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Abstract
The main purpose of this work is to determine the camera mapping for optical
measurement objectives. The standard approach models the camera mapping as
a pinhole camera with distortion. We formulate different error functions for the
pinhole camera model. Minimizing all error functions introduces a non-linear
optimization. Therefore, we present initial values for the intrinsic and extrinsic
camera parameters including distortion. In particular, the distortion can be deter-
mined by a linear least squares problem. This yields a semi-linear approach to
camera calibration.
Stereo camera calibration introduces an additional constraint, which is used

as epipolar line constraint in the literature. We extend this constraint to epipolar
curves and present some calibration approaches for a stereo camera setup. These
include the epipolar curve constraint.
When modelling the camera as a pinhole with distortion, we observe a residual

error. We show that this error depends on the depth of the observed object. Thus,
we present two approaches to introduce a depth-dependent distortion model: First,
we propose a spline correction of the residual error, second, we suggest a two-
plane distortion model. Several experimental results support both approaches.
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Chapter 1

Introduction

1.1 Motivation
As indicated by its name most tasks in computer vision deal with an imaging
device. If this imaging device is a camera, it performs a mapping from a 3D world
to a 2D image. Determining the parameters of this mapping is called camera
calibration. This problem also includes the modeling and parametrization of the
observed imaging process.
Long before the computer vision community addressed the modeling and to

determination the camera mapping, it was investigated by photogrammetry. Pho-
togrammetry began nearly in parallel to the rise of the photography in the middle
of the 19th century in France and Prussia. The name “photogrammetry” was es-
tablished by Albrecht Meydenbauer (*1832, †1921), who published a procedure
to measure buildings by photographies. He also founded the Königliche Preußis-
che Messbild-Anstalt, the first administration for photogrammetric research. The
main objective of photogrammetry is accuracy. Therefore, long and tedious cal-
ibration routines are taken into account to obtain all parameters of an observed
camera mapping. Classic photogrammetry works on photographs. Nowadays,
digital image sensors replace the classic cameras and introduce some other prob-
lems like the modeling of the digitization, which are yet not fully covered by the
photogrammetric community.
On the other hand, the digitization of continuous signals is a well known ob-

ject of research in computer vision. Many applications of computer vision do not
need a high accuracy in reconstruction as photogrammetry provides. In robotics
or driving assistance it is sometimes necessary to obtain information from an un-
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known environment. It is often more important to estimate a self-orientation of the
sensor by coarse data than to measure exact distances (e.g. to obtain the egomotion
of an autonomous system). Moreover, self-calibration defines an important task
in computer vision. Self-calibration of a camera means to gather as much infor-
mation from images of a more or less unknown nature as one can. If one assumes
that a camera behaves like a pinhole camera, one can formulate the camera map-
ping as projective mapping. This opens the whole world of projective geometry
for camera calibration and allows a boost in results since the 1990ies (summarized
e.g. in [HZ00]).
To adjust the pinhole camera model for quality assurance in dimensional ac-

curacy the model is augmented with a distortion mapping which is defined in the
image plane. However, like every model, the model of a pinhole camera with
distortion is only an approximation to the real behavior of a camera. In partic-
ular, most monochromatic aberrations of a lens system (i.e. the first four of the
five Seidel aberrations: spherical aberration, coma, astigmatism and curvature of
field) can not be modeled in a plane (see [Hec87]). Modelling the distortion as an
in-plane mapping assumes that the observed distortion of a point does not depend
on its distance to the lens plane. In photogrammetry it is well known that for the
pinhole camera model the observed distortion varies not only with focusing the
lens but also within the depth of field for a fixed focus (see e.g. [Atk96]).
In this work we address camera calibration particularly with regard to metric

reconstruction. Since projective geometry is non-metrical, we only apply some
results of the projective geometry to obtain initial solutions for problems w.r.t. a
metric. We share the emphasis on the metric reconstruction with photogrammetry,
therefore, we also use some results of the photogrammetric community. In partic-
ular, we use some results to motivate a dependence on depth in reconstruction.

1.2 Outline
In the following chapter we derive the camera mapping from geometric optics
based on Snell’s law. If we simplify Snell’s law to first order optics we obtain the
classic formulation of the camera mapping by the pinhole equation. The first order
optics are only a rough approximation of the observed camera mapping. Any
observed deviation to the pinhole camera model must be modeled additionally.
The standard way to deal with aberrations is to introduce a distortion mapping in
the image plane.
Camera calibration means to determine the camera model parameters which fit

2



best to the observed behavior of the actual camera. Therefore, we have to measure
the distance of an observation to a given camera model. In the third chapter we
introduce four approaches to define such a distance. The determination of the
optimal camera mapping w.r.t. each of these distance functions defines a non-
linear optimization problem.
Since the result of every non-linear optimization algorithm depends on the

initial value, we address the problem to obtain such an initial value in the fourth
chapter. We present some additional constraints for the starting solution according
to Zhang ([Zha98]). These additional constraints allow a valid solution for the
initial value problem.
The calibration of a stereo camera system is more than calibrating two camera

separately: An additional constraint for the stereo camera system can be applied,
since a calibration target is observed by both cameras. In the fifth chapter we
extend the classic constraint (the so-called epipolar constraint) and present some
results for this extension.
The limitations of the pinhole camera model with distortion become visible

when it has to deal with blurring. The pinhole camera model depends on the lens
maker’s equation, which states that there is a determined object plane where the
observation of an object appears sharp in the image. All objects outside this object
plane appear blurred in the image. In the sixth chapter we analyze the blur induced
by first order optics. As a main result will show that even in first order optics the
blur depends not only on the depth of an object but also on its position in a fixed
depth. Furthermore, the blur is not rotationally symmetric. Therefore, every point
extraction method which assumes a rotationally invariant blur which is identical
for each pixel, must be erroneous. Also, as experiments show, this error depends
on the depth of the observed points. Thus, for a camera calibration which should
provide a high precision, we need a component of the camera mapping which
depends on the depth of the observed object. We present two approaches for a
depth-dependent camera model in the last section. Several experimental results
support the proposed non-standard camera models.

3



1.3 Contribution
This work contributes some new results in the following areas of camera calibra-
tion:

• Initial values for non-linear optimization
Camera calibration is a non-linear problem. However, every non-linear op-
timization algorithm needs adequate initial values for an optimal perfor-
mance. Thus, we present several methods to obtain initial values. In par-
ticular, we revisit Zhang’s method to obtain initial values for the pinhole
camera parameters and propose several ways to apply additional constraints
which improve the result. Furthermore, we show that the determination of
the distortion is a linear least squares problem provided that all other camera
parameters are known.

• Semi-linearity in camera calibration
Since the determination of the distortion forms a linear least squares prob-
lem, a part of the camera calibration error function can be minimized by
linear methods in closed form. We call such a non-linear problem, which
includes a linear part, a semi-linear problem. In the case of camera calibra-
tion we can decouple the calculation of the distortion parameters from the
non-linear optimization. Thus, the number of parameters in the non-linear
minimization will be reduced.

• Stereo camera calibration
A stereo camera setup introduces additional constraints for the calibration.
The well known epipolar constraint is extended to a generalized epipolar
constraint. We present several approaches to calibrate a stereo camera w.r.t.
this constraint instead of calibrating two single cameras.

• Non-standard camera models
For the pinhole camera with distortion we observe a residual distortion
which depends on the depth of the observed object. The standard cam-
era misses a depth-dependent distortion model. Thus, we present two ap-
proaches to include the depth into the distortion model: First a correction by
splines which depends on the depth of the observed object, second a novel
two-plane distortion model which dissolves the pinhole assumption.

4



Chapter 2

Modelling the camera mapping

2.1 Geometric optics for computer vision
For our considerations we analyze the optical system by geometric optics. Since
the effects are negligible for our purposes, we do not apply wave optical phenom-
ena like diffraction of light. Furthermore, we assume that the lens is rotationally
symmetric about a straight line which is called the optical axis of the lens.

2.1.1 The “thin lens” assumption and first order optics
Geometric optics are based on the refraction law (also known as Snell’s law).
Given two media with refraction indices n1 and n2 and a light ray, which passes
from media one to media two, the refraction law states that the angles θ1, θ2 of the
light beam to the normal of the interface of the medias obeys

n1 sin(θ1) = n2 sin(θ2) (2.1)

(see Figure 2.1).
In computer vision it is widely accepted that the refraction index of air is so

close to 1 that it can be treated as 1 1. A (spherical) lens has two media interfaces
(air to lens, lens to air) which are described by two spheres with the same radius r
(see Figure 2.2). Following Snell’s law one can reconstruct the refraction of each
light ray emitted from an object through the lens.

1In fact the refraction index of air is 1.0002926, whereas vacuum has index 1 for light with a
wavelength of 589.3nm

5
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Figure 2.1: Illustration of Snell’s law for parallel surfaces.

rr

Optical axis

Figure 2.2: Sketch of two spheres with radius r defining a spherical lens (blue).
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In first order optics it is assumed that all rays, which are considered in the
camera model, are nearly parallel to the optical axis. Such rays are also called
paraxial. Thus, we assume that there are only small angles to the normals of the
lens surfaces and therefore the sine can be approximated by sin(x) ≈ x. Since
this is the first term of the Taylor approximation of the sine at the origin, the
derivations following this assumption are also called first order optics.
The second assumption in computer vision is called the thin lens assumption:

the lens is assumed to be infinitesimally thin. From the refraction point of view the
thin lens behaves like a spherical lens. Yet, the distance which a light ray covers
inside the lens is infinitesimally small. Thus, from a localization point of view the
lens is a plane. This plane is called principal plane. A light ray passing the thin
lens is refracted at the surface air/lens and immediately after that at the surface
lens/air. An immediate consequence of the thin lens assumption is that any light
ray passing the thin lens at the optical axis will not be refracted, since both surfaces
of the thin lens are parallel in this point (see Figure 2.1). Another consequence
of the thin lens model combined with the paraxial optics simplification is that all
(paraxial) light rays emitted at a point p at one side of the lens, which pass the
lens, meet in one point ip at the other side of the lens such that

1

dp

+
1

di

=
1

f
(2.2)

holds, with f = r
2(nl−1) and dp resp. di being the distance of the object p resp. the

image point ip to the principal plane and nl the refraction index of the lens (see
[Hec87] for more details). This equation is often called lens maker’s equation.
This means that there is a relation between the object and the image and that
this relation depends only on the distance of the object to the principal plane,
but not on its distance to the optical axis. There is a determined distance behind
the principal plane, denoted as di in Figure 2.3, at which an observation of a
point from the object side will become a sharp image. On the other hand, any
object plane determines a so-called focal plane behind the lens where the points
in the object plane appear sharp. In Figure 2.3 three principal ways for (paraxial)
rays from an object to its image passing through a thin lens model are displayed.
Namely, these are

i. A ray that comes in parallel to the optical axis on one side proceeds towards
a certain particular point F at a distance f to the principal plane on the other
side. F is called focal point. The distance f to the principal plane is called
back focal length.
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ii. A ray that passes through the center of the lens will not change its direction.
This ray is called center ray. The center of the lens is called optical center.

iii. A ray that arrives at the lens from the focus F (also at distance f to the
principal plane) on one side goes out parallel to the axis on the other side.
The distance of F ′ to the principal plane is called front focal length.

In this work we assume a spherical lens there the back focal length equals the
front focal length. For the first order optics with the thin lens assumption, the
focal length is independent from the distance of the ray to the optical axis.

2.1.2 The circle of confusion
In general, the image acquisition is performed by a planar imaging device (see
section 2.1.3.1). In the following we call the plane where the image is acquired
image plane. It is obvious that in general the image plane does not coincide with
the focal plane. Therefore, not all light rays emitted from an observed object meet
in a point in the image plane. Let us now consider a point light source in the object
plane. All light rays, which are emitted from this light source and pass the lens,
form a cone on the image side of the lens (in first order optics). The intersection
of this cone with the image plane is called circle of confusion.
The three principal ways of the light ray through the lens can be used to deter-

mine the circle of confusion (see Figure 2.3). If the circle of confusion is smaller
than the size of one element of the imaging device objects in the computer image
appear sharp. The area where this is true is called depth of field.
The dependency of sharpness and depth can be used to estimate the depth of

an object, i.e. the distance of the object to the principal plane, (known as “depth
from focus”, (see e.g. [AFM98], [SG87] or [Gro87], or “depth from de-focus”,
see [CR99] or [Asl03]).
The blurring effect of the first order optics should also be handled by the cam-

era mapping. The common way to handle this is to convolute the “ideal image”
with a kernel (see [HS92] or [FP02]).
The “ideal image” gideal is the image of the objects obtained by the center ray

only. Of course, this image can not be observed anywhere. The input function g
for the imaging device, which is sometimes called sensor input function, becomes

g = gideal ∗ k (2.3)

for a mollifier k ∈ L2(R2,R) ∩ C∞(R2,R). The center ray function gideal may be
not continuous, but piecewise continuous. For mathematical reasons we assume
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F ′
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ff

dpdpdp di

Imaging device

Principal plane

Figure 2.3: Sketch of the three main rays of the thin lens model (for the thin lens
assumption the dashed red lines are assumed to have zero length).

that gideal is twice integrable. Note that the input function for the sensor array g is
continuous as a convolution of a L2-function with a smooth function.
In computer vision the mollifier k is often called point spread function (PSF).

The PSF can also been seen as the impulse response of the optical system (see e.g.
[Goo96]). There are numerous ways to estimate the PSF assuming a symmetrical
and identical kernel (at least for pixels in a local area) (see e.g. [BW93]) or almost
without these assumptions (see [Pis06], see also section 6.2.3.1).

2.1.3 Image acquisition
2.1.3.1 The sensor array

Typical cameras use image sensors as imaging device in the image plane. An
image sensor is a device that samples the sensor input function and converts it to
an electric signal. The image sensor itself is a rectangular grid of photo-sensitive
sensors. It can be an array of charge-coupled devices (CCD) or complementary
metal–oxide–semiconductors (CMOS) sensors. The arrangement of the sensor
array introduces a canonic coordinate system for the image.
Each sensor in the sensor array determines the value of the corresponding

picture element (short: pixel). Therefore, a pixel represents in fact a rectangular
area. Let dpu×dpv be the size of the photosensitive area of one sensor and diu resp.

9



div be the distance between two sensors in the horizontal resp. vertical direction
(see Figure 2.4). Then the distance between two pixel centers is du := diu + dsu

in horizontal and dv := div + dsv in vertical direction.

element
sensor

u

v

diu

div

dsu

dsv

0

0

1

1

2

2

3

3

Figure 2.4: Sketch of the elements of an array of photosensitive sensors.

The value of a pixel is obtained by integrating the light intensity function over
the area of the corresponding sensor of the sensor array: Let g ∈ L2(R2 × R,R)
be the light intensity function at the sensor array. Then the value gi,j of the sensor
(i, j), which is also the value of the pixel (i, j), is

gi,j = Q

(∫
Δt

∫
Ai,j

g(x, t)si,j(x, t) dx dt

)
(2.4)

Whereas

• Q : R→ G is a quantization function (which also corrects the characteristic
line of the sensor element) for a finite set of gray-values G, and
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• Δt is the exposure time of the whole optical device, and

• Ai,j is called the aperture of the sensor (i, j). If pi,j = [ipu− dpu
2
, ipu+

dpu
2
]×

[jpv − dpv
2
, jpv +

dpv
2
] is the area of the element (i, j) w.r.t. the coordinate

system of the sensor array, then obviously pi,j ⊂ Ai,j should hold. How-
ever, since the sensor elements in a typical CCD sensor neighbored sensor
elements may interact with each other, we also may choose an aperture Ai,j

which is superset of pi,j . Finally

• si,j ∈ L2(R2 × R,R) is the sensor specific density function. It is a charac-
teristic of the sensor element at the position (i, j) in the sensor array. The
characteristic has a time component to model each influence on the sensor
element which varies with time. This can be any physical influence of the
whole device (like dark current, effects of the A/D converting, etc.).

2.1.3.2 A simplified sensor model

Since it is almost impossible to determine the time varying component of si,j , it
is often replaced by a random variable ν which implements an additive noise (see
[Pis06] or [För00]). The additive noise contains electronic noise, being indepen-
dent on the intensity. Some authors (see [DS74]) claim that the noise characteris-
tics is dominated by the Poisson distribution of the photon flux.
The most commonly accepted simplifications to the sensor model are that the

light intensity function g does not change during Δt, and that the sensor charac-
teristic si,j is the same for every sensor of the array. Moreover, it is common that
si,j is constant on pi,j and zero on Ai,j \ pi,j . With all these simplifications it is no
longer necessary to model the sensor characteristic as a density function. It can
be transformed to the discretization function:

gi,j = round(r(
∫

pi,j

g(x) dx+ ν(i, j))) (2.5)

The bijective function r : R→ R is often called radiance function and is gen-
erally not linear. It represents a characteristic of the whole sensor array. Typical
radiance functions are logarithmic, piecewise linear or have a linear and a log-
arithmic part. The most significant non-linearity on the response curve is at its
saturation point, where any pixel with a radiance above a certain level is mapped
to the same maximum image gray-value. However, for practical applications we
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