Foundation ActionScript 3.0
Image Effects

Todd Yard

e

EEEEEEEEEEEEEEEEEEEE

an Apress® company

Foundation ActionScript 3.0 Image Effects

Copyright © 2009 by Todd Yard

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1871-5
ISBN-13 (electronic): 978-1-4302-1872-2
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales—eBook Licensing web page at
http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

Lead Editor
Ben Renow-Clarke

Technical Reviewers
Brian Deitte, Chris Pelsor

Editorial Board

Clay Andres, Steve Anglin, Mark Beckner,
Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick,

Michelle Lowman, Matthew Moodie,
Jeffrey Pepper, Frank Pohlmann,

Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager
Beth Christmas

Copy Editor
Heather Lang

Associate Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor
Molly Sharp

Proofreader
April Eddy

Indexer
Carol Burbo

Artist
April Milne

Cover Image Designer
Corné van Dooren

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

For every small-town, wide-eyed pixel that ever stepped off a
train in the big city with nothing but a suitcase of colors and
a dream to light up the screen.

CONTENTS AT A GLANCE

About the Author..... Xiii
About the Technical Reviewers ... Xiv
About the Cover Image Designer.. XV
Introduction. xvii
Chapter 1 The Drawing API........ 1
Chapter 2 Filters and Blend Modes...................................... 65
Chapter 3 Bitmaps and BitmapData.................................... 125
Chapter 4 Advanced Bitmap Manipulation............................ 173
Chapter 5 Pixel Bender and Shaders 249
Chapter 6 ActionScript in the Third Dimension....................... 305
Chapter 7 Using an Animation and Effects Library................... 373
Chapter 8 Elemental Animation Effects................................ 415
Chapter 9 Text Effects............. 457
Chapter 10 Video Effects.............. 503
Chapter 11 Sound Visualization Effects................................ 551
Chapter 12 Interactive Effects............... 587
Appendix Developing Within Flash and Flex Builder................. 631
IndeX 650

CONTENTS

About the Author......... Xiii
About the Technical Reviewers .. Xiv
About the Cover Image Designer.. XV
Introduction. xvii
Chapter 1 The Drawing APL....... 1
A brief history of the drawing AP 2
What's come before. 2
Reviewing the original eight 4
Drawing straight lines 4

Drawing CUMVES . . .ottt e e 8

Drawing solid fills e 10

Drawing gradient fills 1

Shapes made @asy it 16
Drawing gradient lines. 18

Filling shapes with bitmaps 22

And in with the new. 26
CoPYING BraphiCs . . o\t 26
Drawing bitmap strokes. 33
Preserving path data i 36
Changing pointsonapath 42
Rendering triangles i 48
Breaking down the drawTriangles method. 49

Using bitmap fills.o 54
Introducing shaders. 61
SUMMIANY. oo ettt e e e e e e e e e e e e e e e e e 62
Chapter 2 Filtersand Blend Modes...................................... 65
Applying blend modes. e 66
Working with the BlendModes application i 67
Examining the modes 69
NORMAL .. e 71

MULTIPLY . . o e e e e e e e 72

SCREEN. . . o e 73
HARDLIGHT . . e e e e e e e 74

CONTENTS

OV ERLAY . 76

AD D L 77

SUBT RACT .« ottt e e e 77
LIGHTEN. . o e e e e e 78
DARKEN . . .t 79
DIFFERENCEot e e e e e e e e 80
INVERT . . e e e e e 80

LAYER . o 81

ALPHA 81

BRASE . o 82
SHADER . . e 83

UsSiNg filters. . . oo 83
BIUFFI . « .o 85
DropShadowFilter 87
GloWRIter. . . 89
GradientGlowFilter. 91
BevelFilter. . . o 94
GradientBevelFilter 96
ColorMatrixFilter 98
Understanding matrices 98

Using matrices with the ColorMatrixFilter.......... 100
ConvolutionFilter. o 107
Convolving PiXels. . . .o e 108
Understanding the parameters. i 109
Applying the filter. 110
DisplacementMapFilter 119
SUMMANY. .« ettt e e e e e e e e e e e e e e e e e e 122
Chapter 3 Bitmaps and BitmapData.................................... 125
Understanding bitmaps in ActionScript 126
Introducing Bitmap oot 126
Accessing BitmapData 127
Understanding channeldata. i 128
Storing grayscalet 128
AddiNg COlOr .. .o 130
Representing transparenCyottt e 131
Specifying channels. 132
Loading, creating, and displaying bitmaps 133
Embedding or loading assets. 133
Creating bitmaps fromscratch 135
Instantiating BitmapData. e 135
Adding data to a Bitmap instance 136
Drawing existing graphics into bitmaps 137
Specifying the source 138
Transforming source pixels. 140
Wrapping up the draw() method’s parameters............. 144

viii

CONTENTS

Copying existing bitmap data 144
CloNiNg. . o 144
COPYING PIXELS . o v ot 145
Setting regions of PiXelsot e 150

Using bitmaps with the drawing APl. 154

ClEaNINg UP .« ettt e e 155

Accessing and manipulating colors. e 156

Getting and setting single pixels. 156
Creating a pixel painting application 157
Determining pixel values. e 159

Filling regions of color. o i 160
Testing getColorBoundsRect.ttt 162
Flooding with color. 164

Transforming color 166

SUMIMAIY. ettt ettt e e e e e e e e e e e e e e 171
Chapter 4 Advanced Bitmap Manipulation............................ 173
Adding Pixel Randomization i 174

DissolviNg Pixels.o 174

MakKing SOme NOISEttt e 178

Applying Perlin Noise. i 182

Applying filters to BitmapData 192

Using filters . ..o 192

Displacing pixels.o 193
Adding textures to objects 196
Creating a fisheye lens 201

Performing channel operations. i e 205

Copying channels.o 206
Copying channels withinaninstance i, 206
Copying channels between instances. 209

Extracting channel information. 212

Setting thresholds 216
Creating 1-bit bitmaps 219
Chroma KeYing.o 222

Mapping Palettes.o 225
Assigning custom color palettes. 226
Applying levels. . ..o 231
POSterIZING . . . ot 236

SUMIMIANY .« ettt ettt e e e e e e e e e e e e e 246
Chapter 5 Pixel Bender and Shaders 249
Understanding shaders 250
Working with the Pixel Bender Toolkit i 252

Exploring the interface i 252

Creating a kernel o 256

Knowing Flash’s limitations 266

Using shaders in the Flash Player i i 267

CONTENTS

Embedding bytecode. 268
Loading kernels at runtime 269
Allowing for loading or embedding 270
Deconstructing shaders. i 273
Shader . . 273
ShaderDatat 274
Shaderinput. . ..o 274
ShaderParameter. e 274
Shader)ob. 275
ShaderEvent. 275
Passing parameters to shaders 276
ProViding @CCeSSOrS . . . ottt et 277
Creating @ PrOXY .« ittt 278
Bending pixels 282
Creating a custom filter. 282
Enabling new blend modes e 287
Drawing with shaders. 292
Creating custom gradientst 293
Animating fills 298
Performing heavy proCessing.ttt e 299
SUMMANY. .« ottt et e e e e e e e e e e e e e e e e e 302
Chapter 6 ActionScript in the Third Dimension....................... 305
Displaying objects with depth 306
Translating in three dimensions 306
Changing perspective 312
Exploring perspective projection 312
Extruding teXtot 317
Rotating around axes.t 320
FlippINg an imaget e 321
Scrolling teXto 323
Constructing models out of planes 325
Transforming objects 330
VeCtOr3D .o e 331
Performing simple vector math 331
MeEaSUNNG VECTOTIS . . o . ottt et e et e e e e e e e e 334
Drawing pPolygONSot 335
MatriX3D. . . oot 340
Creating amatrixX. i 341
Exploring matrix methods. 342
Managing depth. e 356
Drawing with bitmaps e 360
Recalling drawing triangles 360
Rendering a mesh with drawTriangles() 361

1) 4.4 =T 25 369

CONTENTS

Chapter 7 Using an Animation and Effects Library 373
Introducing @aeon animation e 374
TWeening Values.o e 375
Handling animation events. 375

Coding single animations 375

Using complex animatorsttt 377
Creating composite animations i 380
Sequencing multiple animations. 381
Holding and looping animations.ttt i 382
Running an animation. 382
Introducing aether effects. 385
Exploring the utilities. o 387
Simplifying bitmap calls 387
Making adjustments e 389
Drawing teXtUresot 393
Creating bitmap effects. 397
Applying an effect. 398
Combining effects. 399

Using shaders. o 401
Creating an image effect. i 404
SUMIMANY. ettt et e e e e e e e e e e e e e e e e 412
Chapter 8 Elemental Animation Effects................................ 415
Playing with fire 418
TUFNING 10 STON@. . . .ot e 427
Waving the flag. o 436
BriNgiNg Fain . . . o 446
SUMMANY. oot ettt e e e e e e e e e e e e e e e e e e e 454
Chapter 9 Text Effects............. 457
DiStresSiNg TeXt. . o .ot 458
Creating custom bevels 469
Building a text animation engine. 484
SUMMIMIANY .« ettt ettt e e e e e e e e e e 501
Chapter 10 Video Effects............. 503
Applying runtime filters. 504
Building avideo loader 505
Filtering video frames 512
Extending ImageEffect for new filters. 518
Isolating colors for effect. 524
Creating a color isolation shader i 524
Extending ShaderEffect 534
Highlighting a color for comic book noir......... i 537
Building dynamic post effects. i 542
SUMMIANY. .« ottt e e e e e e e e e e e e e e e e e e 548

Xi

CONTENTS

Chapter 11 Sound Visualization Effects................................ 551
Loading and playing sound 552
Visualizing sound data. e 555

Accessing sound data 555
Displaying the waveform. 557
Displaying the frequencies i 562
Rounding the waveform 565
Evolving effects for visualization. 572
SUMMANY. .« ottt et e et e e e e e e e e e e e e e e e e e e e 585

Chapter 12 Interactive Effects... 587

Using image and MousSe iINPUL.ttt e 589
Loading a local image i 589
Creating a kaleidoscope it 594
Rotating the view. 602

Using webcam and keyboard input. 606
Coding a distortion shader 606
Distorting user Videoot 619

Working with the Cameraclass 620
Displaying camera input 621
Applying a shadertowebcamdata 621

SUMIMANY. ettt et e e e e e e e e e e e e e e e e 627

Appendix Developing Within Flash and Flex Builder................. 631

Working in Flash CS4 632
Working with chapter filesin Flash. 632
Creating a Flash project from scratch. 635
Using the Flex compiler within Flash 637

Working in Flex Builder 3. 638
Compiling for Flash Player 10 o e 638
Working with chapter files in Flex Builder i 639
Creating a Flex Builder project fromscratch......... 642

IndeX 650

Xii

ABOUT THE AUTHOR

Todd Yard is software architect at Brightcove in Cambridge, Massachusetts,
where he has worked since its early days in 2005 when everyone could fit
into a small room. There, he is focused on the front-end rich media player
framework for Brightcove’s media management and distribution service.
Prior to that, he was a partner with ego7 in New York and lead developer for
its Flash content management system and community application suite.
Sometime in the midst of all that, he developed applications, animations, and
advertisements for a range of clients including GE, IBM, AT&T, and Mars.

As an author, Todd has previously contributed to 13 Flash and ActionScript
books from friends of ED, including Object-Oriented ActionScript 3.0 and Extending Flash MX
2004, and has served as technical editor on four others. He has also contributed a number of
articles on Flash, Photoshop, and Illustrator to the WebDesigner and Practical Web Projects
magazines.

When Todd is not at a computer, he might be found on a local stage somewhere singing and, on
occasion, dancing. That’s what he used to do before he was lured by the siren call of software
development.

His personal web site can be found at http://www.27Bobs.com.

ABOUT THE TECHNICAL REVIEWERS

Brian Deitte is a software developer working at Brightcove, where he has
helped to create a video mash-up tool built in Flex called Aftermix and vari-
ous advertising solutions. Previously, he worked at Adobe on the Flex SDK
team, from Flex 1.0 to Flex 2.01. He keeps a blog at http://deitte.com.

Chris Pelsor is an award-winning developer and manager of Tarantell’s experiential technolo-
gies group, Tarantell:Hybrid. He has helped develop solutions for Adobe, Microsoft, Sony, and
Jameson Whiskey. When he isn't busy sitting on a train for eight hours a week, he spends his free
time perfecting his pale ale recipe and parenting two children with his partner in crime Lisa in
Heidal, Norway, also known as the middle of nowhere.

Xiv

ABOUT THE COVER IMAGE DESIGNER

Corné van Dooren designed the front cover image for this book. After
taking a brief from friends of ED to create a new design for the Foundation
series, he worked at combining technological and organic forms, with the
results now appearing on this and other books’ covers.

Corné spent his childhood drawing on everything at hand and then began
exploring the infinite world of multimedia—and his journey of discov-
ery hasn’t stopped since. His mantra has always been “The only limit to
multimedia is the imagination,” a saying that keeps him moving forward
constantly.

Corné works for many international clients, writes features for multimedia magazines, reviews and
tests software, authors multimedia studies, and works on many other friends of ED books. You can
see more of his work at and contact him through his web site, www.cornevandooren.com.

If you like Corné’s work, be sure to check out his chapter in New Masters of Photoshop: Volume 2
(friends of ED, 2004).

XV

INTRODUCTION

| don’t think they could have come up with a better name than “Flash.” Although that name is
now applicable to an entire platform that includes much more than the Flash Player and IDE,
at the end of the day, whether you are developing in Flash or Flex Builder, and whether you
are delivering online or through AIR, the end result is still a SWF that is rendered in the Flash
Player, just as it was when Flash simply made animations. So whatever you produce—movie
or application or generative art—is still “Flash.” And boy, can it ever. From the very beginning,
Flash movies have often evoked reactions of “Wow” and, more apropos to developers like you,
“How’d they do that?”

| began working with Flash in 2000, right before the release of Flash 5. If you’re an old-timer,
you may recall that Flash 4 was still basically a timeline animation tool with only a handful of
ActionScript commands available (I liken working in ActionScript without objects and arrays to
working in Photoshop before there were layers). And yet the amount of creative and stunning
Flash work that was produced in that time with those few commands was truly exciting.

That excitement, and the fact that it could be produced with little programming knowledge,
attracted an amazing diversity of talent to Flash, from animators to programmers to graphic art-
ists to musicians. What software today could do the same? This mixture of disciplines helped to
create a community that explored this new technology from so many different points of view, a
community that openly and happily shared its collective findings. And the end result of all this
work and play and experimentation was—and still is—something to look at.

It might be an animation, a game, an application, or just something cool to ogle, but Flash
produces visuals. That’s what excited me when | first began nearly a decade ago and what has
hooked so many others as well. The Flash platform has grown tremendously, and ActionScript,
now in its third iteration, is a complex and powerful language that allows developers to create
web applications to rival those built for the desktop. And with that power comes greater and
finer control over the graphic elements in a Flash movie.

In this book, | will explore the myriad ways that ActionScript allows you to create and control
these visuals in a SWF. Whether you produce games, applications, or cartoons, or you just
want to play, this book will give you what you need to know to manipulate the pixels to your
advantage.

In the first part of this book, we will step through each of the major areas of image creation
and manipulation that ActionScript makes available to developers. We’ll start at the drawing
API, explore filters and blend modes, come to grips with BitmapData and all it provides, and
then dive in depth into new features of Flash Player 10 with 3D and Pixel Bender. Once these

INTRODUCTION

topics are covered, we’ll look at an effects library that you can use to easily create a multi-
tude of effects through the remaining chapters of this book and beyond.

The second part of this book presents a collection of tutorials that will allow us to explore
how to apply the knowledge gained in the first part. That’s where we’ll start to have some
real fun. That’s important, because it’s the fun in creating with Flash that first drew so
many in, myself included, and it’s the fun that drives people to play, explore, and come up
with some truly wonderful and creative applications. You can still build utilitarian pieces
of software that have that Flash—not for general eye candy but to enhance usability, cre-
ate more immersive and responsive experiences, and generally produce work that goes
beyond everything else presented on the Web. This book shows you how.

Intended audience

This is not a book on object-oriented programming or ActionScript 3.0 fundamentals, nor is
it a book on the Flash or Flex Builder authoring environments (in fact, in this book, I strive
to have very little reliance at all on any specific IDE). You should come with familiarity of
how to compile a SWF and have at least intermediate knowledge of ActionScript 3.0.

With this book, | hope to explore the fun to be had when programming graphics and share
the enjoyment that | find when pushing the pixel. | was not a computer science major, nor
do | come from a programming or mathematics background—I was just enamored with
what Flash could do, and it pulled me in completely and hasn’t let go. If you are familiar
with ActionScript 3.0, are interested in all the graphic capabilities of the language, and
aren’t scared of some math here and there, then this book is for you.

Development environment

I’'m an ActionScript developer. | go from using Flash to Flex Builder to the command-line
mxmlc compiler in order to compile my SWFs nearly every day. In this book, | try to pres-
ent pure ActionScript examples that can be compiled in any of the environments that do
not rely on the timeline or library in Flash or on the Flex framework.

As you go through this book, you will find that examples are presented in pure
ActionScript 3.0, usually with instructions to compile the SWF or to test the movie without
further instructions on how to do so, since this differs in each environment. In this book’s
appendix, | discuss how you would work in both Flash and Flex Builder when using this
book. You should only have to look at it once if you are not already familiar with how to
compile with your method of choice.

If you are using Flex Builder 3, you will need to go through a few additional steps to set up
the SDK that includes the new ActionScript classes available for Flash Player 10 and con-
figure Flex Builder to compile for this version of the player. If you have not already been
using these new classes, like Vector and Shader, you should have a look at the appendix
now to see how to set this all up.

INTRODUCTION

For the first couple of chapters, | will point to the appendix as a reminder, but if you jump
through this book nonlinearly, you might take a peek at this appendix first.

Code comments

Code should contain helpful comments. | do not believe there is dispute over that.
However, you may notice that the code presented within this book does not contain com-
ments, at least in the chapter text itself. There are three reasons for this. First, it saves a
heck of a lot of space not having comments, and including comments within these pages
would have meant having to drop whole tutorials and present fewer examples. | wanted
to present to you as much as was possible for the page limit. Second, and this is personal
preference, when | am reading a book exploring new techniques, | often find a lot of code
comments in the book text to be overly distracting from the code | am attempting to
absorb, as the comments can double the size of code listings and make the actual code
more difficult to focus on. Finally, in this book | spend a good amount of text before and
after code listings, but outside of the actual code itself, detailing everything that is going
on within the code. Including comments would mean either cutting these larger explana-
tions or presenting redundant information.

But, as | said, code should contain helpful comments. You will find, in this book’s support
files, that all of the classes have been fully commented if you are looking at the code itself.
It is only in chapters themselves that the code is presented without the comments.

Layout conventions

To keep this book as clear and easy to follow as possible, the following text conventions
are used throughout:

Code is presented in fixed-width font.
New or changed code is normally presented in bold fixed-width font.
Menu commands are written in the form Menu » Submenu » Submenu.

Where | want to draw your attention to something, I've highlighted it like this:

{ Ahem, don’t say | didn’t warn you. }

Sometimes code won't fit on a single line in a book. Where this happens, | use an arrow
like this: w.

This is a very, very long section of code that should be written all =
on the same line without a break.

XixX

Chapter 1

THE DRAWING API

Back before the earth cooled and life came crawling up from the seas, when the
continents of the world were joined in a massive landmass and iPods held less than a
gigabyte, Flash offered no way to dynamically create graphics. This would be a very
short book if that had remained the case. Thankfully, Flash MX came out and blessed
developers with its implementation of a drawing API (application programming inter-
face), and we looked on it and saw that it was good.

A brief history of the drawing API

The original ActionScript 1.0 drawing API allowed for runtime creation of graphics
using a small collection of eight simple commands to draw lines and fills. Drawing
straight lines and curves and filling these with solid colors or gradients might seem a
small thing in today’s age of flying cars and jetpacks, but when the previous option

CHAPTER 1

was only to use predrawn vectors and bitmaps from the Library, a drawing API was a boon
that offered countless new possibilities, from liquid interfaces to graphs and charting to
complex 3D engines to dynamic visualizations.

With the introduction of ActionScript 2.0, the drawing APl was given two new commands,
one for drawing gradient strokes and the other for filling shapes with bitmaps. A few of
the older methods were beefed up as well to offer additional functionality like defining
gradient spread methods and line join and cap styles.

With ActionScript 3.0 and the new player runtime that allowed for it in Flash Player 9, all
of the drawing methods were moved into their own Graphics class, as opposed to being a
part of MovieClip. New methods for drawing some basic shapes, namely rectangles and
ellipses, were also added. These alterations were useful but not world changing. Developers
waited with bated breath.

Now, with Flash Player 10, ActionScript 3.0’s drawing APl gets an even more significant
overhaul. Drawn graphics from one object can be easily copied into another. Whole
sequences of drawing commands can be saved and rerun, even in multiple objects, at any
time. Strokes, like fills, can now be filled with bitmaps. Finally, ActionScript’s new shaders
can be used for both strokes and fills, allowing for custom bitmap gradients and patterns.

The Graphics class and all it offers is a huge subject for a single chapter and an extremely
important one. Much of the graphic manipulation we will do throughout this book relies
on a firm understanding of what the methods of ActionScript’s drawing API provide. So
let’s start at the very beginning—which is, | hear, a very good place to start—with the
original eight simple commands.

What’s come before

First, we will look at the methods that have been present in the drawing APl from previous
versions of Flash. If you are an ActionScript veteran and are familiar with the drawing API
from ActionScript 2.0, feel free to skip over this section and proceed right to the new
capabilities. | promise not to get offended.

If you have never used the drawing API before or would like a refresher, this section will
be a quick run-through of what previous versions of ActionScript and Flash have offered.
This won’t be an extensive, exhaustive tutorial, since a lot of what it covers has been
around for a good long while now, and | want to reserve the beef of the chapter for all the
lovely new-fangled functionality. But it should get you up to speed quickly.

The drawing APl works like a virtual pen that you direct, instructing it to draw lines or
curves to specific coordinate positions and sometimes filling the drawn lines with color or
bitmap fills. All drawing occurs through a Graphics instance and its methods, and Graphics
instances are only found within a Sprite or Shape—a Graphics instance is not something

THE DRAWING API

you need (or, in fact, can) ever instantiate, but it can be accessed through Sprite or Shape’s
graphics property. That means if you want to draw using the API, you must first have a
Sprite or a Shape, and that instance must be added to the display list. Then all drawing
must occur within that Sprite or Shape through its graphics property.

var sprite:Sprite = new Sprite();
sprite.graphics.moveTo(50, 50);

In the case of a Sprite, which can contain other display objects, anything you draw within
it using the drawing APl will be rendered below any children that the Sprite may have.

Anything that should be visible in a Flash movie, game, or application
must be added to the display list of the Flash Player. This is a hierarchical
list of all the objects currently renderable, at the root of which is the aptly
named root display object. When you create a Sprite or MovieClip docu-
ment class in a Flash or an ActionScript project, the root is that same
document class, and it is automatically in the display list (if you are using
the Flex framework, the main application class is added to the display list
automatically as well, and the root display object is accessible through its
root property).

The display list can hold any object that is an instance of DisplayObject,
an abstract class that is extended by concrete child classes like Bitmap,
TextField, Video, Shape, and Sprite (which MovieClip extends). Once you
instantiate an instance of one of these classes, it must be explicitly added
to the display list or it will not be rendered. This is done by adding
the instance as a child to a display object container that is already in the
display list using the DisplayObjectContainer (which itself extends
DisplayObject) methods addChild() or addChildAt().

As there is a lot to cover in this book for generating and manipulating
graphics, we jump right in here in Chapter 1 with the ActionScript code
features for doing so. To fit as much as possible into the text, some foun-
dation features of ActionScript and the Flash Player, like using the display
list, are not covered past this little focus point. For more in-depth cover-
age, please see Adobe’s ActionScript 3.0 documentation, or a book like
Foundation ActionScript 3.0 with Flash CS3 and Flex (ISBN: 978-1-59059-
815-3) from friends of ED, which | also contributed to (and the chapter on
the display list as well!).

Once you begin drawing, the virtual pen is always at a specific coordinate position within
the Sprite or Shape. It starts at (0, 0) in the display object’s coordinate space and is moved
around through the drawing APl commands. Let’s look at the basic drawing commands
and explore how they can be used to manipulate that virtual pen.

CHAPTER 1

Reviewing the original eight

It all began with eight little drawing commands. The following sections break them down.
There won’t be a quiz afterward, but it’s not a bad idea to pretend there will be.

Drawing straight lines

The following moveTo() method places the virtual pen at a new coordinate position with-
out drawing anything:

moveTo(x:Number,y:Number) :void

It is as if the pen is picked up off of the piece of paper and set down at its new position by
magic (or your hand, which could be magic, | guess). This is necessary when you need to
draw a noncontinuous line or start at a coordinate position other than the default (0, 0).

lineTo(x:Number, y:Number):void

The 1ineTo() method is used to draw a line from the pen’s current coordinate position to
a new coordinate position specified in the parameters. This will produce a straight line
from point to point.

The 1ineStyle() method is used to specify the various visual properties of a line, like its
thickness and color.

lineStyle(
thickness:Number=NaN,
color:uint=0,
alpha:Number=1.0,
pixelHinting:Boolean=false,
scaleMode:String="normal",
caps:String=null,
joints:String=null,
miterLimit:Number=3

):void

There are lots of parameters with this method, so let’s break them down:
@ thickness: This specifies the thickness of the line to be drawn. A value of 0 creates
a hairline stroke that doesn’t scale.
@ color: This parameter specifies the color for the line to be drawn.
@ alpha: And this one describes the opacity for the line to be drawn.

@ pixelHinting: Use the pixelHinting parameter to specify whether lines and points
should be drawn at full pixel positions and at full pixel widths (true) or whether
fractions of full pixels can be used, such as using a line thickness of 0.5 and placing
an anchor point at (1.5, 1.5).

@ scaleMode: This one specifies the way that strokes will be scaled when the display
object in which they’re drawn is scaled. This should be a value represented by one
of the constants in the LineScaleMode class: NORMAL, NONE, VERTICAL, or HORIZONTAL.

THE DRAWING API

NORMAL always scales. NONE never scales. HORIZONTAL and VERTICAL do not scale the
stroke if the display object is scaled only vertically or horizontally, respectively.

@ caps: The types of end caps to use on the stroke are specified with this parameter.
This should be a value represented by one of the constants of CapsStyle: NONE (no
cap extended off the line), ROUND (round extension of end of line), and SQUARE
(square extension of end of line).

@ joints: This parameter designates the type of joint to use on the stroke at any
corner. This should be a value represented by one of the constants of JointStyle:
MITER (creates a point only if the point’s size is under the miter limit and otherwise
squares it off), ROUND (rounds the corner), or BEVEL (squares off the corner). Joints
and caps options are demonstrated in Figure 1-1.

Figure 1-1.

Three strokes with caps and joints set
to ROUND on the left, SQUARE and
BEVEL in the center, and NONE and
MITER on the right

1
1

@ miterLimit: This parameters works with the MITER joint style to specify how far a
point at a corner of the stroke will extend before it is squared off. Figure 1-2 shows
the same angle corner with three different miter limits.

Figure 1-2.

The same stroke with three
different miter limits. The top has

a miter limit of 5; the middle has a
miter limit of 3, and the bottom has
a miter limit of 0.

A

Before a line can be drawn, you must specify how it should look, and that is where the
lineStyle() method comes in. This method needs to be called prior to any calls to
lineTo() or curveTo() or else the lines drawn will have no thickness and therefore will
not be visible. When the lineStyle() was introduced, only the first three parameters
were available, and these controlled the pixel thickness, color, and opacity of the lines
drawn. The additional parameters were added in Flash 8 and control whether lines snap to
exact pixels, how they scale when a parent display object is resized, and how their end
caps and joints are rendered.

clear():void

CHAPTER 1

If you need to clear previously drawn graphics, the clear() method not only removes all
drawn lines and fills but also resets the coordinate position of the virtual pen to (0, 0) and
clears the line style.

To test these four methods, you will find the following code, fully commented, in the file
DrawingStraightlLines.as in this chapter’s files. You can test the compiled SWF included
or, to compile this class, refer to the instructions in the appendix for how to set up and
compile ActionScript projects in either Flex Builder or in Flash. Run the SWF, and click
and drag multiple times on the stage. You should see something like Figure 1-3. The fol-
lowing class, with lines to focus on in bold, produces the SWF:

package {

import flash.display.Shape;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.geom.Point;

[SWF(width=550, height=400, backgroundColor=0xFFFFFF)]

private var _currentShape:Shape;
private var _color:uint;
private var _startPosition:Point;

public class DrawingStraightlLines extends Sprite {

public function DrawingStraightlLines() {
stage.addEventListener(MouseEvent.MOUSE_DOWN, onStageMouseDown);
stage.addEventListener(MouseEvent.MOUSE_UP, onStageMouseUp);

}

private function drawLine():void {
_currentShape.graphics.clear();
_currentShape.graphics.lineStyle(3, _color);
_currentShape.graphics.moveTo(_startPosition.x, =
_startPosition.y);
_currentShape.graphics.lineTo(stage.mouseX, stage.mouseY);

}

private function onStageMouseDown(event:MouseEvent):void {
_color = Math.random()*0xFFFFFF;
_currentShape = new Shape();
addChild(_currentShape);
_startPosition = new Point(stage.mouseX, stage.mouseY);
stage.addEventListener(MouseEvent.MOUSE_MOVE, onStageMouseMove);

}

THE DRAWING API

private function onStageMouseUp(event:MouseEvent):void {
stage.removeEventListener (MouseEvent.MOUSE MOVE, w»
onStageMouseMove) ;

private function onStageMouseMove(event:MouseEvent):void {
drawLine();
event.updateAfterEvent();

}

File View Control Help

Figure 1-3. The DrawingStraightLines test that allows for dragging
out randomly colored straight lines

Within this class, | set up a listener for when the stage is clicked and when the mouse is
released after clicking. When the stage is clicked, the onStageMouseDown() handler is
called. There, a random color is selected, and a new Shape is instantiated and added as a
child to the display list. The coordinate position where the mouse is clicked is saved into
the property startPosition. Finally, a new listener is set up for when the mouse is
moved, onStageMouseMove().

In onStageMouseMove(), the custom drawLine() method is invoked, and the screen is
immediately updated using the updateAfterEvent() method of the MouseEvent instance.
I do this so that the drawing done isn’t reliant on the frame rate of the application but will
instead be updated whenever the mouse is moved. That drawing is of course handled in
drawLine(), where | clear any previously drawn lines in the current shape, assign a line

CHAPTER 1

style of 3-pixel thickness and the random color, move the virtual pen to the start position
where the stage was clicked, and then draw a straight line to the current mouse position.
| continue doing this every time the mouse is moved until the user releases the mouse and
the MOUSE_MOVE listener is removed in the onStageMouseUp() handler.

It’'s a very simple drawing application done in a small amount of code. Take that, pre-
rendered graphics!

Drawing curves

When you need a curve between two points, you would use the following method:

curveTo(
controlX:Number,
controlY:Number,
anchorX:Number,
anchorY:Number
):void

This draws a curved line between the current coordinates of the pen with the new coordi-
nates specified with the anchorX and anchorY parameters. The controlX and controlY
parameters are the position of the control point used to specify how the line curves using
a quadratic Bezier equation.

Now, what the heck is meant by “a quadratic Bezier equation”? If you are familiar with a
program like Illustrator, you will be used to Bezier curves drawn using a cubic equation,
which uses two control handles to define how a curve is drawn between two anchors. The
quadratic Bezier curve uses only one control point. Conceptually, you can imagine that the
control point is like a magnet that is pulling at the line—a drawn line will never go directly
through the control point but will be pulled in its direction.

To test and visualize this, have a look at DrawingCurves.as in this chapter’s files. If you
compile this class (remember, you can refer to the appendix for instructions) or test the
SWF directly, you should see the result shown in Figure 1-4, which shows a graphic repre-
sentation of the two anchor points of a curve and its control point. You can drag any of
the points around to alter the curve. This is produced using the following code, with the
drawing code set in bold for you:

package {

import flash.display.Sprite;
import flash.events.MouseEvent;

[SWF(width=550, height=400, backgroundColor=0xFFFFFF)]
public class DrawingCurves extends Sprite {
private var _controlPoint:Sprite;

private var _anchor0:Sprite;
private var _anchori:Sprite;

THE DRAWING API

public function DrawingCurves() {
_anchoro = addControlPoint(50, 300);
_anchorl = addControlPoint(500, 300);
_controlPoint = addControlPoint(275, 100);
drawCurve();

private function addControlPoint(x:Number, y:Number):Sprite {

var controlPoint:Sprite = new Sprite();

controlPoint.graphics.lineStyle(20);

controlPoint.graphics.lineTo(1, 0);

controlPoint.addEventListener(MouseEvent.MOUSE_DOWN, =
onControlDown);

controlPoint.addEventListener(MouseEvent.MOUSE_UP, onControlUp);

controlPoint.x = x;

controlPoint.y = y;

addChild(controlPoint);

return controlPoint;

}

private function drawCurve():void {

graphics.clear();

graphics.lineStyle(3, OxFF);

graphics.moveTo(_anchor0.x, _anchoro.y);

graphics.curveTo(_controlPoint.x, _controlPoint.y, =
_anchor1.x, _anchori.y);

graphics.lineStyle(1, 0, .5);

graphics.lineTo(_controlPoint.x, _controlPoint.y);

graphics.lineTo(_anchoro.x, _anchoro.y);

private function onControlDown(event:MouseEvent):void {
(event.target as Sprite).startDrag();
stage.addEventListener(MouseEvent.MOUSE_MOVE, onControlMove);
}

private function onControlUp(event:MouseEvent):void {
(event.target as Sprite).stopDrag();
stage.removeEventListener (MouseEvent.MOUSE_MOVE, onControlMove);

}

private function onControlMove(event:MouseEvent):void {
drawCurve();
event.updateAfterEvent();

}

CHAPTER 1

10

obe Flash Player §
fd Adcbe Flash Player 10 i

File View Control Help

Figure 1-4. The DrawingCurves test showing how a control point
acts with anchor points to make a quadratic Bezier curve

In this class, three sprites are created to represent the two anchors and control point.
These are created in the addControlPoint() method, which has a simple trick of using a
very thick line style (20 pixels) with a very short line in order to create a circle.

controlPoint.graphics.lineStyle(20);
controlPoint.graphics.lineTo(1, 0);

The main drawing occurs in drawCurve(), which is called whenever any of the points is
dragged around the stage. Within the method, | first clear any previously drawn graphics
and then create a 3-pixel thick blue line for the curve, which is drawn from _anchor0 to
_anchor1 using first moveTo() and then curveTo(). | next change the line style to a thin
transparent black line and draw a straight line from the current pen position at the second
anchor to the control point, then another straight line to the first anchor to show how the
two anchor points connect with the control point to define the curve.

Drawing solid fills
If you wish to fill a shape with a solid color, the following method is available to you:
beginFill(color:uint, alpha:Number=1.0):void

This method can be called prior to any calls to 1ineTo() or curveTo(), and the shape that
is formed by these drawing methods will be filled with the solid color specified.

The other bookend for beginFill() is the following method:
endFill():void

This method should be called at the completion of the drawing commands that included
an initial instruction to draw a fill (like beginFill() or beginGradientFill()) and instructs
the Flash Player to render the fill.

THE DRAWING API

Have a look at DrawingSolidFills.as to see solid fills in action. If you test this class, you
will see a new background fill drawn for the entire movie whenever the stage is clicked.
The following code accomplishes this, with the relevant drawing API lines in bold:

package {

import flash.
import flash.

display.Sprite;
events.MouseEvent;

[SWF(width=550, height=400, backgroundColor=0xFFFFFF)]

public class

DrawingSolidFills extends Sprite {

public function DrawingSolidFills() {
stage.addEventListener(MouseEvent.CLICK, onStageClick);
drawBackground();

}

private function drawBackground():void {

graphics.
graphics.
graphics.
graphics.
graphics.
graphics.
graphics.

}

clear();

beginFill(Math.random()*0xFFFFFF);
lineTo(stage.stagelidth, 0);
lineTo(stage.stagelidth, stage.stageHeight);
lineTo(0, stage.stageHeight);

lineTo(0, 0);

endFill();

private function onStageClick(event:MouseEvent):void {
drawBackground();

}

}

In a later section, we will discuss drawRect(), which would simplify this drawing code
(which, admittedly, is already fairly simple). In this case, | draw a rectangle covering the
entire stage manually using four 1ineTo() commands. In the beginFill() call, | pass a
random color selected from the 16 million or so available.

Drawing gradient fills
The following method allows you to fill a shape with a gradient of colors and/or alphas:

beginGradientFill(

type:String,

colors:Array,
alphas:Array,
ratios:Array,

1"

CHAPTER 1

12

matrix:Matrix=null,
spreadMethod: String="pad",
interpolationMethod:String="rgb",
focalPointRatio:Number=0

):void

That’s a complex little method. Let’s break down each of the parameters.

@ type: The type of gradient to draw should be either GradientType.LINEAR or

GradientType.RADIAL. Linear gradients are bands drawn in a straight line between
points, while radial gradients are drawn in rings out from a central point.

colors: This specifies an array of colors to be used in the gradient. For a linear
gradient, these will be the colors from left to right (assuming you haven’t rotated
the gradient). For a radial gradient, the colors will be from the center out.

alphas: An array of alpha values to be used in the gradient, with values from 0 to
1, can be specified with this parameter. There must be the same number of alpha
values as there are colors, which each index in the alphas array corresponding to
the alpha value of the color at the same index in the colors array.

ratios: This holds an array of values that specify where each color in the colors
array is distributed on the length of the full gradient. Each index should hold a value
between 0 and 255, with 0 being the left (LINEAR) or center (RADIAL) of the gradient
and 255 being the right (LINEAR) or outer radius (RADIAL) of the gradient. Just as
with alphas, the length of this array must match the length of the colors and each
index corresponds with the color value of the same index in the colors array.

As an example of how ratios are used, imagine you have a rectangle that is 100 pix-
els wide that you fill with a linear gradient. You specify three colors, red, green, and
blue, with the ratios 0, 128, and 255, respectively. This would place the full red on
the left of the rectangle, the full green pretty much in the center, and the full blue
on the right, with gradient values between each color. Now, if you changed the
ratios to 0, 64, and 128, the full green would be at around a quarter of the width of
the rectangle with the full blue at the center and extending to the right edge.
Figure 1-5 shows these two scenarios.

Figure 1-5.

The same gradient colors
applied to the same
dimensional shape with two
different ratio values to
control color distribution on
the gradient

matrix: This transformation matrix determines how the gradient will be moved,
scaled, and/or rotated within its drawn shape. This must be an instance of the flash.
geom.Matrix class. We’ll get into matrices next chapter, but for gradients, you gen-
erally only have to create an instance and use its handy createGradientBox()
method, which we’ll look at in the next example.

THE DRAWING API

@ spreadMethod: This parameter determines how a gradient that is smaller than the
width or height of the drawn shape will extend to fill the shape. This should be a
value as represented by the constants of the SpreadMethod class: PAD, REFLECT, and
REPEAT. PAD simply continues with the end color of the gradient. REFLECT reverses
the gradient. REPEAT, rather unsurprisingly, repeats the gradient. Each of these
spread methods is shown in Figure 1-6.

Figure 1-6.

The same gradient colors applied to
the same dimensional object, with
the top object using a PAD spread
method, the middle using REFLECT,
and the bottom using REPEAT

@ interpolationMethod: Specify how intermediate colors in a gradient are calculated
with this parameter. This should be a value represented by a constant found in
InterpolationMethod: LINEAR_RGB or RGB.

@ focalPointRatio: For radial gradients, this determines where the focal point of the
gradient lies along its horizontal diameter. —1.0 and 1.0 place the focal point on the
radius of the gradient, and 0 places the focal point in the center. Any intermediate
value places it in between. Figure 1-7 shows several examples of the focal point
adjusted for the same radial gradient.

Figure 1-7. Three shapes using the same radial gradient colors and center, but with the
focal point increasingly shifted to the left

If you would rather fill a drawn shape with a gradient color as opposed to a solid color,
then the beginGradientFill() method is for you. Its type can either be linear or radial,
and you must at least include an array of colors, their alphas, and their ratio positions to
use. The matrix is optional (but often necessary) to rotate, reposition, or resize the gradient

13

