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CENTRO INTERNAZIONALE MATEMATICO ESTIVO 

(C. I. M. E .  ) 

A. V. BALAKRISHNAN : I 

A CONSTRUCTIVE APPROACH T O  OPTIMAL CONTROL 

C o r s o  t e n u t o  a d  E r i c e  d a l  2 7  g i u g n o  a 1  7 l u g l i o  1 9 7 3  



A CONSTRUCTIVE APPROACH TO OPTIMAL CONTROL 

0. Introduction. 

Except for linear problems, i t  i s  difficult, .if not impossible, to 

obtain explicit solutions for. optimal control problems. The closest we 

get to a general 'solution' is  the Maximum Principle of Pontrjagin. But 

important a s  this result  is ,  i t  only provides us with necessary conditions 

for a (any) postulated solution. Unfortunately, many control problems do 

not have an optimal solution. Consider for instance this trivial example: 

1; =,u ; x(0) = 0 

Minimize : 

subject to the constraint that the control u(t) must be equal to + 1 or  -1 a .e .  

The minimal value is  zero, but this i s  attained for u ( t ) . ~  0 and of course this 

i s  impossible. On the other hand 

u (t) = Sin nnt 
n fTiGGl 

provides us with a sequence.of admissible controls which approximate the 

infimum arbitrarily closely. The sequence 1 un(t) 1 of course converge 
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2 in the weak sense in L ~ [ O ,  I] to zero, but unfortunately un(t) converges 

to one, and of Course there is no optimal control. 

In his recent book [ I  1, L. C. Young has pointed out the fallacy 

in proving necessary conditions for a possibly non- existent solution. 

He eites a paradox of Perron that this leads to: consider the problem 

of fbnding the largest positive integer. If we assume there exists a 

sohtion, say N, then clearly N 2 I; on the other hand, we must have 

thp t 

which combined with 

shows that N = 1 ! 

To resolve this difficulty, Young introduces the notion of a 'relaxed' or 

'generalized control' and proves the existence of an optimal control in this 

class, -and derives the maximum principle valid for such 'functions'. In 
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the present work we shall go one step further and show how to actually 

construct - 'compute' - a sequence of approximating controls which 

converge to an optimal 'generalized control' and which then satisfies 

the maximum principle. The computational technique i s  of more than 

theoretical value; and in fact has proved to be.practically useful a s  well.. 

Relaxed controls play an essential role in this approach. We begin 

with a simple exposition of the theory of relaxed controls [Young [I] 1, 
because i t  i s  of some independent interest a s  well. 

1. Relaxed Controls 

Let U be a compact set  i n  Euclidean space E Let H denote m ' 
the L -space of functions u(t), 0 < t < T < -. Let u (t) be any sequence 2 n 

of measurable functions such that 

u (t) E U a.e. n 

Then we can find a subsequence (renumber i t  u (.)) such that u ( a )  n n 

converges weakly to u (.) say in H. Let  p( . )  be any polynomial over 0 

Em. Then 

also contains a weakly convergent subsequence. What i s  the limit? 

Unfortunately if i s  not ' 
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a s  the example 

Sin nt u (t) = - 
n Isin ntl 

2 shows, taking p(u) = u . At the slmplest level the 'generalized curves' 

[we shall continue to use the term generalized 'controls' because we 

shall need this notion only with the controls] may be regarded as  providing 

a means tc. straighten out this situation. 

Consider now the product space Cl = I x U where I denotes the 

interval [0, T] . Then Cl i s  compact metric and le t  C(Q) denote the 

Banach space of continuous functions over Cl with range in Em. Let 

f(t ,u) denote such a function. Then observe that for any Lebesgue 

measurable function ~ ( t )  such that 

we have that 

SI f ( t 3  u(t))dt 

defines a continuous linear functional on C(Cl). We know that there must 

be a countably additive s e t  function p (of finite variation) defined on the 

Lebesgue subsets of Cl such that 
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and it i s  clear that p i s  an atomic measure with a unit jump a t  u(t) 

for each t. That i s  to say, on any product set  of the form A x  B 

p(A x B) = Lebesgue measure of the set 

[ t  I u(t) e BI 

For  any polynomial p(.), we note that 

is  Lebesgue measurable in t .  A generalized control i s  simply a 

measure on (the Lebesgue subsets of) I x U such that 

and 

SU p(u) dp(t;u) 

i s  Lebesgue measurable in  t .  Alternately, 'for our purposes i t  is  

more natural to define i t  a s  a 'family' of probability measures 

('control measures')  dk(t; u) over U such that 



i s  Lebesgue measurable in t. Thus defined i t  i s  not difficult to show 

that 

Jnf (t;u) 'aP(t;u) 

defines a continuous linear functional on C(n). Moreover 

JU f(t;u) dp(t;u) 

i s  Lebesgue measurable in t. 

Let  now u (t) be the sequence we began with, un(t) converging n 

weakly in H to uo(t). Let f(t) be any m x m matrix function, continuous 

on I and p(.) be any polynomial with domain and range in Em. Then 

we can write 

where dpn(t;u) i s  the corresponding sequence of measures. Now by the 

weak compactness of measures we know that (independent of f ( -  ) and 
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p(.)) we can find a subsequence (renumber i t  dpn(.) again) which 

converges to a measure d h ( t ; ~ ) :  0 

Working with a further subsequence, we know that 

where ~ ( t )  i s  Lebesgue ~ceasurable and since f(t) i s  arbitrary, i t  

follows that 

Thus if we agree to define 

where the bar indicates use of 'generalized control', then we do indeed 

have that if 
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then 

p(un(t)) - p[u0(t)l 

Example 

Let  us illustrate this with a simple example for m = 1. 

Let 

Sin n nt u (t) = -- 
n Isinn ntl O < t < l  

what is the limiting generalized function? Note that d p n ( t ; ~ )  for 

ea.ch t has a jump a t  t 1 o r  -1. Hence 

where 

O(a  ( t ) l  1 n 

Hence 

Snf(t;u)dyn = J: an(t)f(t;l)dt 

t s1 (1-an(t))f(t:-l)dt 
0 

+ S' a(t)f(t;l)dt 
0 
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Hence the limiting measure p i s  such that 

dp(t;u) has a jump at t 1  of a(t) 

and a jump at -1 of (1-a(t)) 

Now 

1 1 1 J Juu dpn(t.u) ->J a(t)dt - J  (I-a(t))dt 
0 0 0 

Hence 

Also 

Hence we must have: 
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Hence 

Thus the limiting measure i s  a "chattering" between the values 1 and 

- 1 with equal probability. Note that 

which is  correct.  

Generalization is  fairly transparent a t  this stage. For  example, for 

the extension to the immediate case 

u (t) = one of m values, ul ,  . ,.u n , m 

and 

u ( a )  converges weakly to zero n 

we have: 

m 

P(U) dpU(t;u) -> J- p(u)dp(t;u) = C a k ( t ) p ( % )  
u 1 
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To determine the functions ak(t), we may note that 

m 2 
ak(t)\ = l imit \(t) 

2 

1 

m C a,(t)\m- ' = l imit uk(t) 
rn- 1 

1 

giving u s  m equations to  determine the m unknowns. The length 

of the tune interval, so  long a s  i t  i s  finite, obviously plays no role. 

The weak limit of "ordinary controls" thus leads to a generalized 

control. Conversely, we have the following important result  due to 

Young: Any generalized control can be approximated in the weak s ta r  

topology of l inear functionals on C(n) by ordinary controls. [Ordinary 

controls a r e  weak-star dense in  the class  of generalized controls.] 
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[Of course  the weak- s t a r  lirnits of generalized controls a r e  quite 

obviously generalized controls .] 

2.  The Basic Technique 

Let  u s  i l lustrate our technique with reference to a simple 

control problem: 

Minimize: f g(t;x(t);u(t))dt 
0 

where 

2( t )  = f(t;x(t);u(t)); x(0)  = xo 

and the control u(t)  i s  constrained to be in a res t r ic ted c lass  of 

functions (called 'admissible' controls).  We replace this problem 

by the non-dynamic epsilon problem: 

Minimize: 

over the c lass  of state functions x( t ) ,  absolutely continuous with 

x(0) = xo and the c lass  of admissible Controls. We present a 
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constructive technique for  solving this problem which a s  E goes to 

zero  approximates the original probizm a s  closely a s  des i red .  The 

construction exploits the maximum principle indirectly; in  fact  the 

Hamiltonian a r i s e s  in  a natural  way in the process .  

See [2] for  the bibliography and related work.  
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A Basic Estimate 

We begin with the immediate question: how well does the epsilon 

problem approximate the original control problem? This question i s  of 

course  of pr imary importance fo r  computation, and i t  i s  interesting that 

we can answer i t  without the need fo r  any of the usual assumptions of 

control thoery , even including the conditions that a s s u r e  unique solution 

to the differential equation. We can also consider a s  general a c lass  of 

control problems a s  necessary. However, in o rder  not to confuse the 

main ideas  with too much generality, we shall confine ourselves to the 

following c lass  of problems (the extension to m o r e  general problems 

involving other types of phase plane constraints being readily made): 

Minimize Sz g(t;x(t);u(t)) dt 

subject to: 

where x ( t )  i s  absolutely continuous and satisfying additional conditions 

a t  the end points t = 0,  and t = T. The end-point T i s  finite but of 

course not necessarily fixed. The control u(t)  i s  Lebesgue measurable 
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and subjec't to additional constraints, if any. We shall refer to such 

controls a s  "admissible" controls. It should be noted that not every 

admissible control necessarily yields a trajectory x(t) satisfying all 

the conditions. (2.2), (2.3) and the end conditions. However i t  would 

be 6 t u r a l  to assume that there do exist admissible controls that lead to 

such trajectories. (Even this condition can be.dispensed with for our 

purposes in this section.) Nor shall w e  need to impose any smoothness 

conditions on the functions f(.), g(.) and &.). We shall only assume 

that they a r e  Lebesgue measurable and such that the integral in (2.1) i s  

well-defined for each (finite) T. 

 he epsilon problem i s  now formulated a s  follows: 

Let 

Minimize h(c ;x( . );u(. );T) over the class  of (absolutely continuous) 

trajectories x(t) subject to the given end conditions (any other "phase 

plane" constraints can clearly be added); and admissible controls ~ ( t ) .  

We add the condition [F]: 
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where m i s  a fixed positive constant independent of epsilon. This 

condition is  not necessary if for example: 

Inf g(t;x;u) > - m 

(as  in time-optimal problems, see section 4) 

The condibion (F) i s  certainly a natural one in that w e  a r e ,  after all ,  

trying to approximate the case m = 0. The need for  such a condition 

may be seen by considering the simple example: 

Minimize: 

~ J [ u ( t ) ~  - x(t)4) d t  

Here  the epsilon problem without the finiteness condition will have 

minus infinity for  the infimum while the control problem has zero 

for the infimum. Unless otherwise stated, this condition will be 

par t  of the epsilon problem in  what follows. 

Again in  order  not to complicate the exposition too much, we 

shall assume that the infimumof the epsilon problem i s  attained by 

a finite final time Tg , in the sense that 

hlo) = Inf h(o;x(.);u(.);T) = l i m  h(s;xn(-);un(. ) ;Tg) 
n 
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where Te i s  finite, and xn( -), un(. ), i s  a "minimizing" sequence for 

the epsilon problem. For such a minimizing sequence, le t  

1 T€ 2 
d( r )  = Lim inf 2 (11; - f(t:xw(t);un(t))ll + 1 1  ,(t;xn(t):un(t)ll ')dt 

0 

T€ G(E) = l im sup g(t;x(t);u(t)) dt 
0 

Then of course 

Let us now define 

6 ( o ) =  sup d(o) 

g(s)= Inf G(s) 

where the infimum (and supremum) i s  taken over the class of all 

minimizing seGuences. While 8(r)  i s  finite because of condition 

(F), g(c) may well be minus infinity in general. Under the usual 

conditions on the dynamics, we shall see however that g(o) will 

be finite. We have of course: 
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It i s  natural now to define g(0) to be the infimum for the control problem, 

assuming i t  i s  definable. Then 

With these definitions we can state the following theorem concerning 

the approximation: 

Theorem 2.1 

Suppose g(o) is finite for  some oo. Then g(c) i s  finite for every o 

less  than eo, and moreover a s  c -+ 0, 6(e) i s  monotone non-increasing 

and g(e) i s  monotone non-decreasing. 

Further : 

l imit  6(e)/o = 0 
6 - 9 0  

if g(0) is definable (not equal to plus infinity). 

Proof 

Let s be l e s s  than eo. We have then, a s  an elementary analysis 

on sums of l imits shows: 
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and similarly: 

Since every quantity i s  f ~ ~ i i t e  on the left w e  can freely transpose to 

obtain: 

b('e) - 6 ( € 0 )  < 
E - g(so) - g(e) 5 '(€1 - '('o) 

0 

and since E i s  l e s s  than eo, these relations a r e  consistent only 

if 

Hence g(s) i s  finite. Moreover since the argument can now be 

repeated with 

the required monotonicity follows . Let  g(0.t) denote the l imit  of 

g(s) as  s goes to zero. F rom (2.7). since g(0) i s  not plus infinity, 

6(s) must converge to zero. Againwith e < el < cO, we have 
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and letting c go to zero in this we obtain that for E < so, 

and in particular then 6(s)/c goes to zero. 

Remark 1 

It should be noted that infimum of the epsilon'problem has been 

sought in the class of admissible controls. This i s  natural since, 

freed of having to satisfy the differential equation constraint, any 

admissible control can be used. On the other hand this means that 

in general the optimal control will be a relaxed control. In particular 

g(O+) may well be less  than g(O), the latter being usually sought in the 

class  of ordinary controls, a s  we assume herein also. An example 

i s  given i n  [3] where g(O+) = -1, while g(0) = 0. However we shall 

see that the infimum for  the control problem allowing relaxed controls 

will be g(O+), a t  least under the usual conditions. But the main point 

i s  that in the epsilon problem relaxed controls appear of necessity. 

Remark 2 

As shown in [3], (2.9) and (2.10) actually hold for  d(s) and G(s) 

(even though the latter may depend on the particular minimizing 

sequence chosen!) 
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Corollary Assume g(0) c + m 

and that g(co) i s  finite for some e n  > 0. Then, h(6) i s  monotone non- 

3ecreasing and omitting a t  most a countable number of points in 

3<e<e0, we have 

and 

Proof For  E < e0, both g(.) and 6 i .  ] a r e  monotone, and hence -. 

continuous except for a countable number of points and differentiable 

a .e .  Now 

= 6(e) (1 / ( €  S A )  - 1 / ~ )  
showing monotonicety) 

while 
(6(e + A )  h(e + A) - h(e) 2 + g(e + A)) - ( 6 ( c  + A ) / O  + g(e + A ) )  

o r ,  (2.11) follows. But omitting a se t  of measure zero: 

from which (2.12) follows. 

3. Fixed End- Point Problems 

In order to introduce the basic ideas in the epsilon technique, 

i t  is  convenient to begin With what.is perhaps the simplest class of 

control problems: Fixed end-point problems with fixed initial'zondition, 

and bounded controls . 
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Problem 1: 

T 
Minimize J g(t;x(t);u(t)) d t  t cp(x(T)) 

0 

where T i s  fixed and finite and 

k( t )  = f(t;x(t);u(t)) a . e .  ; x(0) = x fixed 1 

u(t)  Lebesgue measurable 

~ ( t )  e U a. e.,  U being compact 

It will be assunied in addition that 

f(t;x;u), g(t;x;u), cp(x) a r e  C' in x, continuous in all  

variables,  and further condition G holds: t 

(GI: 
2 [x, f(t;x;u)] 5 c ( 1 t  llxll ) f o r  u in U, 0 5 t l  T . . (3.4) 

We note immediately that the infimum, denoted g(O), is  finite. 

The epsilon problem i s  formulated a s  follows: 

Let 
1 2 

h(e;x(.);u(.)  = 5 11 2 - f(t ;x(t);u(t))  11 dt  t Q(x(T)) 

 h his condition a s  well a s  [ 3 . 3 ]  can be relaxed a s  in [15] for example - 
we forego this generalization in the interes t  of simplicity of exposition, 
especially since i t  i s  not an intrinsic limitation on the approach. 
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Minimiee ~(E;x( .) ;u( . ))  over the class of controls u(t) Lebesgue 

n~easurabie, u(t) e U, and also over the class of absolutely continuous 

(Istat-9funeons x(t) with x(O) = xl. (It i s  clear that additional phase 

plane constraints can be added here if necessary .) In addition the 

condftion F' i s  imposed: 

The condition F' i s  a slight weakening of condition F, which i s  possible 

because of the arnoothness properties of the functions assumed. Thus 

le t  xn( . ), u ( . ) be a minimizing sequence for the epsilon problem. n 

Condition F' implies that xn(t) i s  uniformly bounded in O j k T  and hence 

both 6(6) and g(e) {which now includes the. cp(. ) term) a re  finite. Again, 

i t  is readily seen that condition F implies F'. For  le t  

Then, using (3.4): 

I[;,, x,] 1 -- < I[" n' f(t;xn(tl;un(t)I 1 + l[xn. z,I I 

2 
< ~ ( 1  + IIx,II 1 + mll~ , !  - 

2 
< 0 (1 + llxnll 1 - 
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and by the usual analysis (Gronwall lemma) this implies that xn(t) 

is uniformly bounded. (If the init ial  condition xn(0) = x1 i s  

generalized to cpo(x(0) = 0, are  mus t  then require  that the se t  

is bounded, for  this resul t  to hold a s  well a s  for  g(0) to be  finite.)  

To solve the epsilon problem we take the following elementary 

route. Le t  a n  admissible state function x( t )  (that is, absolutely 

continuous ana satisfying x(0) = x and (3.6)) be  chosen. To minimize 1 

(3.5), we simply minimize the integrand. Let  

1 rn(a;t;y;x) = Min (r; ( y - f(t;x;u)l12 t g(t;x:u)) 
u e u  

The minimum is clearly attained since U.is compact and the functional 

i s  continuous. I t  i s  readily seen fur ther  that m(o;t;y;x) is continuous 

in all the variables. Now 

s o  that 

where the infimum is taken over  the c lass  of admissible state 

functions x(t) .  To reverse  the inequality in (3.10) we have only 
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to uote that w c  can find an admissible control u(t) such that (a.e.): 

This is  obvious if the minimum of (3.9) i s  attained a t  a unique point 

in U. Otherwise we invoke the "half-way principle of McShane 

and warfield", as  in Young [ 1 1. 

Let x ( a )  be a minimizing sequence for n 

h ( r )  = Inf sT m(a;t;;(t)';x(t))dt t rp(x(T)) 
0 

Let un( - )  be a corresponding admissible control sequence. Now i t  

is readily seen that x ( - )  is  equicontinuous. Hence we may, by n 

renumbering if necessary, assume that x (t)  converges uniformly to n 

xo(t) say. Further we can see that xo(t) i s  absolutely continuous and 

we may assume that the sequence (again by renumbering a s  necessary) 

k (t) converges weakly to Go(t). Also xo(t) i s  an admissible state n 

function. But the sequence of controls converge, in general, only in 

the sense of relaxcd controls. [Indeed to establish the existence of a 

relaxed optimal control for the epsilon problem, a s  in the original 

control problem, takes "no more than a routine exercise in using the 

Ascolj theorem and the diagonal process11 (McShane [ 4  1) only more 

so  in the present case!] 


