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Introduction

Welcome to the fourth edition of Professional JSP, designed to help new and experienced

Java developers alike discover the power (and even the joy) of creating Java-based server-side
solutions for the Web by using JavaServer Pages, or JSP for short. If you've programmed with
JSP before, you'll find that the new features in JSP 2.1 make developing JSP pages easier than
ever before. If you only know a little Java, this is your chance to add JSP to your toolbox skills.

JSP is a server-side technology that takes the Java language, with its inherent simplicity
and elegance, and uses it to create highly interactive and flexible web applications. In today’s
unsure economic climate, having the Java language as the cornerstone of JSP makes JSP partic-
ularly compelling for business: Because Java is an open language (meaning it doesn’t require
expensive licenses), JSP solutions can be highly cost-effective.

The founding premise of JSP is that HTML can be used to create the basic structure of a
web page, and Java code can be mixed in with the HTML to provide the dynamic components
of the page that modern web users expect. If you understand the concepts of HTML and web
pages, JSP provides an unbeatable way to learn about creating innovative, interactive content
as well as coming to grips with the popular language of Java. This book will be your guide as
you step into this exciting new world.

Who Is This Book For?

This book is aimed at anyone who knows the Java language and core APIs and wants to learn
about web programming with the latest versions of the JSP and Servlet APIs.

Familiarity with HTML is required; however, no prior knowledge of server-side Java pro-
gramming is necessary. Having said that, this book does not claim to be exhaustive in all areas,
particularly in relation to other Java Enterprise Edition APIs such as Enterprise JavaBeans.

What’s Covered in This Book

This book covers the latest versions of the JSP and Servlet specifications—versions 2.1 and 2.5
respectively, both of which are new specifications developed through the Java Community
Process (http://www.jcp.org/).

Note At the time this book was being published, the JSP specification was in Proposed Final Draft stage.
It’s possible that some small changes might be made before the specification reaches final release; how-
ever, any modifications are likely to be minor and the new specifications are already being implemented by
a number of products such as Tomcat 5.5.
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Those who have read previous editions of this book will notice that this edition is a revision
of Professional JSB 3rd Edition. Because the third edition covered JSP 2.0, most of the informa-
tion was still current for this book, which covers JSP 2.1. However, we've gone through the
entire book and ensured that the material is still correct for JSP 2.1. We've gone through every
chapter and updated the text to make it clearer and more concise. Finally, we've added an
entire new chapter on JavaServer Faces, one of the newest Java web-application technologies.

If you already have some exposure to server Java web development, you should pay atten-
tion to any changes in the technologies that are indicated throughout the book, or skip ahead
to the sections that interest you the most. On the other hand, if you're new to JSP, servlets, and
JSTL, and this is somewhat confusing, you've come to the right place; the early chapters in this
book, especially, were written with you in mind.

Here is what you can expect to find in each chapter:

Chapter 1, The Anatomy of a JavaServer Page, looks at the JSP life cycle, JSP application
architecture, and the fundamentals of JSP pages, and provides a feel for where JSP tech-
nology fits within the Java EE 5 and other web components such as servlets, tag libraries,
and JavaBeans, which exist in the Java EE 5 web tier for providing dynamic web-based
content.

Chapter 2, Servlets and Deployment, delves into what Java servlets are, and looks at the
development and deployment of Java servlets. The Servlet and JSP specifications are
developed in parallel, and this chapter is up to date for the latest release of JSP 2.1 and
Servlets 2.5 (as is the rest of the book).

We discuss one of the new features of the JSP 2.1 specification in Chapter 3, The
JavaServer Pages Expression Language. The JSP expression language is what you'll be
using most often in JSP pages, an intentionally simple language that is, to a large extent,
independent of JSP.

Chapter 4, JavaServer Pages Standard Tag Library, looks at the reasons for the creation of
the JSTL, its detalils (it is in fact four different tag libraries), and how to install the JSTL.

Chapter 5, JavaServer Faces, is an introduction to JavaServer Faces (JSF), a framework for
creating component-based user interfaces. You'll learn how to use JSF with JSP pages to
create feature-rich user interfaces.

Tag Files and Simple Tags is the title of Chapter 6. Tags contained within JSTL are
extremely valuable for improving the readability and maintainability of a JSP page. You
can also build custom tags to enable your own functionality to be reusable and easily
maintained. Tag files and simple tags are both new mechanisms for writing custom tags
introduced as a part of the JSP 2.1 specification.

Chapter 7, Classic Tags, takes a look at the facilities provided by former versions of the JSP
specification for writing custom tags. As you'll see throughout the chapter, these previous
methods, now called classic tags, provide a great deal more flexibility and therefore are
still useful in some scenarios.

After you learn the basics of building custom tags, Chapter 8, Custom Tag Advanced Fea-
tures and Best Practices, wraps up your understanding by looking at some more advanced
features and the best way to use custom tags.
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Chapter 9, Data Access Options for Web Applications, discusses how best to access your
back-end data from your JSPs and servlets. No matter what type of JSP application you're
writing, you'll need to either store the data that is created by your application, or use data
from an external source, and this chapter looks at examples using a MySQL database.

In Chapter 10, Introduction to Filtering, you'll look at filtering, a standard feature of all
Servlet 2.5-compliant containers. You'll explore the life cycle of a filter as managed by the
container, discuss the very important concept of filter chaining, and then create and
deploy two simple filters.

Chapter 11, Advanced Filtering Techniques, is a cookbook for the application of filters, as
you turn your attention to the more advanced techniques involved in applied filter pro-
gramming by looking at five examples that can be used as the basis for your own filter
implementation.

Chapter 12, Security in Web Applications, looks at making your web applications secure
and explores different methods of authentication and authorization.

Chapter 13, Improving Web-Application Performance and Scalability, is your guide to a
number of well-known tools and techniques such as page caching and database connec-
tion pooling that you can use to improve performance and stability, even after you've
designed and coded your application.

Chapter 14, Web-Application Design and Best Practices, brings together the techniques
covered in the earlier chapters and shows how to build maintainable, extensible Java-
based web applications. It looks at the importance of good design and how it can help you
build high-quality web applications that are easier to maintain and extend in the future.

In Chapter 15, Using Struts, XDoclet, and Other Tools, you'll develop a résumé building
and viewing web application called struts-resume, by using a variety of third-party prod-
ucts. All of the products used in struts-resume are open source and help to facilitate and
speed up various stages of the development process.

What You Need to Use This Book

The first thing you'll need to use this book is a computer that supports the Java programming
language. This includes computers that run Microsoft Windows, Sun Solaris, or Linux.

We don'’t use any proprietary software, and all code runs on open-source products, avail-
able free of charge over the Internet. Consequently, an Internet connection is pretty much
essential in order to get hold of this software.

The primary piece of software you'll need is a web container that supports the JSP 2.1
and Servlet 2.5 specifications. Although there are a number of options to choose from, we've
elected to use the Jakarta Tomcat web container throughout the whole book because it’s the
officially designated reference implementation. Version 5.5 is the latest and greatest, which
supports the specs we require. You can get the latest release information about Tomcat 5.5
from http://jakarta.apache.org/tomcat/index.html.

As you need further software components during the course of the book, we’ll indicate
clearly where to download them from.
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Conventions

We've used several styles of text and layout in this book to differentiate between different kinds
of information. Here are examples of the styles used and an explanation of what they mean.

Code has several fonts. If we're talking about code in the text, we use a nonproportional
font like this: for. . .next. If it's a complete code listing that can be entered and used as part of
an application, then it will appear in a nonproportional font with a caption like this:

Listing 1-2. date.jsp

<html>
<body>
<h2>Creetings!</h2>
<p>The current time is <%=new java.util.Date()%> precisely</p>
</body>
</html>

Code that is an extract or snippet from a larger listing will appear without a caption, like
this:

import javax.servlet.http.*;

public class SessionTracker2 extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)

Sometimes you will need to type in commands on the command line, which we display
using the following style:

> set classpath=.;%Java EE_HOME%\1lib\j2ee.jar
\projsp> javac -d . client\*.java

We show the prompt using a > symbol or \dirname> (where dirname is a directory name)
and then the commands you need to type. As you can see, we tend to use the Windows direc-
tory separator character when showing directory paths. We do this because we expect that a lot
of readers will be using a Windows platform when they try out the code. But we also develop on
Linux or Solaris platforms, and if you do too, then you should use the directory separator that is
correct for your platform.

Note Advice, hints, and background information come in this type of font offset by borders. Important
pieces of information also come in this format. Depending on the type of information, we preface the text with
the word Note, Tip, or Caution. Notes consist of incidental information of one type or another that defines,
explains, or elaborates on the main discussion. Tips will make your programming easier. For instance, a Tip
might point out another way to use a certain feature that’s not obvious from the main discussion. Cautions
indicate a potential hazard. For example, a Caution might be a method that if misused could crash your appli-
cation server.
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Bullets appear indented, with each new bullet marked as follows:
e Important Words are in a bold type font.

¢ Words that appear on the screen or in menus, such as File or Window, are in a mono-
spaced font.

Numbered lists are similar to bulleted lists:
1. Do this action first.

2. Do this action next.

What to Do If You Encounter Problems

Despite all our best efforts, and despite this book’s numerous sharp-eyed editors, there is a
possibility that errors managed to sneak through. It has been known to happen. If you are hav-
ing problems with any of the text or code examples, the first place to go for corrections is the
web page for the book (http://www.apress.com/book/bookDisplay.html?bID=464). If any errata
have been identified, you will find a link for Corrections on the book’s web page. If you click
this link, you will find a page that lists known errors with the code or book text, and correc-
tions for those problems.

If you can't find your problem listed on the Corrections page, you will find a link to Submit
Errata on the main book page. If you've double-checked and triple-checked your problem and
still can’t get the code to work or the text to make sense, use the Submit Errata link to send us a
description of the problem. We can’t promise a speedy response, but we do see all submissions
and post responses to the Corrections page after we've had a chance to check out the problem.
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CHAPTER 1

The Anatomy of a
JavaServer Page

The Java Platform, Enterprise Edition 5 (Java EE 5) has two different but complementary
technologies for producing dynamic web content in the presentation tier—namely Java
Servlet and JavaServer Pages (JSP).

Java Servlet, the first of these technologies to appear, was initially described as extensions
to a web server for producing dynamic web content. JSP, on the other hand, is a newer tech-
nology but is equally capable of generating the same dynamic content. However, the way in
which a servlet and a JSP page produce their content is fundamentally different; servlets
embed content into logic, whereas JSP pages embed logic into content.

JSP pages contain markup interlaced with special JSP elements that provide logic for con-
trolling the dynamic content. Servlets are built using Java classes that contain statements to
output markup code. Of these two paradigms, JSP pages are preferred for presenting dynamic
content in the presentation tier due to their greater readability, maintainability, and simplicity.
Further increasing the simplicity and ease of use of JSP pages was one of the main objectives
of the JSP 2.0 specification, which included several new features to make it easier than ever to
embrace JSP technology, especially for developers who aren’t fluent in the Java syntax.

The inclusion of a new expression language (EL) enables JavaScript-style JSP code to be
embedded within pages, which makes it much easier for web developers not familiar with the
Java syntax to understand the JSP logic. A library of standard actions known as the JavaServer
Pages Standard Tag Library (JSTL) is also included to provide a host of useful, reusable actions
such as conditional statements, iteration, and XML integration to name a few. These actions
are applicable in some shape or form to most JSP web applications, and their use will greatly
improve the reliability and ease of development for JSP page authors. Custom actions (also
known as custom tags) also benefit from changes in the JSP specification, and it’s now possi-
ble to write a custom action entirely in JSP syntax instead of Java syntax!

JSP 2.1 further eases the development of JSP pages by unifying the JSP expression lan-
guage with the JavaServer Faces (JSF) expression language. These new features will help make
JSP pages easier to write and maintain and are discussed in detail in the following chapters:

e The JSP 2.1 expression language (EL) (see Chapter 3)
¢ The JavaServer Pages Standard Tag Library (JSTL) (see Chapter 4)
» The JavaServer Faces custom tags (see Chapter 5)

 JSP custom tags (see Chapters 6, 7, and 8)
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In this chapter, you'll take a look at some of the fundamental concepts based around JSP
technology, such as the following:

* The mechanics of a JSP page
e Typical JSP architectures

¢ Core JSP syntax

o Taglibraries

The aim of this chapter is to help you gain a grounding in the basics of JSP technology
so you can make full use of the rest of the chapters in this book that build on these basic
principles.

Before You Begin

To begin examining the basics of JSP technology, it’s essential that you have a cursory familiar-
ity with the alternative and complementary presentation-tier web component, Java servlets.
The next chapter will discuss servlets in more detail.

Java Servlets

As mentioned earlier, servlets can most simply be described as custom web-server extensions,
whose jobs are to process requests and dynamically construct appropriate responses. In prac-
tice, such responses are usually returned in the form of HTML or XML and are the result of a
user making an HTTP request via a web browser. Servlet technology has been an extremely
popular choice for building dynamic web applications such as e-commerce sites, online bank-
ing, and news portals, for reasons of simplicity, extensibility, efficiency, and performance over
alternative technologies such as Common Gateway Interface (CGI) scripts.

Some of the most basic advantages of servlet technology are as follows:

» Simplicity: Servlets are easy to write, and all the complicated threading and request
delegating is managed by the servlet container.

» Extensibility: The Servlet API is completely protocol independent.

* Efficiency: Unlike CGI scripts, the execution of a servlet doesn’t require a separate
process to be spawned by the web server each time.

¢ Performance: Servlets are persistent, and their life cycle extends beyond that of each
HTTP request.

Servlets are simply Java classes that inherit from the javax.servlet.Servlet interface.
These servlets are compiled and deployed inside a servlet container, which is a Java environ-
ment that manages the life cycle of the servlet and deals with the lower-level socket-based
communication. The servlet container may be part of an existing Java-enabled web server
itself or may be used as a stand-alone product that is integrated with a third-party web server.
The servlet Reference Implementation container, Apache Jakarta Tomcat for example, may be
used as a stand-alone web server or as a separate servlet container inside a larger commercial
web server such as the Apache web server.
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Servlets are typically used for returning text-based content such as HTML, XML, WML,
and so on. However, they are equally at home returning binary data such as images or serial-
ized Java objects, which are often used by further servlets to generate some appropriate
dynamic response.

JSP Under the Hood

A JSP page is simply a regular text file that contains markup (usually HTML) suitable for
display inside a browser. Within this markup are special JSP elements that you'll learn more
about later. These are used to provide processing logic that enables dynamic content to be
produced on a request-by-request basis.

In JSP terms, any markup that isn’t a JSP element is known as template text, and this really
can be any form of text-based content such as HTML, WML, XML, or even plain text! Of course
the mixture of JSP elements and template text cannot simply be sent to the browser without
any form of processing by the server. We mentioned earlier how JSP technology is an exten-
sion of servlet technology, and so you probably won't be surprised to learn that each JSP page
is, in fact, converted into a servlet in order to provide this processing logic. Figure 1-1 shows a
JSP page being translated and compiled into a servlet in response to a request. This servlet is
known as the JSP implementation servlet.

JSP Page Request

<%@ taglib uri="http://java.sun.com/jstl/core” prefix="C"%>

<HTML>
<HEAD>
<TITLE>A Very Simple Page!</TITLE>
<HEAD>
<BODY>
Welcome: <c:out value="$(param.userName)” />
<BODY>
</HTML>

JSP Transformation

v and Compilation

[ JSP Implementation Servlet ]

Servlet/JSP Container

v
JSP Page Response

Figure 1-1. The JSP container translates and compiles the JSP source into an implementation
class, which is used to process all requests.
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A request for a JSP page is handled initially by the web server, which then delegates the
request to the JSP container. The JSP engine will translate the contents of the JSP into its
implementation servlet, which the container then uses to service the request. Usually a JSP
container will check whether the contents of a JSP page have changed before deciding if it
needs to retranslate the page in response to a request. This feature can make on-the-spot
changes to JSP pages easy because the next request will automatically cause a retranslation
and the most up-to-date content will be returned. Compare this with a purely servlet-based
approach, which would require the servlet container to be shut down in order to have the nec-
essary changes made, such as recompilation, testing, and finally, a restart!

Let’s take a closer look at the process of taking a plain JSP text file and turning it into a
dynamic web component; this process is also known as the JSP life cycle.

The JSP Life Cycle

As you've just seen, JSP pages don't directly return content to the client browser themselves.
Instead, they rely on some initial server-side processing that converts the JSP page into the JSP
page implementation class (see Figure 1-2), which handles all requests made of the JSP.

HTTP Request
|
Web Container
Yes—Iocate JSP
New or > Jsp
Changed

JSP translation

Y
No
Servlet (Source)

JSP compilation

Y
Y
HTTP Response \ Servlet loaded and initialized
Servlet Instance < Servlet (Class)

Figure 1-2. Before processing a request, the container determines whether the JSP source is new
or has changed. If so, the container translates and compiles the JSP page into a servlet class, or
page implementation class, before passing the request to the servlet for processing.
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As you can see in Figure 1-2, the JSP servlet container decides whether the JSP page has
been translated before. If not, the JSP container starts the translation phase to generate the
JSP page implementation servlet, which is then compiled, loaded and initialized, and used to
service the request. If the JSP container detects that a JSP page has already been translated
and hasn’t subsequently changed, the request is simply serviced by the implementation
servlet that already exists inside the container.

The life cycle of a JSP page can be split into four phases: translation, initialization,
execution, and finalization.

Translation

The first stage in the life cycle of a JSP page is known as the translation phase.

When a request is first made for a JSP page (assuming it hasn’t been precompiled), the
JSP engine will examine the JSP file to check that it’s correctly formed and that the JSP syntax
is correct. If the syntax check is successful, the JSP engine will translate the JSP page into its
page implementation class, which takes the form of a standard Java servlet. After the page’s
implementation servlet has been created, it will be compiled into a class file by the JSP engine
and will be ready for use.

Each time a container receives a request, it first checks whether the JSP file has changed
since it was last translated. If it has, it’s retranslated so that the response is always generated
by the most up-to-date implementation of the JSP file.

Initialization

After the translation phase has been completed, the JSP engine will need to load the generated
class file and create an instance of the servlet in order to continue processing the initial request.
Therefore, the JSP engine works very closely with the servlet container and the JSP page
implementation servlet and will typically load a single instance of the servlet into memory.
This single instance will be used to service all requests for the JSP page. In a real-world web
application, those requests will most likely happen concurrently, so your JSP page must be
multithreaded.

Prior to the Servlet 2.5 specification, the Java Servlet specification provided two separate
threading models that could be used for a servlet. The models determine whether single or
multiple instances of a servlet can exist. The default threading model for any servlet is the
multithreaded one that requires no additional work for the developer. In this model, the con-
tainer creates only a single instance of the servlet class and sends multiple requests to the
instance concurrently.

To select the single-threaded model for your JSP, you must set an attribute of the page
directive called isThreadSafe to false to serialize all requests to the implementation servlet
behind the JSP:

<%@ page isThreadSafe="false" %>

In the past, containers would support this feature by creating an implementation page
that implements the SingleThreadModel interface. When the implementation page imple-
ments this interface, the JSP container creates multiple instances of the implementation class;
each instance handles a single request at any given time. However, note that the JSP 2.1 speci-
fication advises developers against using isThreadSafe="false" because the Servlet 2.5
specification has deprecated SingleThreadModel.



