Tag Filesand SimpleTags 251

Understanding JSP CustomTagsooiiiint. 252
The Need for CustomTagscooviiiiinin.s. 252
Tag Terminology and Conceptst 253
JavaBeansvs.CustomTags ...l 255
Differences Between Simple and ClassicTags 255

UsingTag Filescco i 256
Reusing Content 256
Customizing Templates by Using Attributes 258
Templatingwith Tag Files 260
Attributes 263
Why UseTagFiles?coi i, 265

Using SImpleTags ..ot 265
The SimpleTag Interface 265
TheBasicTag LifeCycleoooiiiiiiin.s. 266
The SimpleTagSupportClassccooiii... 268
ASimpleExample 268

Customizing Functionality with Attributes 274
The Tag Life Cycle with Attributes 274
Attribute TYypes 276
Displaying Thumbnails withaTag 277

Evaluating Body Content i, 282
Separating Content from Presentation 283

SUMMANY ... 286

ClassicTagsoih. 289

Classic Tags Overview, 289
The Differences Between Simple and ClassicTags 290
TheTaginterface i, 291
TheTagLifeCycleo i, 291
The TagSupport Classoi ... 295

ASimple Example 295

CHAPTER 8

CONTENTS
Customizing Functionality by Using Attributes 297
Building Listsin HTMLForms 298
Dynamic Attributes 305
The DynamicAttributes Interface 305
Further Customization with Dynamic Attributes 306
lteration Tags 311
The IterationTag Interface 311
The Iteration Tag Life Cycleooiiit. 311
The TagSupport Class Revisited 313
Evaluating Body Content Multiple Times 313
Body Tagso 317
The BodyTag Interfacet 317
The Body Tag LifeCyclet 317
The BodyTagSupport Class 319
Filtering Content 320
SUMMANY ... 325

Custom Tag Advanced Features and Best Practices327

Introducing Scripting Variables intothe Page 327
Defining Variablesinthe TLDFile 328
Defining Variables in a TagExtralnfo Class 332

Cooperating Tagscovvriririii i 336
Cooperating by Sharing Information 336
Cooperating by Accessing Other Tag Handlers 337

TagValidationco i 344
Validation with a TagLibraryValidator Class 344
Validation with a TagExtralnfo Class 345

Handling Exceptionscco i 348
The TryCatchFinally Interface 349

Tag Library Deployment 351
Deploying a Tag Library for Development 351
Deploying a Tag Library forReuse 352

BestPractices 355
Common Usage Patterns and Granularity 355
NamIing ... 356
What Makes a Good Tag Library? 357

SUMMANY .. 357

ix

X

CONTENTS

CHAPTER 9

CHAPTER 10

Data Access Options for Web Applications 359
Data Access Technologiest 359
JavaServer PagesTagsfor SQL 360
Java Database Connectivity 363
Object/Relational Persistence Frameworks 368
JavaDataObjects...................... il 370
EJBEntityBeans 371
Comparing the Choices ...t 372
Data Access Architectures i 373
Example: RSS Newsreader 373
One-Layer Architecture il 374
Two-Layer Architecture 375
Three-Layer Architecture 377
Implementing the RSS Newsreader Example 380
Package Organization 380
Step 1: Implementing the Object Model 381
Step 2: Creating an Object-Relational Mapping 383
Step 3: Creating the Database Tables 385
Step 4: Implementing the AggregatorDAO 386
Step 5: Implementing the Business Layer Interface 389
Step 6: Implementing the Web User Interface 391
Castor: An Alternative to Hibernate 396
SUMMANY .. 396
Introductionto Filtering 399
Common Filter Applications 400
The Big Picture of Filteringl 400
Filtering the Pipeline L 402
FiltersinDepth 403
The Filter Interface 404
Configuration and Deployment of Filters 404
The Life Cycleof aFilter 405
The FilterConfig Interface 406
Filter Definitionsc. i 407
Filter Mappingo o 407
Insertion of Filters into the RequestFlow 409
Filter Chainingo i 414

Initial Parameters for Filters 419

CHAPTER 11

CONTENTS

Hands-On Filter Development 420
Our First Filter—SimpleFilter 421
Declaring the Filter and Configuring Filter Mapping 422
TestingtheFilter 423
Experimentation with Filter Chaining 424
Creating an AuditFilter 426

Other Filter-Like Technologiescooiiiia... 428
Filters Aren’t Tomcat 3.x Interceptors 428
Filters Aren’tValves i, 428

Filter Design Best Practicesl 428
Make Code Thread-Safe 429
Handle State Carefully 429
Think of Filters As In-Series Resource Processors 430
Reusing a Filter via Chaining 430
Avoid Duplicating System Features 430
Avoid Unnecessary Filter Mappings 430

SUMMArY 431

Advanced Filtering Techniques 433

Filters for Five Problem Domains 433

Setting Up the Development Environment 434
The FindProd JSPPageccoiiiiiiiiin.s. 435
The FindProd Servletl 435
The Deployment Descriptor 436
A Brief Word on Terminologycooviiiinints. 436

Filter 1: AVisual Auditing Filter 437
Wrapping the Response Object for Content Modification 437
Configuring and Testing the Filter 445

Filter 2: An Authorization Filter 446
Generating Your Own Response 446
Thread-Safety Considerations 448
Installing and Configuring the StopGamesFilter 449

Filter 3: A Filter for Adapting to Legacy Resources 451
Wrapping an Incoming Request with the LegacyAdapterFilter . . . 452
Writing the LegacyAdapterFilter 454
Installing and Configuring the LegacyAdapterFilter 455

Filter 4: An Ad Hoc Authentication Filter 456
The AdHocAuthenticateFilter Class 457

Installing and Configuring the AdHocAuthenticateFilter 459

Xi

Xii

CONTENTS

CHAPTER 12

CHAPTER 13

Filter 5: A Filter in the Request-Processing Pipeline 460
Understanding the Pipeline Model 460
Inserting Filters into the Pipeline 462

SUMMANY ... 468

Security in Web Applications 469

Overview of Application Security 469

Using Authentication 471
Authentication Options 475
Using Secure Sockets Layercooinnn. 488
Java Authentication and Authorization Service 492
Form-Based Authentication Tipsand Tricks 499
Servlet 2.5 Security Changesooo.l 509
Other Authentication Options and Considerations 509

Authorization 512

SUMMANY .. 513

Improving Web-Application Performance

and Scalability ... 515
General Principles 516
Page Caching i 516
When Should You Use Page Caching? 517
How Long Should You Cache Data? 517
0SCacheo 517
0SCache JSPTagsccovvinii e 518
0SCache ServletFilterl 519
Database ConnectionPooling 520
Jakarta Commons Database Connection Pool 521
Designing for Scalability 523
Other Performance Tips and Resources 524
Measuring JSP Application Performance 525
Testing the Performance Techniques 529
Applying Database Connection Pooling....................... 531
Applying Page Cachingooiiiiiiiintt, 531

SUMMANY ... 533

CONTENTS xiii

CHAPTER 14 Web-Application Design and Best Practices 535
The Importance of Design 535
Maintainability 536
Extensibility 536
Web-Application Architectures 536
Page-Centric (Model 1) 537
Model-View-Controller (Model 2) 538
DesignPatterns 539
Java EE Patterns and Web-Application Components 540
Front Controller 540
ViewHelper 544
ServicetoWorker 545
1 546
Other Web-Application Patterns 546
Frameworks for Building Web Applications 548
ABespoke Frameworkl 548
Struts ... 548
SPIINg .. 549
WebWork 550
VeloCity ... 550
Testing 551
Unit Testing Web Applications 551
Functional/Acceptance Testing Web Applications 556
Designing Web Applications for Testing 558
ATestingStrategy ... 559
Compatibility Testing Web Applications 559
SECUNTY .. 560
Using the Standard Security Model 560
Securing View Componentsco il 561
Troubleshooting 561
The Servlet Engine Runs Out of Memory 562

The Database Connections Are Exhausted 562

The Servlet Engine Stops Responding 563

You Get a ClassCastException............................... 563

The Page RunsToo Slowlyt 563
Debugging ... 564

LOgging ..o 564

Xiv

CONTENTS

CHAPTER 15

APPENDIX A

General Guidelines 566
ErrorReporting ... 567
M8nand 10N 567
Adopting New Technologies and Standards 567
Adopting Existing Components 568

SUMMArY ... 569

Using Struts, XDoclet, and Other Tools 571

StrutsRefresher L 572
Struts Architecturel 573

Overview of the Example struts-resume Application 577
Screen Flow and Requirements 577
Directory Structure 580

Struts Development Techniquesand Tools 582
Using Ant to Build Struts Applications 582
Using XDoclet to Generate Configuration Files 585
Handling Persistence in Struts 589
Enhancing Struts ActionForm Development 590
Using Built-In Struts Actions 603
Using the Tiles Framework to Assemble the View 607
Using IDEs and Struts Development Environments 618
Using Modules in Team Development Environments 619
Testing Struts Applications 622
Handling Exceptions in Struts Applications 626

SUMMANY .. 631

JavaServer Pages Syntax Reference 633

Preliminaries 633
Notation 633
URL Specifications ..., 634
Comments 634

DireCtives 635
The page Directive i 635
Thetaglib Directive i 636
The include Directive, 636
TagFiles ... 637

ScriptingElements 638
Declarations 638
Scriptlets ... 639

EXpressions 639

APPENDIX B

CONTENTS

Standard Actions 639
<jspiuseBean> 639
<jsp:setProperty>............. 640
<jsp:getProperty>l 641
<spiinclude> ... 641
<jspforward> ... 641
<JSPIpAraM> ... 642
<spplugins> ..o 642
<JSPIPANAMS> ..o 643
<jspfallback> 643
<jspaattribute> ... 643
<SPIbody> ... 643
<Jspinvoke> ... 644
<jsp:doBody> 644
<jsp:element> ... 645
<JSpreXt> L 645
<Jsproutput> ... 645

Tag Libraries ... 646

Implicit Objects 647

Predefined Attributes 647
SSL Protocol Attributeso 647
Inclusion- and Forward-Related Attributes 648
Servlet Error Page Attributes Ll 649
JavaServer Pages Error Page Attribute 650
Temporary File Directory Attribute 651

JSP Implicit Objects 653

Therequest Object i 654

Theresponse Object 659

TheoutObject 663

Thesession Object i 665

The application Object i 667

The exception Objectco i 669

Theconfig Objectco o 670

Thepage Object 670

The pageContext Object i, 670

Xv

About the Authors

SIMON BROWN works in London as a technical architect and has been using Java since its early
beginnings, working in roles ranging from developer and architect to mentor and trainer.
When not working with Java, he can usually be found speaking or writing about it. In the past
few years, Simon has spoken at the JavaOne Conference and has authored or coauthored sev-
eral books, including his own, entitled Professional JSP Tag Libraries (Peer Information, 2002).
Simon maintains an active involvement within the Java community as a bartender (modera-
tor) with JavaRanch and his open-source JSP custom tag-testing framework called TagUnit.

Simon graduated from the University of Reading in 1996 with a First Class BSc (Hons)
degree in Computer Science and is a Sun Certified Enterprise Architect for J2EE, Web Com-
ponent Developer for J2EE, and Developer for the Java 2 Platform.

For information about what Simon is currently up to, you can point your browser to his
web log at http://www.simongbrown.com/blog/.

Twould like to thank my wife, Kirstie—you're always there for me.

SAM DALTON has worked with Java and related technologies in London for a number of years,
and has coauthored two titles, Professional Java Servlets 2.3 (Peer Information, 2002) and
Professional SCWCD Certification (Wrox Press, 2002). Sam is an active contributor to TagUnit,
an open-source custom tag-testing framework (http://www.tagunit.org) and is also pursuing
other open-source interests. He has embarked on the next stage of his career adventure by
joining ThoughtWorks (http://www.thoughtworks.co.uk).

Sam graduated from the University of Reading in 1997 with a 2:1 honors degree in
Computer Science. He has also achieved various certifications, including Sun Certified Web
Component Developer and Sun Certified Developer. Please feel free to e-mail any questions
or comments about this book and related topics to books@samjdalton.com.

Well, here we are again! Who would have thought I would ever be involved in three
books? Not me, that'’s for sure! There are a number of people that I would like to thank
for supporting/putting up with me while I was contributing to this book. First of all, as
ever, [would like to thank my darling wife, Anne, without whom I would not have the
energy to do half of the things that I do. I would also like to thank my Mum and Dad; it
means a great deal to me to see how proud my work makes you—thanks! Enjoy the
book, and happy reading!

Xvii

xviii

ABOUT THE AUTHORS

DANIEL JEPP is a senior developer at Dresdner Kleinwort Wasserstein, based in London. He has
been working with the Java platform and related technologies for a number of years and has
spoken at several sessions at the JavaOne Conference. Dan coauthored Professional SCWCD
Certification with Sam Dalton in 2002.

Dan graduated from the University of Kent, in Canterbury, England, where he attained a
2:1 honors degree in Computer Science, and has since gained the following Sun Certifications:
Sun Certified Programmer, Developer, and Web Component Developer for the Java 2 Platform.

Dedicated to my fiancée, Kelly, whose love, support, and encouragement will leave me
forever grateful.

DAVID JOHNSON is an experienced software developer who has worked in the commercial
software development, telecommunications, and Geographic Information Systems industries.
David has been working with Java since before the dawn of Java 1.0. Since then, he has been
involved in the development of a number of Java-based commercial products, including the
HAHTsite Application Server, HAHT eSyndication, Venetica’s Jasper document viewer, and
Rogue Wave Software’s Object Factory IDE. David is also an active weblogger and the original
developer of the open-source Roller Weblogger (http://www.rollerweblogger.org) software.
David works at HAHT Commerce and lives in Raleigh, North Carolina, with his wife and three
children.

First and foremost, I must thank my beautiful wife, Andi, for giving me the encourage-
ment and time needed to work on this book. She kept my three little boys, Alex, Linus, and
Leo, happy and quiet while I toiled away in the back room on my chapters. I should also
thank fellow Roller Weblogger developers Lance Lavandowska and Matt Raible. Lance
helped me to get started with this project, and Matt helped to improve and perfect my
example code. Finally, would like to thank Bill Barnett and the whole HAHTSite Appli-
cation Server team at HAHT Commerce for teaching me just about everything I know
about web-application performance and scalability and for inspiring me to learn more.

SING LI was first bitten by the computer bug in 1978 and has grown up with the microproces-
sor revolution. His first PC was a $99 do-it-yourself COSMAC ELF computer with 256 bytes
of memory and a 1-bit LED display. For more than two decades, Sing has been a developer,
author, consultant, speaker, instructor, and entrepreneur. His wide-ranging experience spans
distributed architectures, web-application and service systems, computer telephony integra-
tion, and embedded systems. Sing is a regular book contributor, has been working with and
writing about Java, Jini, and JXTA since their very first alpha releases, and is an evangelist of
P2P technology and a participant in the JXTA community.

ABOUT THE AUTHORS

MATT RAIBLE is a Montana native who grew up in a log cabin without electricity or running
water. After hiking to school a mile and a half every day (and skiing in the winter), he would
arrive home to a very loving family. “The Cabin” is a beautiful and awesome place that will
always be near and dear to Matt’s entire family. Even without electricity, his father, Joseph,
connected them to the Internet by using a 300 baud modem, a Commodore 64, and a small
generator. CompuServe was the name, slow was the game. Matt became inspired by the Inter-
net in the early 1990s, and has been developing websites and web applications ever since. He
graduated from the University of Denver in 1997 with degrees in Russian, International Busi-
ness, and Finance. To learn more about Matt and his life as a J2EE Developer, visit him at
http://raibledesigns.com.

I'd like to thank my beautiful wife, Julie, and adorable daughter, Abbie, for their love
and support while writing these chapters. Abbie was born three weeks before was asked
to write my chapters, and her smiles and giggles were an incredible inspiration. Chris
Alonso, thanks for motivating me to go into computers as a profession and for being
such a good friend. Thanks to my dad for passing along his knack for computers and
great memory, and to my Mom for giving me a passion for life, happiness, and humor.
Kalin—you're the best sister in the world and you make this world a better place with
your smiles and laughter. Last but not least, thanks to Matt Good for letting me write
Java, and to Martin Gee and Brian Boelsterli for their mentoring.

Xix

About the Editor

KEVIN MUKHAR is a software developer from Colorado Springs, Colorado.
For the past seven years, he has worked on various software systems using
different Java Enterprise technologies. He has coauthored several other
books, including Beginning Java EE 5: From Novice to Professional (Apress,
2005), The Ultimate Palm Robot (Osborne/McGraw-Hill, 2003), and
Beginning Java Databases (Wrox Press, 2001). In addition to developing
software during the day, he is working on a master’s degree in computer
science. His web page is http://home.earthlink.net/~kmukhar/.

XXi

About the
Technical Reviewers

SCOTT DAVIS is a senior software engineer at OpenLogic. He is passionate about open-source
solutions and agile development. In addition to serving as technical editor for several Apress
titles including Pro Jakarta Tomcat 5 and Beginning JSP 2: From Novice to Professional, he
coauthored JBoss At Work (O'Reilly Media, 2005). He is the author of the upcoming book Prag-
matic GIS (Pragmatic Bookshelf, 2006), which focuses on free/open-source geography
software solutions such as Google Maps and GeoServer.

Scott is a frequent presenter at national conferences (such as No Fluff, Just Stuff) and local
user groups. He was the president of the Denver Java Users Group in 2003 when it was voted
one of the top-ten JUGs in North America. Since a quick move north, he has been active in the
leadership of the Boulder Java Users Group. Keep up with him at http://www.davisworld.org.

DILIP THOMAS is an open-source enthusiast who keeps a close watch on LAMP technolo-
gies, open standards, and the full range of Apache Jakarta projects. He is coauthor of PHP
MySQL Website Programming: Problem - Design - Solution (Apress, 2003) and a technical
reviewer/editor on several open-source/open standard book projects. Dilip is an editorial
director at Software & Support Verlag GmbH.

Dilip resides in Bangalore, India, with his beautiful wife, Indu, and several hundred books
and journals. Reach him via e-mail at dilip.thomas@gmail.com.

XXxiii

Acknowledgments

When we started this revision, it was going to be just a simple update: change a few things
here and there to make sure the book was consistent with JSP 2.1. Along the way, it turned into
a much bigger task. Part of the reason for that was our desire to make this the best possible
book about JSP 2.1 that we could. So I want to acknowledge everyone at Apress who helped
make this the book it is, especially Sharon Wilkey, Beckie Brand, Ellie Fountain, Ami Knox,
Steve Anglin, and the technical reviewers Scott Davis and Dilip Thomas.

While I worked on this book, my wife and I experienced a lot of changes and challenges
in our lives. I'd like to thank some of the many people who helped us through that time: Tom
and Marg Gimmy, Dave and Kris Johnson, my family, Anne’s family, and Dawn Girard. And of
course, no thanks would be complete without thanking my family, Anne and Christine, for
letting me spend the time away from them needed to do this project.

Kevin Mukhar

XXV

Introduction

Welcome to the fourth edition of Professional JSP, designed to help new and experienced

Java developers alike discover the power (and even the joy) of creating Java-based server-side
solutions for the Web by using JavaServer Pages, or JSP for short. If you've programmed with
JSP before, you'll find that the new features in JSP 2.1 make developing JSP pages easier than
ever before. If you only know a little Java, this is your chance to add JSP to your toolbox skills.

JSP is a server-side technology that takes the Java language, with its inherent simplicity
and elegance, and uses it to create highly interactive and flexible web applications. In today’s
unsure economic climate, having the Java language as the cornerstone of JSP makes JSP partic-
ularly compelling for business: Because Java is an open language (meaning it doesn’t require
expensive licenses), JSP solutions can be highly cost-effective.

The founding premise of JSP is that HTML can be used to create the basic structure of a
web page, and Java code can be mixed in with the HTML to provide the dynamic components
of the page that modern web users expect. If you understand the concepts of HTML and web
pages, JSP provides an unbeatable way to learn about creating innovative, interactive content
as well as coming to grips with the popular language of Java. This book will be your guide as
you step into this exciting new world.

Who Is This Book For?

This book is aimed at anyone who knows the Java language and core APIs and wants to learn
about web programming with the latest versions of the JSP and Servlet APIs.

Familiarity with HTML is required; however, no prior knowledge of server-side Java pro-
gramming is necessary. Having said that, this book does not claim to be exhaustive in all areas,
particularly in relation to other Java Enterprise Edition APIs such as Enterprise JavaBeans.

What’s Covered in This Book

This book covers the latest versions of the JSP and Servlet specifications—versions 2.1 and 2.5
respectively, both of which are new specifications developed through the Java Community
Process (http://www.jcp.org/).

Note At the time this book was being published, the JSP specification was in Proposed Final Draft stage.
It’s possible that some small changes might be made before the specification reaches final release; how-
ever, any modifications are likely to be minor and the new specifications are already being implemented by
a number of products such as Tomcat 5.5.

Xxvii

Xxviii

INTRODUCTION

Those who have read previous editions of this book will notice that this edition is a revision
of Professional JSB 3rd Edition. Because the third edition covered JSP 2.0, most of the informa-
tion was still current for this book, which covers JSP 2.1. However, we've gone through the
entire book and ensured that the material is still correct for JSP 2.1. We've gone through every
chapter and updated the text to make it clearer and more concise. Finally, we've added an
entire new chapter on JavaServer Faces, one of the newest Java web-application technologies.

If you already have some exposure to server Java web development, you should pay atten-
tion to any changes in the technologies that are indicated throughout the book, or skip ahead
to the sections that interest you the most. On the other hand, if you're new to JSP, servlets, and
JSTL, and this is somewhat confusing, you've come to the right place; the early chapters in this
book, especially, were written with you in mind.

Here is what you can expect to find in each chapter:

Chapter 1, The Anatomy of a JavaServer Page, looks at the JSP life cycle, JSP application
architecture, and the fundamentals of JSP pages, and provides a feel for where JSP tech-
nology fits within the Java EE 5 and other web components such as servlets, tag libraries,
and JavaBeans, which exist in the Java EE 5 web tier for providing dynamic web-based
content.

Chapter 2, Servlets and Deployment, delves into what Java servlets are, and looks at the
development and deployment of Java servlets. The Servlet and JSP specifications are
developed in parallel, and this chapter is up to date for the latest release of JSP 2.1 and
Servlets 2.5 (as is the rest of the book).

We discuss one of the new features of the JSP 2.1 specification in Chapter 3, The
JavaServer Pages Expression Language. The JSP expression language is what you'll be
using most often in JSP pages, an intentionally simple language that is, to a large extent,
independent of JSP.

Chapter 4, JavaServer Pages Standard Tag Library, looks at the reasons for the creation of
the JSTL, its detalils (it is in fact four different tag libraries), and how to install the JSTL.

Chapter 5, JavaServer Faces, is an introduction to JavaServer Faces (JSF), a framework for
creating component-based user interfaces. You'll learn how to use JSF with JSP pages to
create feature-rich user interfaces.

Tag Files and Simple Tags is the title of Chapter 6. Tags contained within JSTL are
extremely valuable for improving the readability and maintainability of a JSP page. You
can also build custom tags to enable your own functionality to be reusable and easily
maintained. Tag files and simple tags are both new mechanisms for writing custom tags
introduced as a part of the JSP 2.1 specification.

Chapter 7, Classic Tags, takes a look at the facilities provided by former versions of the JSP
specification for writing custom tags. As you'll see throughout the chapter, these previous
methods, now called classic tags, provide a great deal more flexibility and therefore are
still useful in some scenarios.

After you learn the basics of building custom tags, Chapter 8, Custom Tag Advanced Fea-
tures and Best Practices, wraps up your understanding by looking at some more advanced
features and the best way to use custom tags.

INTRODUCTION

Chapter 9, Data Access Options for Web Applications, discusses how best to access your
back-end data from your JSPs and servlets. No matter what type of JSP application you're
writing, you'll need to either store the data that is created by your application, or use data
from an external source, and this chapter looks at examples using a MySQL database.

In Chapter 10, Introduction to Filtering, you'll look at filtering, a standard feature of all
Servlet 2.5-compliant containers. You'll explore the life cycle of a filter as managed by the
container, discuss the very important concept of filter chaining, and then create and
deploy two simple filters.

Chapter 11, Advanced Filtering Techniques, is a cookbook for the application of filters, as
you turn your attention to the more advanced techniques involved in applied filter pro-
gramming by looking at five examples that can be used as the basis for your own filter
implementation.

Chapter 12, Security in Web Applications, looks at making your web applications secure
and explores different methods of authentication and authorization.

Chapter 13, Improving Web-Application Performance and Scalability, is your guide to a
number of well-known tools and techniques such as page caching and database connec-
tion pooling that you can use to improve performance and stability, even after you've
designed and coded your application.

Chapter 14, Web-Application Design and Best Practices, brings together the techniques
covered in the earlier chapters and shows how to build maintainable, extensible Java-
based web applications. It looks at the importance of good design and how it can help you
build high-quality web applications that are easier to maintain and extend in the future.

In Chapter 15, Using Struts, XDoclet, and Other Tools, you'll develop a résumé building
and viewing web application called struts-resume, by using a variety of third-party prod-
ucts. All of the products used in struts-resume are open source and help to facilitate and
speed up various stages of the development process.

What You Need to Use This Book

The first thing you'll need to use this book is a computer that supports the Java programming
language. This includes computers that run Microsoft Windows, Sun Solaris, or Linux.

We don'’t use any proprietary software, and all code runs on open-source products, avail-
able free of charge over the Internet. Consequently, an Internet connection is pretty much
essential in order to get hold of this software.

The primary piece of software you'll need is a web container that supports the JSP 2.1
and Servlet 2.5 specifications. Although there are a number of options to choose from, we've
elected to use the Jakarta Tomcat web container throughout the whole book because it’s the
officially designated reference implementation. Version 5.5 is the latest and greatest, which
supports the specs we require. You can get the latest release information about Tomcat 5.5
from http://jakarta.apache.org/tomcat/index.html.

As you need further software components during the course of the book, we’ll indicate
clearly where to download them from.

XXix

XXX

INTRODUCTION

Conventions

We've used several styles of text and layout in this book to differentiate between different kinds
of information. Here are examples of the styles used and an explanation of what they mean.

Code has several fonts. If we're talking about code in the text, we use a nonproportional
font like this: for. . .next. If it's a complete code listing that can be entered and used as part of
an application, then it will appear in a nonproportional font with a caption like this:

Listing 1-2. date.jsp

<html>
<body>
<h2>Creetings!</h2>
<p>The current time is <%=new java.util.Date()%> precisely</p>
</body>
</html>

Code that is an extract or snippet from a larger listing will appear without a caption, like
this:

import javax.servlet.http.*;

public class SessionTracker2 extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)

Sometimes you will need to type in commands on the command line, which we display
using the following style:

> set classpath=.;%Java EE_HOME%\1lib\j2ee.jar
\projsp> javac -d . client*.java

We show the prompt using a > symbol or \dirname> (where dirname is a directory name)
and then the commands you need to type. As you can see, we tend to use the Windows direc-
tory separator character when showing directory paths. We do this because we expect that a lot
of readers will be using a Windows platform when they try out the code. But we also develop on
Linux or Solaris platforms, and if you do too, then you should use the directory separator that is
correct for your platform.

Note Advice, hints, and background information come in this type of font offset by borders. Important
pieces of information also come in this format. Depending on the type of information, we preface the text with
the word Note, Tip, or Caution. Notes consist of incidental information of one type or another that defines,
explains, or elaborates on the main discussion. Tips will make your programming easier. For instance, a Tip
might point out another way to use a certain feature that’s not obvious from the main discussion. Cautions
indicate a potential hazard. For example, a Caution might be a method that if misused could crash your appli-
cation server.

INTRODUCTION

Bullets appear indented, with each new bullet marked as follows:
e Important Words are in a bold type font.

¢ Words that appear on the screen or in menus, such as File or Window, are in a mono-
spaced font.

Numbered lists are similar to bulleted lists:
1. Do this action first.

2. Do this action next.

What to Do If You Encounter Problems

Despite all our best efforts, and despite this book’s numerous sharp-eyed editors, there is a
possibility that errors managed to sneak through. It has been known to happen. If you are hav-
ing problems with any of the text or code examples, the first place to go for corrections is the
web page for the book (http://www.apress.com/book/bookDisplay.html?bID=464). If any errata
have been identified, you will find a link for Corrections on the book’s web page. If you click
this link, you will find a page that lists known errors with the code or book text, and correc-
tions for those problems.

If you can't find your problem listed on the Corrections page, you will find a link to Submit
Errata on the main book page. If you've double-checked and triple-checked your problem and
still can’t get the code to work or the text to make sense, use the Submit Errata link to send us a
description of the problem. We can’t promise a speedy response, but we do see all submissions
and post responses to the Corrections page after we've had a chance to check out the problem.

XXXi

CHAPTER 1

The Anatomy of a
JavaServer Page

The Java Platform, Enterprise Edition 5 (Java EE 5) has two different but complementary
technologies for producing dynamic web content in the presentation tier—namely Java
Servlet and JavaServer Pages (JSP).

Java Servlet, the first of these technologies to appear, was initially described as extensions
to a web server for producing dynamic web content. JSP, on the other hand, is a newer tech-
nology but is equally capable of generating the same dynamic content. However, the way in
which a servlet and a JSP page produce their content is fundamentally different; servlets
embed content into logic, whereas JSP pages embed logic into content.

JSP pages contain markup interlaced with special JSP elements that provide logic for con-
trolling the dynamic content. Servlets are built using Java classes that contain statements to
output markup code. Of these two paradigms, JSP pages are preferred for presenting dynamic
content in the presentation tier due to their greater readability, maintainability, and simplicity.
Further increasing the simplicity and ease of use of JSP pages was one of the main objectives
of the JSP 2.0 specification, which included several new features to make it easier than ever to
embrace JSP technology, especially for developers who aren’t fluent in the Java syntax.

The inclusion of a new expression language (EL) enables JavaScript-style JSP code to be
embedded within pages, which makes it much easier for web developers not familiar with the
Java syntax to understand the JSP logic. A library of standard actions known as the JavaServer
Pages Standard Tag Library (JSTL) is also included to provide a host of useful, reusable actions
such as conditional statements, iteration, and XML integration to name a few. These actions
are applicable in some shape or form to most JSP web applications, and their use will greatly
improve the reliability and ease of development for JSP page authors. Custom actions (also
known as custom tags) also benefit from changes in the JSP specification, and it’s now possi-
ble to write a custom action entirely in JSP syntax instead of Java syntax!

JSP 2.1 further eases the development of JSP pages by unifying the JSP expression lan-
guage with the JavaServer Faces (JSF) expression language. These new features will help make
JSP pages easier to write and maintain and are discussed in detail in the following chapters:

e The JSP 2.1 expression language (EL) (see Chapter 3)
¢ The JavaServer Pages Standard Tag Library (JSTL) (see Chapter 4)
» The JavaServer Faces custom tags (see Chapter 5)

 JSP custom tags (see Chapters 6, 7, and 8)

CHAPTER 1 " THE ANATOMY OF A JAVASERVER PAGE

In this chapter, you'll take a look at some of the fundamental concepts based around JSP
technology, such as the following:

* The mechanics of a JSP page
e Typical JSP architectures

¢ Core JSP syntax

o Taglibraries

The aim of this chapter is to help you gain a grounding in the basics of JSP technology
so you can make full use of the rest of the chapters in this book that build on these basic
principles.

Before You Begin

To begin examining the basics of JSP technology, it’s essential that you have a cursory familiar-
ity with the alternative and complementary presentation-tier web component, Java servlets.
The next chapter will discuss servlets in more detail.

Java Servlets

As mentioned earlier, servlets can most simply be described as custom web-server extensions,
whose jobs are to process requests and dynamically construct appropriate responses. In prac-
tice, such responses are usually returned in the form of HTML or XML and are the result of a
user making an HTTP request via a web browser. Servlet technology has been an extremely
popular choice for building dynamic web applications such as e-commerce sites, online bank-
ing, and news portals, for reasons of simplicity, extensibility, efficiency, and performance over
alternative technologies such as Common Gateway Interface (CGI) scripts.

Some of the most basic advantages of servlet technology are as follows:

» Simplicity: Servlets are easy to write, and all the complicated threading and request
delegating is managed by the servlet container.

» Extensibility: The Servlet API is completely protocol independent.

* Efficiency: Unlike CGI scripts, the execution of a servlet doesn’t require a separate
process to be spawned by the web server each time.

¢ Performance: Servlets are persistent, and their life cycle extends beyond that of each
HTTP request.

Servlets are simply Java classes that inherit from the javax.servlet.Servlet interface.
These servlets are compiled and deployed inside a servlet container, which is a Java environ-
ment that manages the life cycle of the servlet and deals with the lower-level socket-based
communication. The servlet container may be part of an existing Java-enabled web server
itself or may be used as a stand-alone product that is integrated with a third-party web server.
The servlet Reference Implementation container, Apache Jakarta Tomcat for example, may be
used as a stand-alone web server or as a separate servlet container inside a larger commercial
web server such as the Apache web server.

CHAPTER 1 ©" THE ANATOMY OF A JAVASERVER PAGE

Servlets are typically used for returning text-based content such as HTML, XML, WML,
and so on. However, they are equally at home returning binary data such as images or serial-
ized Java objects, which are often used by further servlets to generate some appropriate
dynamic response.

JSP Under the Hood

A JSP page is simply a regular text file that contains markup (usually HTML) suitable for
display inside a browser. Within this markup are special JSP elements that you'll learn more
about later. These are used to provide processing logic that enables dynamic content to be
produced on a request-by-request basis.

In JSP terms, any markup that isn’t a JSP element is known as template text, and this really
can be any form of text-based content such as HTML, WML, XML, or even plain text! Of course
the mixture of JSP elements and template text cannot simply be sent to the browser without
any form of processing by the server. We mentioned earlier how JSP technology is an exten-
sion of servlet technology, and so you probably won't be surprised to learn that each JSP page
is, in fact, converted into a servlet in order to provide this processing logic. Figure 1-1 shows a
JSP page being translated and compiled into a servlet in response to a request. This servlet is
known as the JSP implementation servlet.

JSP Page Request

<%@ taglib uri="http://java.sun.com/jstl/core” prefix="C"%>

<HTML>
<HEAD>
<TITLE>A Very Simple Page!</TITLE>
<HEAD>
<BODY>
Welcome: <c:out value="$(param.userName)” />
<BODY>
</HTML>

JSP Transformation

v and Compilation

[JSP Implementation Servlet]

Servlet/JSP Container

v
JSP Page Response

Figure 1-1. The JSP container translates and compiles the JSP source into an implementation
class, which is used to process all requests.

CHAPTER 1 " THE ANATOMY OF A JAVASERVER PAGE

A request for a JSP page is handled initially by the web server, which then delegates the
request to the JSP container. The JSP engine will translate the contents of the JSP into its
implementation servlet, which the container then uses to service the request. Usually a JSP
container will check whether the contents of a JSP page have changed before deciding if it
needs to retranslate the page in response to a request. This feature can make on-the-spot
changes to JSP pages easy because the next request will automatically cause a retranslation
and the most up-to-date content will be returned. Compare this with a purely servlet-based
approach, which would require the servlet container to be shut down in order to have the nec-
essary changes made, such as recompilation, testing, and finally, a restart!

Let’s take a closer look at the process of taking a plain JSP text file and turning it into a
dynamic web component; this process is also known as the JSP life cycle.

The JSP Life Cycle

As you've just seen, JSP pages don't directly return content to the client browser themselves.
Instead, they rely on some initial server-side processing that converts the JSP page into the JSP
page implementation class (see Figure 1-2), which handles all requests made of the JSP.

HTTP Request
|
Web Container
Yes—Iocate JSP
New or > Jsp
Changed

JSP translation

Y
No
Servlet (Source)

JSP compilation

Y
Y
HTTP Response \ Servlet loaded and initialized
Servlet Instance < Servlet (Class)

Figure 1-2. Before processing a request, the container determines whether the JSP source is new
or has changed. If so, the container translates and compiles the JSP page into a servlet class, or
page implementation class, before passing the request to the servlet for processing.

CHAPTER 1 ©" THE ANATOMY OF A JAVASERVER PAGE

As you can see in Figure 1-2, the JSP servlet container decides whether the JSP page has
been translated before. If not, the JSP container starts the translation phase to generate the
JSP page implementation servlet, which is then compiled, loaded and initialized, and used to
service the request. If the JSP container detects that a JSP page has already been translated
and hasn’t subsequently changed, the request is simply serviced by the implementation
servlet that already exists inside the container.

The life cycle of a JSP page can be split into four phases: translation, initialization,
execution, and finalization.

Translation

The first stage in the life cycle of a JSP page is known as the translation phase.

When a request is first made for a JSP page (assuming it hasn’t been precompiled), the
JSP engine will examine the JSP file to check that it’s correctly formed and that the JSP syntax
is correct. If the syntax check is successful, the JSP engine will translate the JSP page into its
page implementation class, which takes the form of a standard Java servlet. After the page’s
implementation servlet has been created, it will be compiled into a class file by the JSP engine
and will be ready for use.

Each time a container receives a request, it first checks whether the JSP file has changed
since it was last translated. If it has, it’s retranslated so that the response is always generated
by the most up-to-date implementation of the JSP file.

Initialization

After the translation phase has been completed, the JSP engine will need to load the generated
class file and create an instance of the servlet in order to continue processing the initial request.
Therefore, the JSP engine works very closely with the servlet container and the JSP page
implementation servlet and will typically load a single instance of the servlet into memory.
This single instance will be used to service all requests for the JSP page. In a real-world web
application, those requests will most likely happen concurrently, so your JSP page must be
multithreaded.

Prior to the Servlet 2.5 specification, the Java Servlet specification provided two separate
threading models that could be used for a servlet. The models determine whether single or
multiple instances of a servlet can exist. The default threading model for any servlet is the
multithreaded one that requires no additional work for the developer. In this model, the con-
tainer creates only a single instance of the servlet class and sends multiple requests to the
instance concurrently.

To select the single-threaded model for your JSP, you must set an attribute of the page
directive called isThreadSafe to false to serialize all requests to the implementation servlet
behind the JSP:

<%@ page isThreadSafe="false" %>

In the past, containers would support this feature by creating an implementation page
that implements the SingleThreadModel interface. When the implementation page imple-
ments this interface, the JSP container creates multiple instances of the implementation class;
each instance handles a single request at any given time. However, note that the JSP 2.1 speci-
fication advises developers against using isThreadSafe="false" because the Servlet 2.5
specification has deprecated SingleThreadModel.

