Steven Helmis | Robert Hollmann

Webbasierte Datenintegration

VIEWEG+TEUBNER RESEARCH

Ausgezeichnete Arbeiten zur Informationsqualität

Herausgeber:

Dr. Marcus Gebauer

Prof. Dr. Ines Rossak, FH Erfurt

Bewertungskomission des Information Quality Best Master Degree Award 2008:

Prof. Dr. Holger Hinrichs, FH Lübeck (Kommissionsvorsitz)
Dr. Marcus Gebauer, WestLB AG und Vorsitzender der DGIQ
Prof. Dr. Knut Hildebrand, HS Darmstadt
Bernhard Kurpicz, OrgaTech GmbH
Prof. Dr. Jens Lüssem, FH Kiel
Michael Mielke, Deutsche Bahn AG und Präsident der DGIQ
Prof. Dr. Felix Naumann, HPI, Uni Potsdam

Die Deutsche Gesellschaft für Informations- und Datenqualität e.V. (DGIQ) fördert und unterstützt alle Aktivitäten zur Verbesserung der Informationsqualität in Gesellschaft, Wirtschaft, Wissenschaft und Verwaltung. Zu diesem Zweck befasst sie sich mit den Voraussetzungen und Folgen der Daten- und Informationsqualität. Sie fördert zudem durch Innovation und Ausbildung die Wettbewerbsfähigkeit der Unternehmen sowie die des unternehmerischen und akademischen Nachwuchses in Deutschland.

Die vorliegende Schriftenreihe präsentiert ausgezeichnete studentische Abschlussarbeiten in der Daten- und Informationsqualität. Veröffentlicht werden hierin die Siegerarbeiten des jährlich stattfindenden "Information Quality Best Master Degree Award".

Steven Helmis | Robert Hollmann

Webbasierte Datenintegration

Ansätze zur Messung und Sicherung der Informationsqualität in heterogenen Datenbeständen unter Verwendung eines vollständig webbasierten Werkzeuges

Mit einem Geleitwort von Dr. Marcus Gebauer

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie: detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

der Information Quality Management Group

1. Auflage 2009

Alle Rechte vorbehalten © Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2009

Lektorat: Christel A. Roß

Vieweg+Teubner ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.viewegteubner.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg Druck und buchbinderische Verarbeitung: STRAUSS GMBH, Mörlenbach Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier. Printed in Germany

ISBN 978-3-8348-0723-6

Geleitwort

Als Vorsitzender der Deutschen Gesellschaft für Informations- und Datenqualität (DGIQ e.V.) bin ich glücklich darüber, dass Sie dieses Buch in Ihren Händen halten. Das vorliegende Buch ist Ausdruck unseres Bestrebens, dem wissenschaftlichen Nachwuchs die Möglichkeit zu eröffnen, ihre Arbeiten einem breiten Publikum darstellen zu können.

Dass Sie gerade diese Arbeit vorfinden, ist Ergebnis eines strengen Auswahlprozesses, den die DGIQ mit dem zum ersten Mal ausgeschriebenen "Information Quality Best Master Degree Award 2008" durchgeführt hat. Studenten waren aufgefordert, ihre Abschlussarbeiten zum Thema Informationsqualität in diesem Wettbewerb durch ihre begutachtenden Professoren einreichen zu lassen. Vertreter aus Wissenschaft, Forschung und Industrie haben diese akademischen Abschlussarbeiten begutachtet.

Die vorliegende "Doppel"-Arbeit von Robert Hollmann und Steven Helmis zeichnet sich insbesondere durch das geschlossene Bild ihrer Forschung aus. Neben der Betrachtung der Datenqualität in der heutigen typischen heterogenen Systemlandschaft, bei gleichzeitig komplizierter werdenden Systemarchitekturen, stehen auch die semantischen Herausforderungen für die Datenqualität im Fokus. Die Darstellung, wie Daten zu konsolidieren, zu bereinigen, und der Kunde dabei auch noch konstruktiv mit Hilfe eines Werkzeuges in diesen Prozess einzubinden ist, ist den Kandidaten herausragend gelungen.

Besonders freue ich mich, dass wir mit dem Verlag Vieweg+Teubner nun die Siegerarbeiten in einer Schriftenreihe jährlich veröffentlichen können. Für die Initiative des Verlages möchte ich mich recht herzlich bedanken.

Offenbach, 27. August 2008

Dr. Marcus Gebauer

Vorwort

Jeder Prozess ist mit der Erzeugung von Daten verbunden. So generieren unzählige heterogene IT-Systeme in immer globaler werdenden Wirtschaftsunternehmen Tag für Tag Millionen von Datensätze, die in richtigen Zusammenhang gebracht, wertvolle Informationen für das Unternehmen und die Entscheidungsfindung in Selbigem von existentieller Bedeutung sein können. Ganzheitliche Sichten auf die Gesamtinformationen sind von großem Wert für Entscheidungsprozesse. Hinzu kommt die überwältigende Informationsflut diverser Internetquellen, die eine Bereicherung für einen Datenbestand bedeuten kann, aber auch Probleme erzeugt und so die Daten(-qualität) in einem Bestand nachhaltig schädigen kann. Diese Heraus- und Anforderungen an Informationssysteme sind nur unter Beachtung von ausreichender Informationsqualität zu erreichen und zu bewältigen. Bei der Integration der heterogenen Datenquellen für eine ganzheitliche Sicht spielt die Qualität der Daten vor- und nach der Integration eine bedeutende Rolle. Datenqualitätsmängel, wie z.B. Duplikate, mangelnde Reputation oder Überalterung bzw. Inkonsistenz können den Informationsgewinn eines integrierten Systems empfindlich stören. Das führt zu falschen bzw. nicht zielgerichteten Entscheidungen deren Grundlage diese "schlechten" Daten bildeten. Jedes Informationssystem kämpft mit solchen Problemen, die schon im jeweiligen System selbst entstehen, die ihre Manifestation oft jedoch bei der Integration zeigen. Nach und nach werden von Softwareherstellern und Unternehmen diese Probleme und die Vorteile von hoher Datenqualität erkannt. Jedoch besteht auf diesem Gebiet enormer Handlungsbedarf bei Benutzern wie auch Systemherstellern. Vorreiter hier sind einige Unternehmen und Experten, die in einem Zusammenschluss der Deutschen Gesellschaft für Informations- und Datenqualität (DGIO) diese Probleme offensiv thematisieren, Lösungen vorstellen und für die Problematik sensibilisieren.

Auch die Autoren der vorliegenden Arbeiten konnten so, an einer immer lebendiger agierenden "IQ-Society" partizipieren. Im Rahmen ihres Studiums und ihren Masterarbeiten befassten sich die Autoren eingehend mit dem Thema Datenqualität und der Analyse und Beseitigung von Datenqualitätsmängeln. Im Ergebnis konnten sie einen Überblick über IST-Stand, Vorgehensweisen und Chancen der Datenqualitässicherung erarbeiten. Gemeinsam entstanden Ansätze zur Umsetzung sowie die prototypische Implementierung eines Datenqualitätswerkzeu-

VIII Vorwort

ges, das ausschließlich auf aktuellen Webtechnologien aufbaut. Mit diesen Ideen konnte der erste Platz des "DGIQ Best Master Degree Award", der im Jahre 2007 ausgeschrieben wurde, erreicht werden. Mit dieser Veröffentlichung wollen die Autoren zur weiteren Sensibilisierung für gute bzw. schlechte Informationsqualität beitragen und konkrete Lösungen für die Sicherung einer solchen Qualität aufzeigen. Denn nur valide Information schaffen einen Vorteil, den jedes Unternehmen auf einem globalen Markt für sich in Anspruch nehmen möchte. Wir wollen Sie mit unseren Arbeiten dazu motivieren sich aktiv an der Diskussion zum Thema zu beteiligen. Vorteile für sich und Ihr Unternehmen zu erkennen und vielleicht auch Teil der "IQ-Society" zu werden.

Die Autoren

Steven Helmis, Robert Hollmann

Inhaltsverzeichnis

Abbildungsverzeichnis		ingsverzeichnis	Ш
Ta	belle	nverzeichnis XV	'II
Al	bkürz	zungsverzeichnis	IX
Ι	Da	atenbereinigung und Konsolidierung von heterogenen atenbeständen	
	— ;	Steven Helmis —	1
1	Einl	eitung	3
	1.1	Motivation	4
	1.2	Zielsetzung der Arbeit	5
	1.3	Aufbau der Arbeit	5
2	Date	enqualität	7
	2.1	Datenqualität definieren	7
	2.2	Datenfehler	8
	2.3	Qualitätskriterien	11
	2.4	Methoden zur Einstufung der Qualität	14
3	Dim	ensionen und Architektur der Informationsintegration	25
	3.1		25
	3.2	Heterogenität	26
	3.3	Autonomie	28
	3.4	Integrationsarchitektur	29
4	Data	a Cleaning	35
	4.1	Datenanalyse	36
	4.2	Normalisierung und Validierung	39
	4.3		40

X Inhaltsverzeichnis

	4.4 Record Merging			42
5	Konzeption des Data Cleaning Toolkits 5.1 Bewertung und Analyse exisitierender Systeme			49 49 52 54 55
6	Implementierung 6.1 Datenbankentwicklung 6.2 Webentwicklung 6.3 Probleme während der Implementierungsphase			63 63 71 77
7	Zusammenfassung und Ausblick			7 9
Lit	eraturverzeichnis			81
II	Auffinden und Bereinigen von Duplikaten in hetero Datenbeständen – Robert Hollmann –	ge	ne	n 89
8	Einleitung 8.1 Motivation			91 92 93 94
9	Informationen, Daten und Wissen- ein Definitionsversuch 9.1 Begriffsdefinitionen			95 96 98 98
10	Informationsintegration im Fokus der Datenqualität 10.1 Ist-Stand in Unternehmen- Notwendigkeit der Integration . 10.2 Informations- und Datenqualität 10.3 Sicherung der Datenqualität 10.4 Kosten der Datenqualität			105 114
11	Duplikate in Datenbeständen 11.1 Dubletten und deren Identifikation			117

Inhaltsverzeichnis XI

	11.2 Ein Framework zur Objektidentifikation	118
	11.3 Das Dilemma der Dublettensuche	
12	Konkrete Verfahren zur Dublettenauffindung und Klassifikation	125
	12.1 Ähnlichkeitsmessungen und Klassifikation	125
	12.2 Ähnlichkeitsbestimmung bei Tupeln in einem Datenbestand	126
	12.3 Vorselektion für die Dublettensuche	142
13	Konzept der Datenqualitätsanwendung "DCT"	147
	13.1 Zielstellung der Applikation	147
	13.2 Anforderungsanalyse	148
	13.3 Technologiemodell	157
	13.4 Datenbankmodell	160
	13.5 Applikationsarchitektur	164
	13.6 Applikationsstruktur	166
	13.7 Entwicklung einer Benutzeroberfläche	169
14	Implementierung, ausgewählte Algorithmen- und Datenstrukturen	173
	14.1 "DCT"- Der Verbindungsmanager	173
	14.2 "DCT"- Der Workspace-Table Manager	176
	14.3 "DCT- Data Profiling"	177
	14.4 "DCT"-Plausibilitätskontrolle	180
	14.5 "DCT"- Auffinden von Duplikaten	182
15	Fazit und Ausblick	187
Lit	eraturverzeichnis	189
16	Anhang	195

Abbildungsverzeichnis

2.1	Klassifikation von Daten-Qualitäts-Problemen	8
2.2	Konzeptionelles Gerüst der Datenqualität	12
2.3	Qualitäts-Dimensionen	13
2.4	Allgemeine Hierarchie	22
3.1	Orthogonale Dimensionen der Informationsintegration	30
3.2	Mediator-Wrapper-Architekturen	33
5.1	Drei-Schichten-Architektur des DCT	54
5.2	Modulabschnitte des DCT	56
5.3	Funktionsübersicht im Detail	56
5.4	Informationen zum Laden der Daten	58
5.5	Qualitätsmerkmale der WST	59
5.6	Spaltenzuordnung für den Vergleich mit Referenz	60
5.7	Standardisierung von Attributen	61
5.8	Ergebnis eines Vergleichs mit Referenzdaten	61
5.1	ER-Modell Metadaten	64
5.2	Übersicht der implementierten Prozeduren und Funktionen	65
3.1	Allgemeine Architektur einer Integrationslösung	92
9.1	Daten, Information und Wissen	95
9.2	Semiotisches Dreieck	98
9.3	Übersicht über mögliche Datenquellen	99
9.4	Einteilung der Datenbeschaffenheit	99
9.5		101
10.1	Heterogene IT-Landschaft als weitverbreiteter IST-Stand in Unter-	
	nehmen	105
10.2	Datenqualität in Analogie zur industriellen Fertigung	106
10.3	Qualitätsdimensionen	108
10.4	Bewertung der Qualität von Daten aus verschiedene Sichten	110

	Datenqualitätsprobleme im Kontext der Integration	111
10.6	Zyklus des TDQM	115
11.1	Generisches Modell zur Identifizierung von Objekten	119
11.2	Konflikt zwischen den Zielen der Dublettensuche	121
11.3	Zusammenhang zwischen relevanten und gefundenen Datensätzen	122
12.1	Übersicht über die Duplikaterkennung abgeändert	126
12.2	Vektorraummodell für die Ähnlichkeitsbestimmung	133
12.3	Dublettenidentifizierung mit Hilfe externer Daten	135
	Aufbau einer Hashspeicherstruktur	137
	Mögliche Klassifikation von Clusterverfahren	138
12.6	Gegenüberstellung von hierarchischen und partitionierenden Clusterverfahren	139
12.7	Hierarchische Clustering Verfahren in der Übersicht	140
	DBSCAN Algorithmus zur dichtebasierten Erzeugung von Clustern	
	Ablauf der Sorted Neighborhood Methode	144
12.9	Abiati dei Softed Neighborhood Methode	144
	DCT-UseCases in UML-Notation	151
	Funktionsübersicht "DCT"	152
	Übersicht über die anfallenden Daten des "DCT"	156
	Client-Server-Architektur von Webanwendungen	158
13.5	Technologiemodell des "DCT"	160
13.6	Entity-Relationship-Modell des "DCT"	163
13.7	Architektur der Anwendung "DCT"	166
	Struktur einer "MVC" Webanwendung	167
	MVC-Struktur des "DCT"	167
	OKlassendiagramm der Anwendung "DCT"	169
13.11	Screendesign des "DCT"	170
	2Frei positionierbare Fenster des "DCT"	171
13.13	3Tooltip zur visuellen Unterstützung der Bedienung	171
14.1	Verbindungsmanager Übersicht des "DCT"	174
14.2	"DCT- Verbindung bearbeiten"	174
	Auswahl zu importierender Tabellenattribute	175
	Bennenung der Zielattribute und Datentypendefinition	176
	Zusammenfassung vor dem Laden in den Workspace	176
	Zugriff auf die DQ-Funktionen des "DCT" via WST-Manager	177
	Datenqualitätsübersicht des "DCT"	178

14.8 Musterermittlung im "DCT"	180
14.9 Anzeigen aller Datensätze mit nicht belegten Werten in einer defi-	
nierten Spalte	180
14.10Mapping zwischen Referenz- und Workspacetabelle	181
14.11 Gefundene Inkonsistenzen beim Referenzdatenvergleich	182
14.12 Auswahl der Attribute für den Test auf Dubletten	183
14.13 Anzeige aller potentiellen Duplikate im "DCT"	184
16.1 DCT Klassendiagramm	197

Tabellenverzeichnis

1.1	Statistische Kennzahlen	4
2.1	Bsp. single-source Problem auf Daten-Ebene	9
2.2	Bsp. single-source Problem auf Schema-Ebene	10
2.3	Bsp. multi-source Probleme auf Schema- und Datenebene	11
2.4	Werte zweier Suchmaschinen	16
2.5	Bsp. Simple Additive Weighting Methode	19
2.6	Bsp. Simple Additive Weighting Methode mit Idealen	20
2.7	Bsp. Rangfolge mit TOPSIS	21
2.8	AHP Vergleichsskala	23
4.1	Ergebnis einer Dublettensuche bei Adressen	43
4.2	Beispieltabelle 1 (t1)	44
4.3	Beispieltabelle 2 (t2)	44
4.4	Ergebnis INNER JOIN	45
4.5	Ergebnis aus Kombination OUTER JOIN mit UNION	46
4.6	Resultset - INTERSECT	47
4.7	Resultset - EXCEPT	47
6.1	Transformation von Straßennamen	67
6.2	Transformation von Telefonnummern	69
9.1	Beispiel für relationale Datenspeicherung- Tabelle Kunden	100
9.2	Beispiel für relationale Datenspeicherung- Tabelle Kontakt	100
10.1	Kostenarten bei der DQ- Sicherung	116
11.1	Mögliche Ergebnisse einer Dublettenerkennung	121
12.1	Mögliche Operationen für die Berechnung der Levenshtein-Distanz	127
12.2	Levenshteindistanz zwischen "Maik" und "Mike"	128
	Übersicht über die Soundex kodierten Laute	
12.4	Laute nach der "Kölner Phonetik" kodiert	131

XVIII	Tabellenverzeichnis
-------	---------------------

12.5	Beispiel für mögliche Tokenbewertung	132
	Datenbanktabelle "meta_connection"	
13.3	Datenbanktabelle "meta_mapping"	162
16.1	Kölner Phonetik Ersetzungsregeln	195

Abkürzungsverzeichnis

AHP Analytic Hierarchy Process

Ajax Asynchronous JavaScript and XML

ASCII American Standard Code for Information Interchange

ASP Application Service Provider

BI Business Intelligence
BNF Backus-Naur-Form

CRM Customer Relationship Management

CSS Cascading Style Sheets
CSV Comma Separated Values

CWM Common Warehouse Metamodel

DB Datenbank

DBMS Datenbank Management System

DBS Datenbank System
DCT Data Cleaning Toolkit

DD Data Dictionary

DDL Data Definition Language
DEA Data Envelopment Analysis

DGIQ Deutsche Gesellschaft für Informations- und Datenqua-

lität

DIN Deutsches Institut für Normung
DML Data Manipulation Language

DQ Datenqualität

ER Entity-Relationship

ERP Enterprise Resource Planning
ETL Extraktion, Transformation, Laden

FDH Free Disposable Hull

GD gefundene Datensätze die als Duplikat markiert wurden

HTML Hypertext Markup Language HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDs Identifikationen

IQC Information Quality Criterion IQS Information Quality Scores

IR Information RetrivalIT Informationstechnologie

JMS Java Message Service

KMU kleine und mittelständige Unternehmen

LDAP Lightweight Directory Access Protocol

MADM Multi-Attribute Decision-Making

MDBS Multidatenbanksystem
MVC Model-View-Controller

OCRA Operational Competitiveness Rating

ODBC Open Database Connectivity

OLEDB Object Linking and Embedding Database

PDMS Peer Daten Management System

PK Primary Key

RAID Redundant Array of Inexpensive Disks

RD relevante Datensätze, die in der Realität Duplikate dar-

stellen

ROI Return on Investment

SAW Simple Additive Weighting SFA Stochastic Frontier Analysis

SNMP Simple Network Management Protocol

SQL Structured Query Language SSIS SQL Server Integration Services

TOPSIS Technique for Order Preference by Similarity to Ideal

Solution

Web 2.0 populärer Sammelbegriff für Server- und Client-basierte

Internettechnologie

WHIRL Word-based Heterogenous Information Retrieval Logic

WS Work-Space

WST Work-Space-Table

XML Extensible Markup Language

XQuery XML Query Language

Teil I

Datenbereinigung und Konsolidierung von heterogenen Datenbeständen

- Steven Helmis -

1 Einleitung

Technischer Fortschritt und Globalisierung führten in den vergangenen Jahren zu einem expandierenden Datenaufkommen. Durch den Einsatz von modernen Datenbanktechnologien wird die effektive Verwaltung und Speicherung der Daten mit verschiedenartigen Strukturen im Giga- und Terabyte-Bereich jedoch beherrschbar. Durch das Kommunikationsmedium Internet beispielsweise erfolgt ein weltweiter Zugriff auf verteilte Informationen. Die Folge ist eine Informationsflut, die neben relevanten auch redundante und inkonsistente Fakten beinhaltet. Möchte man solche Daten in unternehmensinternen Informationssystemen einsetzen, stellen Angaben zur Aktualität oder der Vertrauenswürdigkeit einen relevanten Faktor zur Entscheidungsfindung dar.

Dabei ist die mangelnde Datenqualität der immer wiederkehrende Auslöser, der Customer Relationship Management (CRM) Projekte oder Enterprise Resource Planning (ERP) Systeme versagen lässt oder nicht den zu erwartenden Vorteil erbringt. Falsche, fehlende oder veraltete postalische Informationen sind in vielen Fällen die Ursache von Beeinträchtigungen, die schwerwiegende Konsequenzen nach sich ziehen. Inkorrekte Adressen sind verantwortlich für das Scheitern von internen und externen Kommunikationsprozessen in Unternehmen [UNI03]. Aber nicht nur personengebundene Daten können Mängel aufweisen. Auch bei der Präsentation naturwissenschaftlicher Daten sind Konflikte, die auf Grund von differenzierenden Erfassungsmethoden und diversen syntaktischen und semantischen Heterogenitäten zu einer verminderten Qualität des Datenbestandes führen nicht auszuschließen [MaJBL05].

Betrachtet man die zunehmende Globalisierung in mittelständischen Unternehmen, wächst die Nachfrage an Business Intelligence (BI) Produkten zum Sammeln und Aufbereiten von Daten. Das zeitnahe Darstellen von geschäftsrelevanten Informationen, wie z.B. den Ablauf oder die Ergebnisse laufender bzw. abgeschlossener Geschäftsprozesse fördert strategische Unternehmensentscheidungen. Liegen hier fehlerhafte Informationen vor, sind die Konsequenzen oft mit erhöhten Kosten verbunden. Dieser Aspekt erfordert eine stringente Datenqualitätssicherung während des *ETL-Prozesses*.

4 1 Einleitung

1.1 Motivation

Die durch ein BI-Werkzeug erzeugten Informationen bilden den Schlüssel für geschäftliche Innovationen. Kei Shen behauptet in [She06]: "Unternehmen, die Informationsintegration mit maximaler Effizienz vorantreiben, erzielen mit fünf Mal höherer Wahrscheinlichkeit mehr Wertschöpfung." Diese Aussage wird bekräftigt durch die Studie "Business Intelligence im Mittelstand" von Dirk Fridrich und Dr. Carsten Bange vom Business Application Research Center [FB07]. In dieser Untersuchung wurden mittelständische deutsche Unternehmen mit einem Jahresumsatz zwischen 50 Millionen und einer Milliarde Euro und einer Mitarbeiteranzahl zwischen 100 und 10000 befragt. 279 ausgefüllte Fragebögen konnten zur Auswertung herangezogen werden. Es zeigte sich, dass bereits 48 % der Befragten Firmen Software zur Unternehmenssteuereung einsetzen und 40 % eine Anschaffung planen. Weiterhin stellte sich heraus, dass Datenqualität die wichtigste Eigenschaft als auch der bedeutendste Kritikpunkt an der Business-Intelligence-Software ist. Durch diese Studie wird ersichtlich, dass Lösungen in den Bereichen Berichtswesen, Planung, Datenanalyse, Budgetierung oder Konsolidierung in Unternehmen betreut bzw. noch benötigt werden. Für eine erfolgreiche Realisierung ist jedoch ein aktueller und qualitativ hochwertiger Datenbestand Voraussetzung.

2006	gesamt	pro Stunde
Geborene:	672.724	78
Gestorbene:	821.627	95
Eheschließung:	373.681	43
Ehescheidungen (2005):	201.693	23
Zuzüge über die Grenzen Deutschlands:	707.352	82
Fortzüge über die Grenzen Deutschlands:	628.399	73
Gewerbeanmeldungen:	895.144	104

Tabelle 1.1: Statistische Kennzahlen [SÄD07, Bund06]

Anhand der Tabelle 1.1 mit statistischen Kennzahlen der Bundesrepublik Deutschland (vgl. [SÄD07], [Bun06]) wird die Änderungsgeschwindigkeit von adressbezogenen Daten dargestellt. Betrachtet man die rapiden Veränderungen in den verschiedenen Sektoren, ist davon auszugehen, dass Adressdatenbanken keine 100-prozentigen aktuellen Anschriften enthalten. Der momentane Zustand der Daten kann nur über diverse Software, wie sie in Abschnitt 5.1 vorgestellt wird ermittelt und gegebenenfalls modifiziert werden.